damand2061's picture
End of training
a7122c9
metadata
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: damand2061/pfsa-id-indobert-lem
    results: []

damand2061/pfsa-id-indobert-lem

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1353
  • Validation Loss: 0.2440
  • Validation F1: 0.8119
  • Validation Accuracy: 0.9295
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 10440, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Validation F1 Validation Accuracy Epoch
0.4338 0.2589 0.6515 0.9170 0
0.2529 0.2283 0.7705 0.9276 1
0.2046 0.2272 0.7979 0.9293 2
0.1622 0.2312 0.8089 0.9303 3
0.1353 0.2440 0.8119 0.9295 4

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.17.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1