wav2vec2-base-960h-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5055
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2648 1.0 57 2.2400 0.15
2.167 2.0 114 2.1032 0.17
1.8573 3.0 171 1.7658 0.32
1.5347 4.0 228 1.6620 0.45
1.6134 5.0 285 1.5017 0.49
1.2903 6.0 342 1.4639 0.49
1.29 7.0 399 1.1893 0.66
1.1094 8.0 456 1.1425 0.67
1.1023 9.0 513 1.0173 0.72
0.9244 10.0 570 0.9069 0.79
0.7764 11.0 627 0.9314 0.74
0.6899 12.0 684 0.7919 0.78
0.6033 13.0 741 0.7145 0.8
0.4834 14.0 798 0.8896 0.76
0.4409 15.0 855 0.7083 0.82
0.3653 16.0 912 0.5633 0.83
0.3986 17.0 969 0.5475 0.89
0.2725 18.0 1026 0.5044 0.87
0.3569 19.0 1083 0.5044 0.85
0.2089 20.0 1140 0.5055 0.87

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
17
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for danielgh/wav2vec2-base-960h-finetuned-gtzan

Finetuned
(122)
this model

Dataset used to train danielgh/wav2vec2-base-960h-finetuned-gtzan

Evaluation results