PPO Agent playing MountainCarContinuous-v0
This is a trained model of a PPO agent playing MountainCarContinuous-v0 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga danieladejumo -f logs/
python enjoy.py --algo ppo --env MountainCarContinuous-v0 -f logs/
Training (with the RL Zoo)
python train.py --algo ppo --env MountainCarContinuous-v0 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo ppo --env MountainCarContinuous-v0 -f logs/ -orga danieladejumo
Hyperparameters
OrderedDict([('batch_size', 256),
('clip_range', 0.1),
('ent_coef', 0.00429),
('gae_lambda', 0.9),
('gamma', 0.9999),
('learning_rate', 7.77e-05),
('max_grad_norm', 5),
('n_envs', 1),
('n_epochs', 10),
('n_steps', 8),
('n_timesteps', 20000.0),
('normalize', True),
('policy', 'MlpPolicy'),
('policy_kwargs', 'dict(log_std_init=-3.29, ortho_init=False)'),
('use_sde', True),
('vf_coef', 0.19),
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
- Downloads last month
- 4
Evaluation results
- mean_reward on MountainCarContinuous-v0self-reported87.80 +/- 0.28