d-matrix-user
commited on
Commit
•
3434f81
1
Parent(s):
4b07dd5
commit tokenizer
Browse files- BASELINE.yaml +447 -0
- FALLBACK.yaml +447 -0
- config.json +1 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
- vocab.json +0 -0
BASELINE.yaml
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
lm_head:
|
3 |
+
accum_format: SAME
|
4 |
+
approximation_function: NONE
|
5 |
+
input_format: SAME
|
6 |
+
instance: Linear
|
7 |
+
output_format: SAME
|
8 |
+
weight_format: SAME
|
9 |
+
weight_sparseness: DENSE
|
10 |
+
transformer.drop:
|
11 |
+
approximation_function: NONE
|
12 |
+
input_format: SAME
|
13 |
+
instance: Dropout
|
14 |
+
output_format: SAME
|
15 |
+
transformer.h.0.attn.attn_dropout:
|
16 |
+
approximation_function: NONE
|
17 |
+
input_format: SAME
|
18 |
+
instance: Dropout
|
19 |
+
output_format: SAME
|
20 |
+
transformer.h.0.attn.c_attn:
|
21 |
+
approximation_function: NONE
|
22 |
+
bias_format: SAME
|
23 |
+
input_format: SAME
|
24 |
+
instance: HFTransformersConv1D
|
25 |
+
output_format: SAME
|
26 |
+
weight_format: SAME
|
27 |
+
weight_sparseness: DENSE
|
28 |
+
transformer.h.0.attn.c_proj:
|
29 |
+
approximation_function: NONE
|
30 |
+
bias_format: SAME
|
31 |
+
input_format: SAME
|
32 |
+
instance: HFTransformersConv1D
|
33 |
+
output_format: SAME
|
34 |
+
weight_format: SAME
|
35 |
+
weight_sparseness: DENSE
|
36 |
+
transformer.h.0.attn.resid_dropout:
|
37 |
+
approximation_function: NONE
|
38 |
+
input_format: SAME
|
39 |
+
instance: Dropout
|
40 |
+
output_format: SAME
|
41 |
+
transformer.h.0.attn.softmax:
|
42 |
+
approximation_function: NONE
|
43 |
+
input_format: SAME
|
44 |
+
instance: Softmax
|
45 |
+
output_format: SAME
|
46 |
+
transformer.h.0.ln_1:
|
47 |
+
approximation_function: NONE
|
48 |
+
bias_format: SAME
|
49 |
+
input_format: SAME
|
50 |
+
instance: LayerNorm
|
51 |
+
output_format: SAME
|
52 |
+
weight_format: SAME
|
53 |
+
transformer.h.0.ln_2:
|
54 |
+
approximation_function: NONE
|
55 |
+
bias_format: SAME
|
56 |
+
input_format: SAME
|
57 |
+
instance: LayerNorm
|
58 |
+
output_format: SAME
|
59 |
+
weight_format: SAME
|
60 |
+
transformer.h.0.mlp.act:
|
61 |
+
approximation_function: NONE
|
62 |
+
input_format: SAME
|
63 |
+
instance: GELU
|
64 |
+
output_format: SAME
|
65 |
+
transformer.h.0.mlp.c_fc:
|
66 |
+
approximation_function: NONE
|
67 |
+
bias_format: SAME
|
68 |
+
input_format: SAME
|
69 |
+
instance: HFTransformersConv1D
|
70 |
+
output_format: SAME
|
71 |
+
weight_format: SAME
|
72 |
+
weight_sparseness: DENSE
|
73 |
+
transformer.h.0.mlp.c_proj:
|
74 |
+
approximation_function: NONE
|
75 |
+
bias_format: SAME
|
76 |
+
input_format: SAME
|
77 |
+
instance: HFTransformersConv1D
|
78 |
+
output_format: SAME
|
79 |
+
weight_format: SAME
|
80 |
+
weight_sparseness: DENSE
|
81 |
+
transformer.h.0.mlp.dropout:
|
82 |
+
approximation_function: NONE
|
83 |
+
input_format: SAME
|
84 |
+
instance: Dropout
|
85 |
+
output_format: SAME
|
86 |
+
transformer.h.1.attn.attn_dropout:
|
87 |
+
approximation_function: NONE
|
88 |
+
input_format: SAME
|
89 |
+
instance: Dropout
|
90 |
+
output_format: SAME
|
91 |
+
transformer.h.1.attn.c_attn:
|
92 |
+
approximation_function: NONE
|
93 |
+
bias_format: SAME
|
94 |
+
input_format: SAME
|
95 |
+
instance: HFTransformersConv1D
|
96 |
+
output_format: SAME
|
97 |
+
weight_format: SAME
|
98 |
+
weight_sparseness: DENSE
|
99 |
+
transformer.h.1.attn.c_proj:
|
100 |
+
approximation_function: NONE
|
101 |
+
bias_format: SAME
|
102 |
+
input_format: SAME
|
103 |
+
instance: HFTransformersConv1D
|
104 |
+
output_format: SAME
|
105 |
+
weight_format: SAME
|
106 |
+
weight_sparseness: DENSE
|
107 |
+
transformer.h.1.attn.resid_dropout:
|
108 |
+
approximation_function: NONE
|
109 |
+
input_format: SAME
|
110 |
+
instance: Dropout
|
111 |
+
output_format: SAME
|
112 |
+
transformer.h.1.attn.softmax:
|
113 |
+
approximation_function: NONE
|
114 |
+
input_format: SAME
|
115 |
+
instance: Softmax
|
116 |
+
output_format: SAME
|
117 |
+
transformer.h.1.ln_1:
|
118 |
+
approximation_function: NONE
|
119 |
+
bias_format: SAME
|
120 |
+
input_format: SAME
|
121 |
+
instance: LayerNorm
|
122 |
+
output_format: SAME
|
123 |
+
weight_format: SAME
|
124 |
+
transformer.h.1.ln_2:
|
125 |
+
approximation_function: NONE
|
126 |
+
bias_format: SAME
|
127 |
+
input_format: SAME
|
128 |
+
instance: LayerNorm
|
129 |
+
output_format: SAME
|
130 |
+
weight_format: SAME
|
131 |
+
transformer.h.1.mlp.act:
|
132 |
+
approximation_function: NONE
|
133 |
+
input_format: SAME
|
134 |
+
instance: GELU
|
135 |
+
output_format: SAME
|
136 |
+
transformer.h.1.mlp.c_fc:
|
137 |
+
approximation_function: NONE
|
138 |
+
bias_format: SAME
|
139 |
+
input_format: SAME
|
140 |
+
instance: HFTransformersConv1D
|
141 |
+
output_format: SAME
|
142 |
+
weight_format: SAME
|
143 |
+
weight_sparseness: DENSE
|
144 |
+
transformer.h.1.mlp.c_proj:
|
145 |
+
approximation_function: NONE
|
146 |
+
bias_format: SAME
|
147 |
+
input_format: SAME
|
148 |
+
instance: HFTransformersConv1D
|
149 |
+
output_format: SAME
|
150 |
+
weight_format: SAME
|
151 |
+
weight_sparseness: DENSE
|
152 |
+
transformer.h.1.mlp.dropout:
|
153 |
+
approximation_function: NONE
|
154 |
+
input_format: SAME
|
155 |
+
instance: Dropout
|
156 |
+
output_format: SAME
|
157 |
+
transformer.h.2.attn.attn_dropout:
|
158 |
+
approximation_function: NONE
|
159 |
+
input_format: SAME
|
160 |
+
instance: Dropout
|
161 |
+
output_format: SAME
|
162 |
+
transformer.h.2.attn.c_attn:
|
163 |
+
approximation_function: NONE
|
164 |
+
bias_format: SAME
|
165 |
+
input_format: SAME
|
166 |
+
instance: HFTransformersConv1D
|
167 |
+
output_format: SAME
|
168 |
+
weight_format: SAME
|
169 |
+
weight_sparseness: DENSE
|
170 |
+
transformer.h.2.attn.c_proj:
|
171 |
+
approximation_function: NONE
|
172 |
+
bias_format: SAME
|
173 |
+
input_format: SAME
|
174 |
+
instance: HFTransformersConv1D
|
175 |
+
output_format: SAME
|
176 |
+
weight_format: SAME
|
177 |
+
weight_sparseness: DENSE
|
178 |
+
transformer.h.2.attn.resid_dropout:
|
179 |
+
approximation_function: NONE
|
180 |
+
input_format: SAME
|
181 |
+
instance: Dropout
|
182 |
+
output_format: SAME
|
183 |
+
transformer.h.2.attn.softmax:
|
184 |
+
approximation_function: NONE
|
185 |
+
input_format: SAME
|
186 |
+
instance: Softmax
|
187 |
+
output_format: SAME
|
188 |
+
transformer.h.2.ln_1:
|
189 |
+
approximation_function: NONE
|
190 |
+
bias_format: SAME
|
191 |
+
input_format: SAME
|
192 |
+
instance: LayerNorm
|
193 |
+
output_format: SAME
|
194 |
+
weight_format: SAME
|
195 |
+
transformer.h.2.ln_2:
|
196 |
+
approximation_function: NONE
|
197 |
+
bias_format: SAME
|
198 |
+
input_format: SAME
|
199 |
+
instance: LayerNorm
|
200 |
+
output_format: SAME
|
201 |
+
weight_format: SAME
|
202 |
+
transformer.h.2.mlp.act:
|
203 |
+
approximation_function: NONE
|
204 |
+
input_format: SAME
|
205 |
+
instance: GELU
|
206 |
+
output_format: SAME
|
207 |
+
transformer.h.2.mlp.c_fc:
|
208 |
+
approximation_function: NONE
|
209 |
+
bias_format: SAME
|
210 |
+
input_format: SAME
|
211 |
+
instance: HFTransformersConv1D
|
212 |
+
output_format: SAME
|
213 |
+
weight_format: SAME
|
214 |
+
weight_sparseness: DENSE
|
215 |
+
transformer.h.2.mlp.c_proj:
|
216 |
+
approximation_function: NONE
|
217 |
+
bias_format: SAME
|
218 |
+
input_format: SAME
|
219 |
+
instance: HFTransformersConv1D
|
220 |
+
output_format: SAME
|
221 |
+
weight_format: SAME
|
222 |
+
weight_sparseness: DENSE
|
223 |
+
transformer.h.2.mlp.dropout:
|
224 |
+
approximation_function: NONE
|
225 |
+
input_format: SAME
|
226 |
+
instance: Dropout
|
227 |
+
output_format: SAME
|
228 |
+
transformer.h.3.attn.attn_dropout:
|
229 |
+
approximation_function: NONE
|
230 |
+
input_format: SAME
|
231 |
+
instance: Dropout
|
232 |
+
output_format: SAME
|
233 |
+
transformer.h.3.attn.c_attn:
|
234 |
+
approximation_function: NONE
|
235 |
+
bias_format: SAME
|
236 |
+
input_format: SAME
|
237 |
+
instance: HFTransformersConv1D
|
238 |
+
output_format: SAME
|
239 |
+
weight_format: SAME
|
240 |
+
weight_sparseness: DENSE
|
241 |
+
transformer.h.3.attn.c_proj:
|
242 |
+
approximation_function: NONE
|
243 |
+
bias_format: SAME
|
244 |
+
input_format: SAME
|
245 |
+
instance: HFTransformersConv1D
|
246 |
+
output_format: SAME
|
247 |
+
weight_format: SAME
|
248 |
+
weight_sparseness: DENSE
|
249 |
+
transformer.h.3.attn.resid_dropout:
|
250 |
+
approximation_function: NONE
|
251 |
+
input_format: SAME
|
252 |
+
instance: Dropout
|
253 |
+
output_format: SAME
|
254 |
+
transformer.h.3.attn.softmax:
|
255 |
+
approximation_function: NONE
|
256 |
+
input_format: SAME
|
257 |
+
instance: Softmax
|
258 |
+
output_format: SAME
|
259 |
+
transformer.h.3.ln_1:
|
260 |
+
approximation_function: NONE
|
261 |
+
bias_format: SAME
|
262 |
+
input_format: SAME
|
263 |
+
instance: LayerNorm
|
264 |
+
output_format: SAME
|
265 |
+
weight_format: SAME
|
266 |
+
transformer.h.3.ln_2:
|
267 |
+
approximation_function: NONE
|
268 |
+
bias_format: SAME
|
269 |
+
input_format: SAME
|
270 |
+
instance: LayerNorm
|
271 |
+
output_format: SAME
|
272 |
+
weight_format: SAME
|
273 |
+
transformer.h.3.mlp.act:
|
274 |
+
approximation_function: NONE
|
275 |
+
input_format: SAME
|
276 |
+
instance: GELU
|
277 |
+
output_format: SAME
|
278 |
+
transformer.h.3.mlp.c_fc:
|
279 |
+
approximation_function: NONE
|
280 |
+
bias_format: SAME
|
281 |
+
input_format: SAME
|
282 |
+
instance: HFTransformersConv1D
|
283 |
+
output_format: SAME
|
284 |
+
weight_format: SAME
|
285 |
+
weight_sparseness: DENSE
|
286 |
+
transformer.h.3.mlp.c_proj:
|
287 |
+
approximation_function: NONE
|
288 |
+
bias_format: SAME
|
289 |
+
input_format: SAME
|
290 |
+
instance: HFTransformersConv1D
|
291 |
+
output_format: SAME
|
292 |
+
weight_format: SAME
|
293 |
+
weight_sparseness: DENSE
|
294 |
+
transformer.h.3.mlp.dropout:
|
295 |
+
approximation_function: NONE
|
296 |
+
input_format: SAME
|
297 |
+
instance: Dropout
|
298 |
+
output_format: SAME
|
299 |
+
transformer.h.4.attn.attn_dropout:
|
300 |
+
approximation_function: NONE
|
301 |
+
input_format: SAME
|
302 |
+
instance: Dropout
|
303 |
+
output_format: SAME
|
304 |
+
transformer.h.4.attn.c_attn:
|
305 |
+
approximation_function: NONE
|
306 |
+
bias_format: SAME
|
307 |
+
input_format: SAME
|
308 |
+
instance: HFTransformersConv1D
|
309 |
+
output_format: SAME
|
310 |
+
weight_format: SAME
|
311 |
+
weight_sparseness: DENSE
|
312 |
+
transformer.h.4.attn.c_proj:
|
313 |
+
approximation_function: NONE
|
314 |
+
bias_format: SAME
|
315 |
+
input_format: SAME
|
316 |
+
instance: HFTransformersConv1D
|
317 |
+
output_format: SAME
|
318 |
+
weight_format: SAME
|
319 |
+
weight_sparseness: DENSE
|
320 |
+
transformer.h.4.attn.resid_dropout:
|
321 |
+
approximation_function: NONE
|
322 |
+
input_format: SAME
|
323 |
+
instance: Dropout
|
324 |
+
output_format: SAME
|
325 |
+
transformer.h.4.attn.softmax:
|
326 |
+
approximation_function: NONE
|
327 |
+
input_format: SAME
|
328 |
+
instance: Softmax
|
329 |
+
output_format: SAME
|
330 |
+
transformer.h.4.ln_1:
|
331 |
+
approximation_function: NONE
|
332 |
+
bias_format: SAME
|
333 |
+
input_format: SAME
|
334 |
+
instance: LayerNorm
|
335 |
+
output_format: SAME
|
336 |
+
weight_format: SAME
|
337 |
+
transformer.h.4.ln_2:
|
338 |
+
approximation_function: NONE
|
339 |
+
bias_format: SAME
|
340 |
+
input_format: SAME
|
341 |
+
instance: LayerNorm
|
342 |
+
output_format: SAME
|
343 |
+
weight_format: SAME
|
344 |
+
transformer.h.4.mlp.act:
|
345 |
+
approximation_function: NONE
|
346 |
+
input_format: SAME
|
347 |
+
instance: GELU
|
348 |
+
output_format: SAME
|
349 |
+
transformer.h.4.mlp.c_fc:
|
350 |
+
approximation_function: NONE
|
351 |
+
bias_format: SAME
|
352 |
+
input_format: SAME
|
353 |
+
instance: HFTransformersConv1D
|
354 |
+
output_format: SAME
|
355 |
+
weight_format: SAME
|
356 |
+
weight_sparseness: DENSE
|
357 |
+
transformer.h.4.mlp.c_proj:
|
358 |
+
approximation_function: NONE
|
359 |
+
bias_format: SAME
|
360 |
+
input_format: SAME
|
361 |
+
instance: HFTransformersConv1D
|
362 |
+
output_format: SAME
|
363 |
+
weight_format: SAME
|
364 |
+
weight_sparseness: DENSE
|
365 |
+
transformer.h.4.mlp.dropout:
|
366 |
+
approximation_function: NONE
|
367 |
+
input_format: SAME
|
368 |
+
instance: Dropout
|
369 |
+
output_format: SAME
|
370 |
+
transformer.h.5.attn.attn_dropout:
|
371 |
+
approximation_function: NONE
|
372 |
+
input_format: SAME
|
373 |
+
instance: Dropout
|
374 |
+
output_format: SAME
|
375 |
+
transformer.h.5.attn.c_attn:
|
376 |
+
approximation_function: NONE
|
377 |
+
bias_format: SAME
|
378 |
+
input_format: SAME
|
379 |
+
instance: HFTransformersConv1D
|
380 |
+
output_format: SAME
|
381 |
+
weight_format: SAME
|
382 |
+
weight_sparseness: DENSE
|
383 |
+
transformer.h.5.attn.c_proj:
|
384 |
+
approximation_function: NONE
|
385 |
+
bias_format: SAME
|
386 |
+
input_format: SAME
|
387 |
+
instance: HFTransformersConv1D
|
388 |
+
output_format: SAME
|
389 |
+
weight_format: SAME
|
390 |
+
weight_sparseness: DENSE
|
391 |
+
transformer.h.5.attn.resid_dropout:
|
392 |
+
approximation_function: NONE
|
393 |
+
input_format: SAME
|
394 |
+
instance: Dropout
|
395 |
+
output_format: SAME
|
396 |
+
transformer.h.5.attn.softmax:
|
397 |
+
approximation_function: NONE
|
398 |
+
input_format: SAME
|
399 |
+
instance: Softmax
|
400 |
+
output_format: SAME
|
401 |
+
transformer.h.5.ln_1:
|
402 |
+
approximation_function: NONE
|
403 |
+
bias_format: SAME
|
404 |
+
input_format: SAME
|
405 |
+
instance: LayerNorm
|
406 |
+
output_format: SAME
|
407 |
+
weight_format: SAME
|
408 |
+
transformer.h.5.ln_2:
|
409 |
+
approximation_function: NONE
|
410 |
+
bias_format: SAME
|
411 |
+
input_format: SAME
|
412 |
+
instance: LayerNorm
|
413 |
+
output_format: SAME
|
414 |
+
weight_format: SAME
|
415 |
+
transformer.h.5.mlp.act:
|
416 |
+
approximation_function: NONE
|
417 |
+
input_format: SAME
|
418 |
+
instance: GELU
|
419 |
+
output_format: SAME
|
420 |
+
transformer.h.5.mlp.c_fc:
|
421 |
+
approximation_function: NONE
|
422 |
+
bias_format: SAME
|
423 |
+
input_format: SAME
|
424 |
+
instance: HFTransformersConv1D
|
425 |
+
output_format: SAME
|
426 |
+
weight_format: SAME
|
427 |
+
weight_sparseness: DENSE
|
428 |
+
transformer.h.5.mlp.c_proj:
|
429 |
+
approximation_function: NONE
|
430 |
+
bias_format: SAME
|
431 |
+
input_format: SAME
|
432 |
+
instance: HFTransformersConv1D
|
433 |
+
output_format: SAME
|
434 |
+
weight_format: SAME
|
435 |
+
weight_sparseness: DENSE
|
436 |
+
transformer.h.5.mlp.dropout:
|
437 |
+
approximation_function: NONE
|
438 |
+
input_format: SAME
|
439 |
+
instance: Dropout
|
440 |
+
output_format: SAME
|
441 |
+
transformer.ln_f:
|
442 |
+
approximation_function: NONE
|
443 |
+
bias_format: SAME
|
444 |
+
input_format: SAME
|
445 |
+
instance: LayerNorm
|
446 |
+
output_format: SAME
|
447 |
+
weight_format: SAME
|
FALLBACK.yaml
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
lm_head:
|
3 |
+
accum_format: SAME
|
4 |
+
approximation_function: NONE
|
5 |
+
input_format: SAME
|
6 |
+
instance: Linear
|
7 |
+
output_format: SAME
|
8 |
+
weight_format: SAME
|
9 |
+
weight_sparseness: DENSE
|
10 |
+
transformer.drop:
|
11 |
+
approximation_function: NONE
|
12 |
+
input_format: SAME
|
13 |
+
instance: Dropout
|
14 |
+
output_format: SAME
|
15 |
+
transformer.h.0.attn.attn_dropout:
|
16 |
+
approximation_function: NONE
|
17 |
+
input_format: SAME
|
18 |
+
instance: Dropout
|
19 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
20 |
+
transformer.h.0.attn.c_attn:
|
21 |
+
approximation_function: NONE
|
22 |
+
bias_format: SAME
|
23 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
24 |
+
instance: HFTransformersConv1D
|
25 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
26 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
27 |
+
weight_sparseness: DENSE
|
28 |
+
transformer.h.0.attn.c_proj:
|
29 |
+
approximation_function: NONE
|
30 |
+
bias_format: SAME
|
31 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
32 |
+
instance: HFTransformersConv1D
|
33 |
+
output_format: SAME
|
34 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
35 |
+
weight_sparseness: DENSE
|
36 |
+
transformer.h.0.attn.resid_dropout:
|
37 |
+
approximation_function: NONE
|
38 |
+
input_format: SAME
|
39 |
+
instance: Dropout
|
40 |
+
output_format: SAME
|
41 |
+
transformer.h.0.attn.softmax:
|
42 |
+
approximation_function: SOFTMAX(base2,float16)
|
43 |
+
input_format: SAME
|
44 |
+
instance: Softmax
|
45 |
+
output_format: SAME
|
46 |
+
transformer.h.0.ln_1:
|
47 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
48 |
+
bias_format: SAME
|
49 |
+
input_format: SAME
|
50 |
+
instance: LayerNorm
|
51 |
+
output_format: SAME
|
52 |
+
weight_format: SAME
|
53 |
+
transformer.h.0.ln_2:
|
54 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
55 |
+
bias_format: SAME
|
56 |
+
input_format: SAME
|
57 |
+
instance: LayerNorm
|
58 |
+
output_format: SAME
|
59 |
+
weight_format: SAME
|
60 |
+
transformer.h.0.mlp.act:
|
61 |
+
approximation_function: GELU(vsimd)
|
62 |
+
input_format: SAME
|
63 |
+
instance: GELU
|
64 |
+
output_format: SAME
|
65 |
+
transformer.h.0.mlp.c_fc:
|
66 |
+
approximation_function: NONE
|
67 |
+
bias_format: SAME
|
68 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
69 |
+
instance: HFTransformersConv1D
|
70 |
+
output_format: SAME
|
71 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
72 |
+
weight_sparseness: DENSE
|
73 |
+
transformer.h.0.mlp.c_proj:
|
74 |
+
approximation_function: NONE
|
75 |
+
bias_format: SAME
|
76 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
77 |
+
instance: HFTransformersConv1D
|
78 |
+
output_format: SAME
|
79 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
80 |
+
weight_sparseness: DENSE
|
81 |
+
transformer.h.0.mlp.dropout:
|
82 |
+
approximation_function: NONE
|
83 |
+
input_format: SAME
|
84 |
+
instance: Dropout
|
85 |
+
output_format: SAME
|
86 |
+
transformer.h.1.attn.attn_dropout:
|
87 |
+
approximation_function: NONE
|
88 |
+
input_format: SAME
|
89 |
+
instance: Dropout
|
90 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
91 |
+
transformer.h.1.attn.c_attn:
|
92 |
+
approximation_function: NONE
|
93 |
+
bias_format: SAME
|
94 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
95 |
+
instance: HFTransformersConv1D
|
96 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
97 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
98 |
+
weight_sparseness: DENSE
|
99 |
+
transformer.h.1.attn.c_proj:
|
100 |
+
approximation_function: NONE
|
101 |
+
bias_format: SAME
|
102 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
103 |
+
instance: HFTransformersConv1D
|
104 |
+
output_format: SAME
|
105 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
106 |
+
weight_sparseness: DENSE
|
107 |
+
transformer.h.1.attn.resid_dropout:
|
108 |
+
approximation_function: NONE
|
109 |
+
input_format: SAME
|
110 |
+
instance: Dropout
|
111 |
+
output_format: SAME
|
112 |
+
transformer.h.1.attn.softmax:
|
113 |
+
approximation_function: SOFTMAX(base2,float16)
|
114 |
+
input_format: SAME
|
115 |
+
instance: Softmax
|
116 |
+
output_format: SAME
|
117 |
+
transformer.h.1.ln_1:
|
118 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
119 |
+
bias_format: SAME
|
120 |
+
input_format: SAME
|
121 |
+
instance: LayerNorm
|
122 |
+
output_format: SAME
|
123 |
+
weight_format: SAME
|
124 |
+
transformer.h.1.ln_2:
|
125 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
126 |
+
bias_format: SAME
|
127 |
+
input_format: SAME
|
128 |
+
instance: LayerNorm
|
129 |
+
output_format: SAME
|
130 |
+
weight_format: SAME
|
131 |
+
transformer.h.1.mlp.act:
|
132 |
+
approximation_function: GELU(vsimd)
|
133 |
+
input_format: SAME
|
134 |
+
instance: GELU
|
135 |
+
output_format: SAME
|
136 |
+
transformer.h.1.mlp.c_fc:
|
137 |
+
approximation_function: NONE
|
138 |
+
bias_format: SAME
|
139 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
140 |
+
instance: HFTransformersConv1D
|
141 |
+
output_format: SAME
|
142 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
143 |
+
weight_sparseness: DENSE
|
144 |
+
transformer.h.1.mlp.c_proj:
|
145 |
+
approximation_function: NONE
|
146 |
+
bias_format: SAME
|
147 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
148 |
+
instance: HFTransformersConv1D
|
149 |
+
output_format: SAME
|
150 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
151 |
+
weight_sparseness: DENSE
|
152 |
+
transformer.h.1.mlp.dropout:
|
153 |
+
approximation_function: NONE
|
154 |
+
input_format: SAME
|
155 |
+
instance: Dropout
|
156 |
+
output_format: SAME
|
157 |
+
transformer.h.2.attn.attn_dropout:
|
158 |
+
approximation_function: NONE
|
159 |
+
input_format: SAME
|
160 |
+
instance: Dropout
|
161 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
162 |
+
transformer.h.2.attn.c_attn:
|
163 |
+
approximation_function: NONE
|
164 |
+
bias_format: SAME
|
165 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
166 |
+
instance: HFTransformersConv1D
|
167 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
168 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
169 |
+
weight_sparseness: DENSE
|
170 |
+
transformer.h.2.attn.c_proj:
|
171 |
+
approximation_function: NONE
|
172 |
+
bias_format: SAME
|
173 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
174 |
+
instance: HFTransformersConv1D
|
175 |
+
output_format: SAME
|
176 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
177 |
+
weight_sparseness: DENSE
|
178 |
+
transformer.h.2.attn.resid_dropout:
|
179 |
+
approximation_function: NONE
|
180 |
+
input_format: SAME
|
181 |
+
instance: Dropout
|
182 |
+
output_format: SAME
|
183 |
+
transformer.h.2.attn.softmax:
|
184 |
+
approximation_function: SOFTMAX(base2,float16)
|
185 |
+
input_format: SAME
|
186 |
+
instance: Softmax
|
187 |
+
output_format: SAME
|
188 |
+
transformer.h.2.ln_1:
|
189 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
190 |
+
bias_format: SAME
|
191 |
+
input_format: SAME
|
192 |
+
instance: LayerNorm
|
193 |
+
output_format: SAME
|
194 |
+
weight_format: SAME
|
195 |
+
transformer.h.2.ln_2:
|
196 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
197 |
+
bias_format: SAME
|
198 |
+
input_format: SAME
|
199 |
+
instance: LayerNorm
|
200 |
+
output_format: SAME
|
201 |
+
weight_format: SAME
|
202 |
+
transformer.h.2.mlp.act:
|
203 |
+
approximation_function: GELU(vsimd)
|
204 |
+
input_format: SAME
|
205 |
+
instance: GELU
|
206 |
+
output_format: SAME
|
207 |
+
transformer.h.2.mlp.c_fc:
|
208 |
+
approximation_function: NONE
|
209 |
+
bias_format: SAME
|
210 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
211 |
+
instance: HFTransformersConv1D
|
212 |
+
output_format: SAME
|
213 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
214 |
+
weight_sparseness: DENSE
|
215 |
+
transformer.h.2.mlp.c_proj:
|
216 |
+
approximation_function: NONE
|
217 |
+
bias_format: SAME
|
218 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
219 |
+
instance: HFTransformersConv1D
|
220 |
+
output_format: SAME
|
221 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
222 |
+
weight_sparseness: DENSE
|
223 |
+
transformer.h.2.mlp.dropout:
|
224 |
+
approximation_function: NONE
|
225 |
+
input_format: SAME
|
226 |
+
instance: Dropout
|
227 |
+
output_format: SAME
|
228 |
+
transformer.h.3.attn.attn_dropout:
|
229 |
+
approximation_function: NONE
|
230 |
+
input_format: SAME
|
231 |
+
instance: Dropout
|
232 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
233 |
+
transformer.h.3.attn.c_attn:
|
234 |
+
approximation_function: NONE
|
235 |
+
bias_format: SAME
|
236 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
237 |
+
instance: HFTransformersConv1D
|
238 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
239 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
240 |
+
weight_sparseness: DENSE
|
241 |
+
transformer.h.3.attn.c_proj:
|
242 |
+
approximation_function: NONE
|
243 |
+
bias_format: SAME
|
244 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
245 |
+
instance: HFTransformersConv1D
|
246 |
+
output_format: SAME
|
247 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
248 |
+
weight_sparseness: DENSE
|
249 |
+
transformer.h.3.attn.resid_dropout:
|
250 |
+
approximation_function: NONE
|
251 |
+
input_format: SAME
|
252 |
+
instance: Dropout
|
253 |
+
output_format: SAME
|
254 |
+
transformer.h.3.attn.softmax:
|
255 |
+
approximation_function: SOFTMAX(base2,float16)
|
256 |
+
input_format: SAME
|
257 |
+
instance: Softmax
|
258 |
+
output_format: SAME
|
259 |
+
transformer.h.3.ln_1:
|
260 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
261 |
+
bias_format: SAME
|
262 |
+
input_format: SAME
|
263 |
+
instance: LayerNorm
|
264 |
+
output_format: SAME
|
265 |
+
weight_format: SAME
|
266 |
+
transformer.h.3.ln_2:
|
267 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
268 |
+
bias_format: SAME
|
269 |
+
input_format: SAME
|
270 |
+
instance: LayerNorm
|
271 |
+
output_format: SAME
|
272 |
+
weight_format: SAME
|
273 |
+
transformer.h.3.mlp.act:
|
274 |
+
approximation_function: GELU(vsimd)
|
275 |
+
input_format: SAME
|
276 |
+
instance: GELU
|
277 |
+
output_format: SAME
|
278 |
+
transformer.h.3.mlp.c_fc:
|
279 |
+
approximation_function: NONE
|
280 |
+
bias_format: SAME
|
281 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
282 |
+
instance: HFTransformersConv1D
|
283 |
+
output_format: SAME
|
284 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
285 |
+
weight_sparseness: DENSE
|
286 |
+
transformer.h.3.mlp.c_proj:
|
287 |
+
approximation_function: NONE
|
288 |
+
bias_format: SAME
|
289 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
290 |
+
instance: HFTransformersConv1D
|
291 |
+
output_format: SAME
|
292 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
293 |
+
weight_sparseness: DENSE
|
294 |
+
transformer.h.3.mlp.dropout:
|
295 |
+
approximation_function: NONE
|
296 |
+
input_format: SAME
|
297 |
+
instance: Dropout
|
298 |
+
output_format: SAME
|
299 |
+
transformer.h.4.attn.attn_dropout:
|
300 |
+
approximation_function: NONE
|
301 |
+
input_format: SAME
|
302 |
+
instance: Dropout
|
303 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
304 |
+
transformer.h.4.attn.c_attn:
|
305 |
+
approximation_function: NONE
|
306 |
+
bias_format: SAME
|
307 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
308 |
+
instance: HFTransformersConv1D
|
309 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
310 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
311 |
+
weight_sparseness: DENSE
|
312 |
+
transformer.h.4.attn.c_proj:
|
313 |
+
approximation_function: NONE
|
314 |
+
bias_format: SAME
|
315 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
316 |
+
instance: HFTransformersConv1D
|
317 |
+
output_format: SAME
|
318 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
319 |
+
weight_sparseness: DENSE
|
320 |
+
transformer.h.4.attn.resid_dropout:
|
321 |
+
approximation_function: NONE
|
322 |
+
input_format: SAME
|
323 |
+
instance: Dropout
|
324 |
+
output_format: SAME
|
325 |
+
transformer.h.4.attn.softmax:
|
326 |
+
approximation_function: SOFTMAX(base2,float16)
|
327 |
+
input_format: SAME
|
328 |
+
instance: Softmax
|
329 |
+
output_format: SAME
|
330 |
+
transformer.h.4.ln_1:
|
331 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
332 |
+
bias_format: SAME
|
333 |
+
input_format: SAME
|
334 |
+
instance: LayerNorm
|
335 |
+
output_format: SAME
|
336 |
+
weight_format: SAME
|
337 |
+
transformer.h.4.ln_2:
|
338 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
339 |
+
bias_format: SAME
|
340 |
+
input_format: SAME
|
341 |
+
instance: LayerNorm
|
342 |
+
output_format: SAME
|
343 |
+
weight_format: SAME
|
344 |
+
transformer.h.4.mlp.act:
|
345 |
+
approximation_function: GELU(vsimd)
|
346 |
+
input_format: SAME
|
347 |
+
instance: GELU
|
348 |
+
output_format: SAME
|
349 |
+
transformer.h.4.mlp.c_fc:
|
350 |
+
approximation_function: NONE
|
351 |
+
bias_format: SAME
|
352 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
353 |
+
instance: HFTransformersConv1D
|
354 |
+
output_format: SAME
|
355 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
356 |
+
weight_sparseness: DENSE
|
357 |
+
transformer.h.4.mlp.c_proj:
|
358 |
+
approximation_function: NONE
|
359 |
+
bias_format: SAME
|
360 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
361 |
+
instance: HFTransformersConv1D
|
362 |
+
output_format: SAME
|
363 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
364 |
+
weight_sparseness: DENSE
|
365 |
+
transformer.h.4.mlp.dropout:
|
366 |
+
approximation_function: NONE
|
367 |
+
input_format: SAME
|
368 |
+
instance: Dropout
|
369 |
+
output_format: SAME
|
370 |
+
transformer.h.5.attn.attn_dropout:
|
371 |
+
approximation_function: NONE
|
372 |
+
input_format: SAME
|
373 |
+
instance: Dropout
|
374 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
375 |
+
transformer.h.5.attn.c_attn:
|
376 |
+
approximation_function: NONE
|
377 |
+
bias_format: SAME
|
378 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
379 |
+
instance: HFTransformersConv1D
|
380 |
+
output_format: BFP[8|8]{64,-1}(SN)
|
381 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
382 |
+
weight_sparseness: DENSE
|
383 |
+
transformer.h.5.attn.c_proj:
|
384 |
+
approximation_function: NONE
|
385 |
+
bias_format: SAME
|
386 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
387 |
+
instance: HFTransformersConv1D
|
388 |
+
output_format: SAME
|
389 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
390 |
+
weight_sparseness: DENSE
|
391 |
+
transformer.h.5.attn.resid_dropout:
|
392 |
+
approximation_function: NONE
|
393 |
+
input_format: SAME
|
394 |
+
instance: Dropout
|
395 |
+
output_format: SAME
|
396 |
+
transformer.h.5.attn.softmax:
|
397 |
+
approximation_function: SOFTMAX(base2,float16)
|
398 |
+
input_format: SAME
|
399 |
+
instance: Softmax
|
400 |
+
output_format: SAME
|
401 |
+
transformer.h.5.ln_1:
|
402 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
403 |
+
bias_format: SAME
|
404 |
+
input_format: SAME
|
405 |
+
instance: LayerNorm
|
406 |
+
output_format: SAME
|
407 |
+
weight_format: SAME
|
408 |
+
transformer.h.5.ln_2:
|
409 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
410 |
+
bias_format: SAME
|
411 |
+
input_format: SAME
|
412 |
+
instance: LayerNorm
|
413 |
+
output_format: SAME
|
414 |
+
weight_format: SAME
|
415 |
+
transformer.h.5.mlp.act:
|
416 |
+
approximation_function: GELU(vsimd)
|
417 |
+
input_format: SAME
|
418 |
+
instance: GELU
|
419 |
+
output_format: SAME
|
420 |
+
transformer.h.5.mlp.c_fc:
|
421 |
+
approximation_function: NONE
|
422 |
+
bias_format: SAME
|
423 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
424 |
+
instance: HFTransformersConv1D
|
425 |
+
output_format: SAME
|
426 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
427 |
+
weight_sparseness: DENSE
|
428 |
+
transformer.h.5.mlp.c_proj:
|
429 |
+
approximation_function: NONE
|
430 |
+
bias_format: SAME
|
431 |
+
input_format: BFP[8|8]{64,-1}(SN)
|
432 |
+
instance: HFTransformersConv1D
|
433 |
+
output_format: SAME
|
434 |
+
weight_format: BFP[8|8]{64,0}(SN)
|
435 |
+
weight_sparseness: DENSE
|
436 |
+
transformer.h.5.mlp.dropout:
|
437 |
+
approximation_function: NONE
|
438 |
+
input_format: SAME
|
439 |
+
instance: Dropout
|
440 |
+
output_format: SAME
|
441 |
+
transformer.ln_f:
|
442 |
+
approximation_function: LAYERNORM(fallback,4,float16)
|
443 |
+
bias_format: SAME
|
444 |
+
input_format: SAME
|
445 |
+
instance: LayerNorm
|
446 |
+
output_format: SAME
|
447 |
+
weight_format: SAME
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_type": "gpt", "architectures": ["GPT2LMHeadModel"]}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6defede097d338ec69a958c71b91bc74eedcc10368cd42d84da8638c73833892
|
3 |
+
size 334205321
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 1024,
|
7 |
+
"tokenizer_class": "GPT2Tokenizer",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|