daila's picture
End of training
c1c094f verified
|
raw
history blame
2.19 kB
metadata
base_model: daila/wav2vec2-large-xls-r-300m-vi-colab
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-vi-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: vi
          split: test
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 0.5894672631150875

wav2vec2-large-xls-r-300m-vi-colab

This model is a fine-tuned version of daila/wav2vec2-large-xls-r-300m-vi-colab on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6432
  • Wer: 0.5895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0916 4.52 400 1.5440 0.6357
0.1344 9.04 800 1.6043 0.6543
0.0926 13.56 1200 1.7226 0.6365
0.0703 18.08 1600 1.5989 0.6048
0.0557 22.6 2000 1.6714 0.6001
0.051 27.12 2400 1.6432 0.5895

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1