dap305/Helsinki-finetuned-EuroParl-en-to-es

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-es on a subset of the EuroParl dataset. It achieves the following results on the validation set:

  • Train Loss: 0.9863
  • Validation Loss: 1.1352
  • BLUE: 37.083

Intended uses & limitations

This model has been created for learning purposes at the MIARFID Automatic Translation course.

Training and evaluation data

This model was fine-tuned with a subset of the Europarl-v7-es-en, consisting of 50.000 sentences in English and Spanish.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of Machine Translation Summit X: Papers, pages 79–86, Phuket, Thailand.

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4344, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
1.2441 1.1487 0
1.0785 1.1351 1
0.9863 1.1352 2

Framework versions

  • Transformers 4.37.0
  • TensorFlow 2.13.0
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dap305/Helsinki-finetuned-EuroParl-en-to-es

Finetuned
(21)
this model

Dataset used to train dap305/Helsinki-finetuned-EuroParl-en-to-es

Evaluation results