danfarh2000's picture
update model card README.md
4c088f0
|
raw
history blame
6.28 kB
metadata
tags:
  - generated_from_trainer
model-index:
  - name: digikala_products_parsbert_model
    results: []

digikala_products_parsbert_model

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 25 7.8477
No log 2.0 50 7.0014
No log 3.0 75 6.3235
No log 4.0 100 5.6651
No log 5.0 125 4.9101
No log 6.0 150 4.2448
No log 7.0 175 3.8656
No log 8.0 200 3.4329
No log 9.0 225 3.3204
No log 10.0 250 3.0740
No log 11.0 275 2.9556
No log 12.0 300 2.9938
No log 13.0 325 2.8620
No log 14.0 350 2.7879
No log 15.0 375 2.8619
No log 16.0 400 2.8521
No log 17.0 425 2.7920
No log 18.0 450 2.8494
No log 19.0 475 2.8209
4.1477 20.0 500 2.8471
4.1477 21.0 525 2.8478
4.1477 22.0 550 2.7904
4.1477 23.0 575 2.7961
4.1477 24.0 600 2.7494
4.1477 25.0 625 2.8250
4.1477 26.0 650 2.7439
4.1477 27.0 675 2.7539
4.1477 28.0 700 2.7635
4.1477 29.0 725 2.7742
4.1477 30.0 750 2.7711
4.1477 31.0 775 2.8243
4.1477 32.0 800 2.7547
4.1477 33.0 825 2.7690
4.1477 34.0 850 2.7178
4.1477 35.0 875 2.7554
4.1477 36.0 900 2.7701
4.1477 37.0 925 2.7953
4.1477 38.0 950 2.8062
4.1477 39.0 975 2.7637
2.772 40.0 1000 2.7675
2.772 41.0 1025 2.7953
2.772 42.0 1050 2.8003
2.772 43.0 1075 2.7484
2.772 44.0 1100 2.7292
2.772 45.0 1125 2.7287
2.772 46.0 1150 2.6998
2.772 47.0 1175 2.7381
2.772 48.0 1200 2.7196
2.772 49.0 1225 2.7450
2.772 50.0 1250 2.7293
2.772 51.0 1275 2.7216
2.772 52.0 1300 2.7981
2.772 53.0 1325 2.7405
2.772 54.0 1350 2.7895
2.772 55.0 1375 2.7092
2.772 56.0 1400 2.7977
2.772 57.0 1425 2.7012
2.772 58.0 1450 2.7752
2.772 59.0 1475 2.7469
2.742 60.0 1500 2.7205
2.742 61.0 1525 2.7752
2.742 62.0 1550 2.6942
2.742 63.0 1575 2.6916
2.742 64.0 1600 2.8169
2.742 65.0 1625 2.7256
2.742 66.0 1650 2.6844
2.742 67.0 1675 2.7544
2.742 68.0 1700 2.7083
2.742 69.0 1725 2.7286
2.742 70.0 1750 2.7492
2.742 71.0 1775 2.6946
2.742 72.0 1800 2.7395
2.742 73.0 1825 2.7597
2.742 74.0 1850 2.7953
2.742 75.0 1875 2.7468
2.742 76.0 1900 2.7274
2.742 77.0 1925 2.7507
2.742 78.0 1950 2.7174
2.742 79.0 1975 2.7233
2.7185 80.0 2000 2.7405
2.7185 81.0 2025 2.7781
2.7185 82.0 2050 2.7534
2.7185 83.0 2075 2.7588
2.7185 84.0 2100 2.7469
2.7185 85.0 2125 2.6929
2.7185 86.0 2150 2.6785
2.7185 87.0 2175 2.7098
2.7185 88.0 2200 2.7622
2.7185 89.0 2225 2.7726
2.7185 90.0 2250 2.7144
2.7185 91.0 2275 2.7877
2.7185 92.0 2300 2.7665
2.7185 93.0 2325 2.7794
2.7185 94.0 2350 2.6788
2.7185 95.0 2375 2.7398
2.7185 96.0 2400 2.7277
2.7185 97.0 2425 2.8053
2.7185 98.0 2450 2.7537
2.7185 99.0 2475 2.7467
2.7057 100.0 2500 2.7191

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2