Loading Model and Tokenizer:


import os
import pandas as pd
import torch
from datasets import load_dataset, Dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
)
from peft import LoraConfig, PeftModel

base_model_name = "NousResearch/Llama-2-7b-chat-hf"
finetuned_model = "dasanindya15/llama2-7b_qlora_Cladder_v1"

# Load the entire model on the GPU 0
device_map = {"": 0}

# Reload model in FP16 and merge it with LoRA weights
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    low_cpu_mem_usage=True,
    return_dict=True,
    torch_dtype=torch.float16,
    device_map=device_map,
)
model = PeftModel.from_pretrained(base_model, finetuned_model)
model = model.merge_and_unload()

# Reload tokenizer to save it
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"

license: mit

datasets: dasanindya15/Cladder_v1

pipeline_tag: text-generation


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train dasanindya15/llama2-7b_qlora_Cladder_v1