dahe827's picture
End of training
166f55a verified
|
raw
history blame
2.64 kB
metadata
license: mit
base_model: xlnet/xlnet-base-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: xlnet-base-cased-airlines-news-multi-label
    results: []

xlnet-base-cased-airlines-news-multi-label

This model is a fine-tuned version of xlnet/xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2822
  • F1: 0.6647
  • Roc Auc: 0.8080
  • Accuracy: 0.6116

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 150 0.2088 0.5979 0.7399 0.6027
No log 2.0 300 0.1928 0.6596 0.7725 0.6562
No log 3.0 450 0.2049 0.6327 0.7653 0.5982
0.2167 4.0 600 0.2226 0.6506 0.8007 0.6027
0.2167 5.0 750 0.2280 0.6288 0.7666 0.5893
0.2167 6.0 900 0.2418 0.6295 0.7709 0.5938
0.0812 7.0 1050 0.2610 0.6258 0.7722 0.5982
0.0812 8.0 1200 0.2756 0.6098 0.7606 0.5804
0.0812 9.0 1350 0.2822 0.6647 0.8080 0.6116
0.0325 10.0 1500 0.2908 0.6378 0.7873 0.5938
0.0325 11.0 1650 0.3050 0.6319 0.7860 0.5938
0.0325 12.0 1800 0.3044 0.6277 0.7830 0.5804
0.0325 13.0 1950 0.3030 0.6254 0.7804 0.5804
0.015 14.0 2100 0.3057 0.6319 0.7860 0.5848
0.015 15.0 2250 0.3013 0.6168 0.7744 0.5670

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1