d0rj/RuModernBERT-small-rucola
Usage
Labels: "1" refers to "acceptable", while "0" corresponds to "unacceptable".
Simple
from transformers import pipeline
pipe = pipeline('text-classification', model='d0rj/RuModernBERT-small-rucola')
pipe(["Мне предоставилась возможность все видеть, сам оставаясь незамеченным.", "Весной в лесу очень хорошо"])
>>> [{'label': 'LABEL_0', 'score': 0.5270525217056274},
>>> {'label': 'LABEL_1', 'score': 0.923351526260376}]
Using weights
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("d0rj/RuModernBERT-small-rucola")
tokenizer = AutoTokenizer.from_pretrained("d0rj/RuModernBERT-small-rucola")
@torch.inference_mode()
def predict(text: str | list[str], model = model, tokenizer = tokenizer) -> list[int]:
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True).to(model.device)
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
return probs.cpu().argmax(dim=-1).numpy().tolist()
predict(["Мне предоставилась возможность все видеть, сам оставаясь незамеченным.", "Весной в лесу очень хорошо"])
>>> [0, 1]
Metrics
name | accuracy | MCC | model size, params |
---|---|---|---|
d0rj/RuModernBERT-small-rucola | 0.7 | 0.25 | 34.5M |
RussianNLP/ruRoBERTa-large-rucola | 0.82 | 0.56 | 355M |
Training
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for d0rj/RuModernBERT-small-rucola
Base model
deepvk/RuModernBERT-smallDataset used to train d0rj/RuModernBERT-small-rucola
Evaluation results
- Acc on RussianNLP/rucolaRuCoLA benchmark0.700
- MCC on RussianNLP/rucolaRuCoLA benchmark0.250