daspartho commited on
Commit
f18be4b
1 Parent(s): a34e8c9

Upload PPO BipedalWalker-v3 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: BipedalWalker-v3
17
  metrics:
18
  - type: mean_reward
19
- value: 105.66 +/- 93.68
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: BipedalWalker-v3
17
  metrics:
18
  - type: mean_reward
19
+ value: 297.59 +/- 2.14
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faca9dc0310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faca9dc03a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faca9dc0430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faca9dc04c0>", "_build": "<function ActorCriticPolicy._build at 0x7faca9dc0550>", "forward": "<function ActorCriticPolicy.forward at 0x7faca9dc05e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faca9dc0670>", "_predict": "<function ActorCriticPolicy._predict at 0x7faca9dc0700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faca9dc0790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faca9dc0820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faca9dc08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faca9db9cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670653910951476740, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAEUG5z63dD+9P9wSPjJWyDvj7VW/AAAAAKDH7b1YVY4+AACAPxIVkT8AAAAAtAV8PgIAgD8AAAAAKFqFPokuhz74LYw+5z2VPm0ipD6XTrw+kJTmPi7uFD9nol0/AACAPwXjrj1JA2q8iMQ8PaZcfT04y1W/ABLLOVx3vz4bw1k+AAAAAChSkT8AIEK3NsNvPwB47bgAAAAARNpfPoXfYD5RRGc+eUtzPisWgz45ZpI+lyWsPlob1z6QLBI/0GxgPy+r0j7Kvaq8R7iXPheAULxtEFe/LgN/v+D9Mj1zw4A/AAAAAJDNjz+EAIA/EkoSP7ilX78AAAAAiPWRPuCdkz5uyJg+pRiiPiPZsD6Ee8c+5c7qPvCrEj/mZkk/AACAPyT77D20t989AiPuPe+MjLtP0I4/AABAtFQjqD4AAIC/AAAAALHfI7/qvhW/wAC6PAEAgL8AAAAAjqCmPvkCqT7Ms68+VhS9PicK0D4i5Oo+lBMJPznKJz8952A/AACAP2TNkz0MWp09pAr9Pda/7z2/IAu/38YOP+w/Kz4AAIC/AAAAAJnzjD9Mx/W9irPXPrXkfL8AAIA/bWidPg4ynz5ZxKQ+lM+uPkq4vj4sIdc+5zn9PnTFHj8CB1w/AACAPwoxJD5r0Ic8An6sPfoSB72LoWW+ZwO3PlCq/b4AAIC/AAAAABrvkD8AAAAA/Fc0Pv3/fz8AAAAAn2GlPm5Cpz75HK0+cqq3PnZhyD7gBuI+0AYFP+GmIz9Yz1c/AACAPyzM5z5vYxU98hklPC2Q77yjIhw/j9t0P5iypz7P/z0/AAAAAKP6RL4i9mi+4JfuvcfiZr0AAAAAUr3SPv8h1T6Kl9w+7gnqPohW/z5NAhA/1YIpP6/EUz8AAIA/AACAP2aL0r0o+Ki92jplPuU/hz2MMTK/B+Y9P+QDEz8AAIC/AAAAALxkjj8AAAAA6CxdP6JYHD8AAIA/p7qePglGnz6GBKM+FNKrPiB1uz71v9I+rEz2PmeYGD84OUw/AACAP2Ae8D6mjWq8e5EwPi0lhjr9/FG/AADAMgAA3rq5IJM9AACAP8BJkD8AAAAAxuE2PwEAgL8AAAAAy+aPPjuGjj5lRZA+z+aVPtwjoD6q/7A+CIfMPhrx/j447TY/AACAP9Z/JL7Rg5I9LBlFPnwJBT75siW/rGmJPghMFj8DAIC/AAAAAADqkD8AAAAAglQCPwEAgL8AAAAAI5bBPkfWwT6H48U+a33PPl+a4D6ziv0+PpoVP7+eOj8AAIA/AACAP81eIj8cJmW9JOpTPlZynz1cq1S/AABqNrxkm75YR8g+AACAPySXbD8uBu0+KPUuPgEAgL8AAAAAeKiNPqBDjz5N2JM+wWKcPjIOqj43wL8+sBDmPqg1Dz8EMUY/AACAPxqnmj68G/s8TBBgPrFKhr1cEwy/mq1qv0AdhTzj7/0+AACAP+T0WT/oRlG+JAQ0PwAAgD8AAAAAN7qlPsW5pT6swak+Qs+xPgBPvz4lBtU+BWL6PsPCGj/pQVI/AACAP7LNvj1Yw4e8QwscPvNulbymmPE+3KHkvK5KH78AI5C6AACAPwHXfD+FGoU+IJIFPdgBgD8AAIA/Vfe1Pn9puD4M674+jQvKPs/33T7f5/0+HaQUPy4mNT80vHc/AACAP3JpaD4oHO692eIwPmhRpTu7dk+/4f+dPkhc+D3F0dc+AAAAAPa9ij+gfl09GlZtP/3/fz8AAAAAEYCAPi6zgT7ldYY+DQOPPtpJnT4lTLM+NobWPmPCCz+Wxj8/AACAP1oxtj5pRKk9qDpRPhZwIr0bJaC+lkt3v7gWZr71Ank+AACAPwrYkD8AAAAAfuIlP/n/fz8AAAAABze5PnP8uT5Od74+9G/HPlsn1j5Uee8+390KP2MWLj8UFGs/AACAPxm5aT9jeGy9f8tjPqRl6zw4TlK/AICSOIBd0r7rI2o+AAAAAHo3kD8AADK2KEViP8RJ3L4AAAAA4aOVPlIelD7n15U+TmuePnAwrD5WW70+5v3WPkrm/T6nLyc/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdSDrqdV6X8CUhpRSlIwBbJRLqYwBdJRHQJOgJr/Khct1fZQoaAZoCWgPQwh3ZRcMritSQJSGlFKUaBVNQAZoFkdAk6JWjGkvb3V9lChoBmgJaA9DCNC1L6AX/E1AlIaUUpRoFU1ABmgWR0CTote/Yao/dX2UKGgGaAloD0MIx735DRPoW8CUhpRSlGgVSzBoFkdAk6RJKzzErHV9lChoBmgJaA9DCHL4pBMJ2lBAlIaUUpRoFU1ABmgWR0CTpinfEXLvdX2UKGgGaAloD0MIIzKs4o1SWsCUhpRSlGgVS5FoFkdAk6a8urZJ1HV9lChoBmgJaA9DCDwyVpv/lFVAlIaUUpRoFU1ABmgWR0CTpqfoA4n4dX2UKGgGaAloD0MI3BK54AwiXMCUhpRSlGgVS0BoFkdAk6i7JGOMl3V9lChoBmgJaA9DCBIxJZLo81NAlIaUUpRoFU1ABmgWR0CTqOpwS8J2dX2UKGgGaAloD0MIsffii/ayWsCUhpRSlGgVS1FoFkdAk6jBi9ZieHV9lChoBmgJaA9DCO25TE2CXlvAlIaUUpRoFUtEaBZHQJOqvjKgZjx1fZQoaAZoCWgPQwhdixagbV9cwJSGlFKUaBVLUmgWR0CTqzef7JnydX2UKGgGaAloD0MIjGoRUUweU8CUhpRSlGgVTeYCaBZHQJOv85CF9KF1fZQoaAZoCWgPQwjGo1TCE/lRQJSGlFKUaBVNQAZoFkdAk7F0daMaTHV9lChoBmgJaA9DCDzAkxYuR0bAlIaUUpRoFU27BGgWR0CUItYZ2pyZdX2UKGgGaAloD0MI7PtwkBBDSkCUhpRSlGgVTUAGaBZHQJQi2j+Jgst1fZQoaAZoCWgPQwhEUgslk4NWQJSGlFKUaBVNQAZoFkdAlCOZ6Uqx1XV9lChoBmgJaA9DCA0dO6jEr17AlIaUUpRoFUuJaBZHQJQkZSydFv11fZQoaAZoCWgPQwg/x0eLM/lXwJSGlFKUaBVLe2gWR0CUJyVUuL75dX2UKGgGaAloD0MITwgddAmvUkCUhpRSlGgVTUAGaBZHQJQt9gH/tIF1fZQoaAZoCWgPQwjryJHOwOhZQJSGlFKUaBVNQAZoFkdAlDHp9ZzPr3V9lChoBmgJaA9DCDMWTWcnCVrAlIaUUpRoFUtQaBZHQJQ0K34Kx9p1fZQoaAZoCWgPQwguHt5zYOFTQJSGlFKUaBVNQAZoFkdAlDQIfCAMD3V9lChoBmgJaA9DCM6pZACozlNAlIaUUpRoFU1ABmgWR0CUNPd+G47SdX2UKGgGaAloD0MIPl5Ih4fKTECUhpRSlGgVTUAGaBZHQJQ9y6MBIWh1fZQoaAZoCWgPQwhZFkz8UYJIQJSGlFKUaBVNQAZoFkdAlD4IfCAMD3V9lChoBmgJaA9DCEUqjC0EJFzAlIaUUpRoFUtSaBZHQJRAajua4MF1fZQoaAZoCWgPQwiFC3kEN9RSQJSGlFKUaBVNQAZoFkdAlEIdSZSeiHV9lChoBmgJaA9DCLOVl/xPu1rAlIaUUpRoFUtdaBZHQJRDK56MR6F1fZQoaAZoCWgPQwh96lil9KhLQJSGlFKUaBVNQAZoFkdAlERjnA6+4HV9lChoBmgJaA9DCAA6zJcX61rAlIaUUpRoFUspaBZHQJREZz2exwB1fZQoaAZoCWgPQwgiVKnZA85awJSGlFKUaBVLVWgWR0CURJ3hGYrsdX2UKGgGaAloD0MI3PY96q+OVECUhpRSlGgVTUAGaBZHQJRGnoA4n4R1fZQoaAZoCWgPQwgJbTmX4rtXQJSGlFKUaBVNQAZoFkdAlEhvkBCD3HV9lChoBmgJaA9DCDbOpiOAD1FAlIaUUpRoFU1ABmgWR0CUSOK4x1xLdX2UKGgGaAloD0MII79+iA00VkCUhpRSlGgVTUAGaBZHQJRNsofCAMF1fZQoaAZoCWgPQwiu8C4X8StXQJSGlFKUaBVNQAZoFkdAlFGhhQWN3nV9lChoBmgJaA9DCEBtVKcDBFhAlIaUUpRoFU1ABmgWR0CUUaTTvy9VdX2UKGgGaAloD0MIMjhKXp17VkCUhpRSlGgVTUAGaBZHQJRTKNcW0qp1fZQoaAZoCWgPQwgANiBCXBRYQJSGlFKUaBVNQAZoFkdAlFYCdSVGC3V9lChoBmgJaA9DCP1nzY+/SVzAlIaUUpRoFUtjaBZHQJRWE7uDzy11fZQoaAZoCWgPQwg/jubIyr1awJSGlFKUaBVLRGgWR0CUWANi6QNkdX2UKGgGaAloD0MIv7m/ety1QECUhpRSlGgVTUAGaBZHQJRc7Ve8f3h1fZQoaAZoCWgPQwgyPWGJB/RYwJSGlFKUaBVLWWgWR0CUzqH8TBZZdX2UKGgGaAloD0MIHauUnumHSUCUhpRSlGgVTUAGaBZHQJTSW7f51vF1fZQoaAZoCWgPQwi13m+046xQQJSGlFKUaBVNQAZoFkdAlNI7dnCfpXV9lChoBmgJaA9DCOenOA68T1/AlIaUUpRoFUuMaBZHQJTS0Djin511fZQoaAZoCWgPQwgdAkcCDUdYQJSGlFKUaBVNQAZoFkdAlNMsXenAI3V9lChoBmgJaA9DCCdMGM1KomDAlIaUUpRoFUuaaBZHQJTWvlA/s3R1fZQoaAZoCWgPQwgg66nVVwZWQJSGlFKUaBVNQAZoFkdAlNv+d07r9nV9lChoBmgJaA9DCGixFMlXa1vAlIaUUpRoFUsyaBZHQJTdfOTq0MR1fZQoaAZoCWgPQwjjxi3m55xNwJSGlFKUaBVN4QVoFkdAlN+zU/fO2XV9lChoBmgJaA9DCHSWWYRiilRAlIaUUpRoFU1ABmgWR0CU4pC4z7/GdX2UKGgGaAloD0MIJcreUs6wVECUhpRSlGgVTUAGaBZHQJTixAu7HyV1fZQoaAZoCWgPQwgUQDGyZNVTQJSGlFKUaBVNQAZoFkdAlOS2bwz+FXV9lChoBmgJaA9DCIwsmWN5lVzAlIaUUpRoFUsvaBZHQJTmDVlPJq91fZQoaAZoCWgPQwiuLqcExMRNQJSGlFKUaBVNQAZoFkdAlOZzJZGKAXV9lChoBmgJaA9DCOuLhLacM1VAlIaUUpRoFU1ABmgWR0CU5uS39aUzdX2UKGgGaAloD0MIxxAAHHu8T0CUhpRSlGgVTUAGaBZHQJTrtVbRne11fZQoaAZoCWgPQwghBrr2BY1bwJSGlFKUaBVLxWgWR0CU7MCw8nuzdX2UKGgGaAloD0MIll6bjZUPXMCUhpRSlGgVSz5oFkdAlO2VMZgogHV9lChoBmgJaA9DCKHbSxqjWUJAlIaUUpRoFU1ABmgWR0CU75xfv4M4dX2UKGgGaAloD0MIH7sLlBQCV0CUhpRSlGgVTUAGaBZHQJTvn863iJh1fZQoaAZoCWgPQwhbJy7HKzRVQJSGlFKUaBVNQAZoFkdAlPRHb212JXV9lChoBmgJaA9DCDHSi9r9AVNAlIaUUpRoFU1ABmgWR0CU9jiRnvlVdX2UKGgGaAloD0MIOs0C7Q5CW8CUhpRSlGgVS3FoFkdAlPeLah6By3V9lChoBmgJaA9DCHQlAtU/sFZAlIaUUpRoFU1ABmgWR0CVAUC1JDmbdX2UKGgGaAloD0MIfjZy3ZSLVkCUhpRSlGgVTUAGaBZHQJUBslzEJjV1fZQoaAZoCWgPQwh9dVWgFidVQJSGlFKUaBVNQAZoFkdAlQITcqOLi3V9lChoBmgJaA9DCDyInSl0dFrAlIaUUpRoFUtjaBZHQJUENqDbrTp1fZQoaAZoCWgPQwgi4Xt/g8ZYQJSGlFKUaBVNQAZoFkdAlQWr6UJOWXV9lChoBmgJaA9DCITTghd991/AlIaUUpRoFUtYaBZHQJUIMfwI+nt1fZQoaAZoCWgPQwihoBSt3EhZwJSGlFKUaBVLT2gWR0CVhP4XoC+2dX2UKGgGaAloD0MInKVkOQn5RkCUhpRSlGgVTUAGaBZHQJWG1JAdGRV1fZQoaAZoCWgPQwj4pumzA/tYQJSGlFKUaBVNQAZoFkdAlYkmNedCmnV9lChoBmgJaA9DCJsg6j4AgUvAlIaUUpRoFU0qBmgWR0CViz5hScbzdX2UKGgGaAloD0MILA5nfjV7U0CUhpRSlGgVTUAGaBZHQJWMHaBZpzt1fZQoaAZoCWgPQwhA3UCBd7BdwJSGlFKUaBVLWGgWR0CVjc7qY7aJdX2UKGgGaAloD0MIflcE/1vQXMCUhpRSlGgVS0doFkdAlY4hLbpNbnV9lChoBmgJaA9DCPhsHRzsdFVAlIaUUpRoFU1ABmgWR0CVj2WZ7XxwdX2UKGgGaAloD0MIj6hQ3VyCV0CUhpRSlGgVTUAGaBZHQJWP0idJ8OV1fZQoaAZoCWgPQwghdxGmKCpXQJSGlFKUaBVNQAZoFkdAlZYcHGCI13V9lChoBmgJaA9DCOId4EkL3FpAlIaUUpRoFU1ABmgWR0CVlus4T9KmdX2UKGgGaAloD0MIuJIdG4GSUUCUhpRSlGgVTUAGaBZHQJWZCbkOqed1fZQoaAZoCWgPQwhp4h3gSYRUQJSGlFKUaBVNQAZoFkdAlZkNpqREGHV9lChoBmgJaA9DCO5BCMiXylzAlIaUUpRoFUt6aBZHQJWZso5PuXx1fZQoaAZoCWgPQwjHSWHe4wJcQJSGlFKUaBVNQAZoFkdAlZ9lev6j33V9lChoBmgJaA9DCLcnSGx3gVtAlIaUUpRoFU1ABmgWR0CVoMggX/HYdX2UKGgGaAloD0MInPwWnSyvSMCUhpRSlGgVTVQDaBZHQJWiFdpqREF1fZQoaAZoCWgPQwg4+S06WbJcQJSGlFKUaBVNQAZoFkdAlarfykKu0XV9lChoBmgJaA9DCNAJoYMuKl1AlIaUUpRoFU1ABmgWR0CVq0AHVwxWdX2UKGgGaAloD0MInStKCcF9WUCUhpRSlGgVTUAGaBZHQJWtX67/XGx1fZQoaAZoCWgPQwikiAyreE5awJSGlFKUaBVLQ2gWR0CVrUMSK3uvdX2UKGgGaAloD0MIglX18juNVkCUhpRSlGgVTUAGaBZHQJWzvUjLSu11fZQoaAZoCWgPQwia0CSxpLRJQJSGlFKUaBVNQAZoFkdAlbWTlDF6zHV9lChoBmgJaA9DCPS/XIsW91rAlIaUUpRoFUs2aBZHQJW3J50KZ2J1fZQoaAZoCWgPQwjy0k1iEMpXQJSGlFKUaBVNQAZoFkdAlbxy83++/XV9lChoBmgJaA9DCLRYiuQr1FdAlIaUUpRoFU1ABmgWR0CVvOjSXt0FdX2UKGgGaAloD0MIkKLO3ENmXECUhpRSlGgVTUAGaBZHQJW+JUlzEJl1fZQoaAZoCWgPQwjpYtNKIWlVQJSGlFKUaBVNQAZoFkdAlb6PYvnKXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f76823021f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7682302280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7682302310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f76823023a0>", "_build": "<function ActorCriticPolicy._build at 0x7f7682302430>", "forward": "<function ActorCriticPolicy.forward at 0x7f76823024c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7682302550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f76823025e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7682302670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7682302700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7682302790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f76822f9bd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670656021110262053, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAaiMz+wXJK9+3uUPuS9xLztXlG/AJuBvIym4r5QMp4+AACAP0E8Pz/0o4O9pv08P784gD8AAAAAs42JPswhjD6QIZM+w5GePpUmsD6ZA8w++On9PnBINj8AAIA/AACAPzHRbj/rUYE9dOe9Pl2ePr4ZVSe/46CAv+CJI7/AXq+8AACAP0bvGT9efYC/iKZHP5Mmfz8AAAAAvtSUPgDrlT5gdpo+SdqjPgmisT41tMM+E3jgPqYeCj8u4Tc/AACAP4m+Yj8huJ49PvyQPiz1qb1Ngi+/AACAvyyM8r5EbjM+AACAP4Boiz+cemO+QPBCPgAAgD8AAAAAVrihPoz2oz4C/6k+1lu0PmJhxT5TRd0+cl7+PszjGT9kBFE/AACAP6ezfz+BK9q9nGrdPnqTzzsmnlW/AICiONw8/748o5A+AACAP1eAdj+4wns/nqVsP1VVFTUAAAAAt7adPkQAoT7dW6g+a1WzPhklxT68IuA+3J8DP/eTID/o4Ug/AACAP2hN5j4/8/293IaxPj3MCT5rvFO/AEA3OGCCWT74dWk/AAAAANppjj8AAPi1CFZvP6uqmbcAAAAAiMmbPnIPnT7mP6M+0nuuPulcvj4RHdg+x0EBP4haLD8AAIA/AACAP0ExUD5M3zw9JuGNPpYu6rtYnc49nDCAvQTOxr4BAIA/AAAAAM8Paj++hxI/xxcOPwEAgL8AAAAAINHQPiP50D46Rdc+uYXkPpFC+z7DXw4/o/woPz5PVj8AAIA/AACAP5ihB76l8SS9Az1sPsZhTT7gghi/fLN+P4d6Lz+JBYC/AAAAAKlsjz8AgNo4sBdsP60z2b0AAIA/mNSqPoFkqz6lma4+gxu1PkGlwD5NQtQ+MdzzPq3bEj8CM0I/AACAP+cBJD4c80Y9qtZvPrjM1b0k85M+GAcuv2gpmr4BAIA/AAAAAKfKkD8AAAAAoPYHvQMAgD8AAAAAKqDVPl6m1T5IZ9s+defoPnkZ/j6nWg8/Gd0rP58zYT8AAIA/AACAP26SKD/O3NS9+lXSPkCA7LwZ21W/wApCvGw1uL5FxuE+AACAP7G3Gz9EIFG+6oIAP+QvgD8AAAAAo2GJPgvxij7gzY8+2GuXPsN9oz4SWLo+35bfPlSXEj+0+U4/AACAPwF2WL2hdtu8SH+uPlYmvz3mu1G/sAoCv78YNj94/X8/AACAPyG+kT8AAPY1Nmh8P+37b74AAIA/ZsKEPhQFhj7RtYo+xnWSPqEfnj58nLE+NbnQPohwAD/aVzI/AACAP6SrXT8uuCc9mdTMPipoFL7dcE6/AACAv8xq574rFF8+AACAP8e2AT8ku9O9iA0uP0HQer8AAAAAFsGUPo5xlj7Dn5k+u5qfPnyhrD5LPMI+m2bmPl4wED8730g/AACAPx7kVD+vjsg9DfkUPj+jlL1wo5K+4Etfv6C3I7+rwq46AAAAAEfCeT/BZv++VANgPz/+fz8AAAAAuqqnPi6SqT5vga8+PjS6PmQmyz6LJuU+c90GP0N8KD89qGc/AACAPwXiCT4EpBU9ad5sPtbEHT1Lkgw9CBxLP2wKlb581x0/AAAAAJc0iD8BAIA/QFIevbDOob8AAAAAfg/EPn5Jxj4HOs0+o7zZPm+N7T7CTAY/0hAhPwIfSD8AAIA/AACAP4jRIz/1nAM9gVuDPp+Iib1Ch++9A/8Qv9g3Er9rwDS8AACAP4Q2hj/2SeM+pF2EPnATpr4AAAAAjCGuPpUCrj5rSrM+yRS9PnNxzD43UeI+0A4DP0v+IT+r3mE/AACAP1PvBT/KWsY9a5OyPtC2Cr5y9Iy9YhESv4jO+b4BAIC/AACAP1Qbjj8AAAAAut2XPgEAgL8AAAAALKO+PoTEwT66f8k+HaDWPmso6j53RQU/qMYbP4WIRz8AAIA/AACAPz4jF75T9jS9oKhePpOwQD6NTDa/YmpFvvqKUz9ZEIA/AACAP2NpkT8AAJM2anRwPyso6rwAAIA/CnCePkGEnz67CKQ+B9arPi5Zuj63EtE+TNPwPojVFT8KdFQ/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkdPX8/VkcECUhpRSlIwBbJRNQAaMAXSUR0Ct0o4593KTdX2UKGgGaAloD0MI9DehEAG9cECUhpRSlGgVTQ0GaBZHQK3StMFEAo51fZQoaAZoCWgPQwhWndUCu8NwQJSGlFKUaBVN9gVoFkdArdM8Ouq3mXV9lChoBmgJaA9DCNwvn6zYjXBAlIaUUpRoFU04BmgWR0Ct05b1yvLYdX2UKGgGaAloD0MIX0IFh9eXcECUhpRSlGgVTSQGaBZHQK3Tt0Dlo111fZQoaAZoCWgPQwiYNEbrqJtwQJSGlFKUaBVNKQZoFkdArdX+JWNm2HV9lChoBmgJaA9DCH11VaCW3nBAlIaUUpRoFU3pBWgWR0Ct11g8r7O3dX2UKGgGaAloD0MI7UrLSD2UcECUhpRSlGgVTe0FaBZHQK3awdRR/Ex1fZQoaAZoCWgPQwhMw/ARMSlwQJSGlFKUaBVNQAZoFkdArdrxbyH2y3V9lChoBmgJaA9DCGqjOh3Ip3BAlIaUUpRoFU0qBmgWR0Ct303+l0o0dX2UKGgGaAloD0MI54wo7Q3VbkCUhpRSlGgVTUAGaBZHQK3gS2DQJHB1fZQoaAZoCWgPQwiDvvT2p6dwQJSGlFKUaBVNFgZoFkdAreG16iTMaHV9lChoBmgJaA9DCKfMzTfiS3BAlIaUUpRoFU1ABmgWR0CuGY/9xZMddX2UKGgGaAloD0MI9DP1usXicECUhpRSlGgVTd0FaBZHQK4bbRJEpiJ1fZQoaAZoCWgPQwgguMoTCCxwQJSGlFKUaBVNQAZoFkdArh12tp22X3V9lChoBmgJaA9DCG5OJQMA5XBAlIaUUpRoFU3rBWgWR0CuHbx1xKg7dX2UKGgGaAloD0MIJ92WyMWEcECUhpRSlGgVTSUGaBZHQK4e5L26ClJ1fZQoaAZoCWgPQwgkgJvFC5BwQJSGlFKUaBVNIAZoFkdArh7/RZ2ZA3V9lChoBmgJaA9DCCUGgZVDtnBAlIaUUpRoFU0UBmgWR0CuH65uAI6bdX2UKGgGaAloD0MIlE25wvtxcECUhpRSlGgVTUAGaBZHQK4f78KG+K11fZQoaAZoCWgPQwg429yYXohwQJSGlFKUaBVNIAZoFkdArh/13hXKbXV9lChoBmgJaA9DCBL27SRipXBAlIaUUpRoFU0EBmgWR0CuIdrCN0eVdX2UKGgGaAloD0MIO3DOiNJicECUhpRSlGgVTSgGaBZHQK4jsuCf6Gh1fZQoaAZoCWgPQwichqjC36pwQJSGlFKUaBVN6wVoFkdAriYuf29L6HV9lChoBmgJaA9DCNTVHYstVHBAlIaUUpRoFU1ABmgWR0CuJ5HssxwidX2UKGgGaAloD0MIyVht/l+5cECUhpRSlGgVTQwGaBZHQK4rPXlr/Kh1fZQoaAZoCWgPQwiRC87gb7twQJSGlFKUaBVNDQZoFkdAriw555Z8r3V9lChoBmgJaA9DCL1RK0zf3zfAlIaUUpRoFU0vAmgWR0CuLh4sNDtxdX2UKGgGaAloD0MIqtIW1/icb0CUhpRSlGgVTUAGaBZHQK4uZf1Hvtt1fZQoaAZoCWgPQwh2wktw6u5vQJSGlFKUaBVNQAZoFkdArjBRJK8L8nV9lChoBmgJaA9DCCFAho7d1XBAlIaUUpRoFU0HBmgWR0CuMVy3solVdX2UKGgGaAloD0MICMiXUMHscECUhpRSlGgVTfQFaBZHQK4zWuAZsKt1fZQoaAZoCWgPQwjv5xTkZ4FwQJSGlFKUaBVNGgZoFkdArjOgMa0hNnV9lChoBmgJaA9DCP7UeOkmmnBAlIaUUpRoFU0ZBmgWR0CuNSSMcZLqdX2UKGgGaAloD0MIbCOe7Obpb0CUhpRSlGgVTUAGaBZHQK41qGzKLbZ1fZQoaAZoCWgPQwjxnC0gtJdwQJSGlFKUaBVNCgZoFkdArjW0yP+4snV9lChoBmgJaA9DCC3MQjvn5nBAlIaUUpRoFU36BWgWR0CuNcLg4wRHdX2UKGgGaAloD0MIA9L+B9h6cECUhpRSlGgVTUAGaBZHQK5tGlLvkR11fZQoaAZoCWgPQwiV8loJ3XRwQJSGlFKUaBVNOwZoFkdArm7zfixVyXV9lChoBmgJaA9DCETEzanki3BAlIaUUpRoFU0rBmgWR0CucI4NI9TxdX2UKGgGaAloD0MI7nn+tBEncECUhpRSlGgVTUAGaBZHQK50ue3hGYt1fZQoaAZoCWgPQwiVuflGtKFwQJSGlFKUaBVNDAZoFkdArnejLwF1S3V9lChoBmgJaA9DCFe1pKNc0XBAlIaUUpRoFU3gBWgWR0Cud/ufmLccdX2UKGgGaAloD0MIdA0zNF68cECUhpRSlGgVTegFaBZHQK56Qclw97p1fZQoaAZoCWgPQwgT7wBPGqtwQJSGlFKUaBVNGQZoFkdArnqsW43FUHV9lChoBmgJaA9DCJAuNq1UmnBAlIaUUpRoFU0gBmgWR0CufPSfcvdudX2UKGgGaAloD0MIfCk8aPaVcECUhpRSlGgVTRsGaBZHQK597TS9du51fZQoaAZoCWgPQwh5XFSLSL1wQJSGlFKUaBVNJAZoFkdAroAOmelKsnV9lChoBmgJaA9DCE91yM0wa3BAlIaUUpRoFU1ABmgWR0CugLal+EytdX2UKGgGaAloD0MIg2itaDPpcECUhpRSlGgVTQEGaBZHQK6BVayrxRV1fZQoaAZoCWgPQwh/aydKQvJwQJSGlFKUaBVN+wVoFkdAroG80+C9RXV9lChoBmgJaA9DCLK8qx7wzXBAlIaUUpRoFU3/BWgWR0CugdmG/N7jdX2UKGgGaAloD0MI38FPHECjcECUhpRSlGgVTR0GaBZHQK6CNJiAlOZ1fZQoaAZoCWgPQwj5oj1eCKRwQJSGlFKUaBVNFgZoFkdAroMvr+o993V9lChoBmgJaA9DCHdOs0A7cnBAlIaUUpRoFU0zBmgWR0CuhW/+0gKXdX2UKGgGaAloD0MILjpZaj0DcUCUhpRSlGgVTQEGaBZHQK6GU4tpVS51fZQoaAZoCWgPQwgJ/yJoTKBwQJSGlFKUaBVNAgZoFkdArscdzKcNIHV9lChoBmgJaA9DCHDs2XOZ2hjAlIaUUpRoFU1iAmgWR0CuyGeHaewtdX2UKGgGaAloD0MIY0UNpiGScECUhpRSlGgVTRUGaBZHQK7KZ9w3o9t1fZQoaAZoCWgPQwg2PpP9c8RwQJSGlFKUaBVNGwZoFkdArsrYwGnn+3V9lChoBmgJaA9DCHPaU3KOxXBAlIaUUpRoFU0FBmgWR0CuzNPTgEU1dX2UKGgGaAloD0MIFF6CU1/1cECUhpRSlGgVTfkFaBZHQK7NEhouf291fZQoaAZoCWgPQwjOM/Ylm+RwQJSGlFKUaBVNzAVoFkdArs67CtRvWHV9lChoBmgJaA9DCDOMu0G0q3BAlIaUUpRoFU0HBmgWR0Cu0I2FN+LFdX2UKGgGaAloD0MIS+oENBEwXkCUhpRSlGgVTUIFaBZHQK7RKCW/rSp1fZQoaAZoCWgPQwhkrDb/L91wQJSGlFKUaBVN/QVoFkdArtKNAE+xGHV9lChoBmgJaA9DCCHmkqrtInFAlIaUUpRoFU3SBWgWR0Cu0pnB+F10dX2UKGgGaAloD0MIPWNfsjHEcECUhpRSlGgVTQAGaBZHQK7UPrMTviN1fZQoaAZoCWgPQwjs9lllJsxwQJSGlFKUaBVNEQZoFkdArtT5JGvwE3V9lChoBmgJaA9DCIy7QbRWg3BAlIaUUpRoFU1ABmgWR0Cu1Uu9eyAydX2UKGgGaAloD0MIPdNLjOUpcECUhpRSlGgVTUAGaBZHQK7Y3agVXV91fZQoaAZoCWgPQwipUN1cvIxwQJSGlFKUaBVNJAZoFkdArtltlwtJ4HV9lChoBmgJaA9DCPbuj/dqsHBAlIaUUpRoFU0pBmgWR0Cu3ah0ZFXrdX2UKGgGaAloD0MI9pZyvpjZcECUhpRSlGgVTf4FaBZHQK7eUVLzwtt1fZQoaAZoCWgPQwi28/3UOMxwQJSGlFKUaBVNAwZoFkdAruBVhAnlXHV9lChoBmgJaA9DCMTr+gW7YXBAlIaUUpRoFU1ABmgWR0Cu4Z4Vh1DCdX2UKGgGaAloD0MIgy9MporucECUhpRSlGgVTdMFaBZHQK7iCkX1rZd1fZQoaAZoCWgPQwhzK4TVWKpwQJSGlFKUaBVNHQZoFkdArxmEQsf7rXV9lChoBmgJaA9DCFmkiXfAqXBAlIaUUpRoFU0mBmgWR0CvG0D/lyR0dX2UKGgGaAloD0MIGTkLexqmcECUhpRSlGgVTesFaBZHQK8cOf2bobJ1fZQoaAZoCWgPQwiQ2sTJ/QVxQJSGlFKUaBVN2QVoFkdArxyT+BH09XV9lChoBmgJaA9DCGKh1jTvjXBAlIaUUpRoFU0fBmgWR0CvHvaS9ugpdX2UKGgGaAloD0MIh/iHLb2FcECUhpRSlGgVTUAGaBZHQK8fYcZtNzt1fZQoaAZoCWgPQwiVgm4vqclwQJSGlFKUaBVNEgZoFkdAryBtnkDIR3V9lChoBmgJaA9DCFNb6iAvlnBAlIaUUpRoFU0aBmgWR0CvITal+EytdX2UKGgGaAloD0MI+FROewq5cECUhpRSlGgVTRcGaBZHQK8hgBltj1B1fZQoaAZoCWgPQwgzUBn/Ps5wQJSGlFKUaBVNEwZoFkdAryTgmNR3vHV9lChoBmgJaA9DCNCX3v6cuHBAlIaUUpRoFU37BWgWR0CvJRUhV2iddX2UKGgGaAloD0MIwqONIxZ/cECUhpRSlGgVTTQGaBZHQK8qEeEIw/R1fZQoaAZoCWgPQwgB/FOqxPNwQJSGlFKUaBVNCAZoFkdAryoaeNDMNnV9lChoBmgJaA9DCLqEQ2+xt3BAlIaUUpRoFU0tBmgWR0CvLKck2P1ddX2UKGgGaAloD0MIJO1GH/PpcECUhpRSlGgVTf8FaBZHQK8tU8vmHQB1fZQoaAZoCWgPQwhBnfLoRrdwQJSGlFKUaBVNIQZoFkdAry43C/GlynV9lChoBmgJaA9DCCxmhLdH2XBAlIaUUpRoFU0BBmgWR0CvLw6uGKyfdX2UKGgGaAloD0MIK2nFN1S+cECUhpRSlGgVTScGaBZHQK8xXLA57w91fZQoaAZoCWgPQwg6lQwAVaRwQJSGlFKUaBVNJAZoFkdArzJES/TLGXV9lChoBmgJaA9DCEg0gSIWenBAlIaUUpRoFU02BmgWR0CvMt7hm5DrdX2UKGgGaAloD0MIY3st6P2ccECUhpRSlGgVTRQGaBZHQK801Iwudwx1fZQoaAZoCWgPQwiWXMXid51wQJSGlFKUaBVNDQZoFkdArzUnz6JqI3V9lChoBmgJaA9DCA7Y1eRpz3BAlIaUUpRoFU33BWgWR0CvNeX7k4m1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 920, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_walker.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:013ef50b49ffec823d2678f60286c0c6a1c08a03d055d85d2a5980b486b9fcb8
3
- size 175197
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccfd0f8fa58ffa24c57c8ba43586092b027d94e4d81c7650f3e26ceac6b7af48
3
+ size 175237
ppo_walker/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7faca9dc0310>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faca9dc03a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faca9dc0430>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faca9dc04c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7faca9dc0550>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7faca9dc05e0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faca9dc0670>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7faca9dc0700>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faca9dc0790>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faca9dc0820>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faca9dc08b0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7faca9db9cf0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,12 +47,12 @@
47
  "_np_random": null
48
  },
49
  "n_envs": 16,
50
- "num_timesteps": 1015808,
51
- "_total_timesteps": 1000000,
52
  "_num_timesteps_at_start": 0,
53
  "seed": null,
54
  "action_noise": null,
55
- "start_time": 1670653910951476740,
56
  "learning_rate": 0.0003,
57
  "tensorboard_log": null,
58
  "lr_schedule": {
@@ -61,7 +61,7 @@
61
  },
62
  "_last_obs": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
- ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAEUG5z63dD+9P9wSPjJWyDvj7VW/AAAAAKDH7b1YVY4+AACAPxIVkT8AAAAAtAV8PgIAgD8AAAAAKFqFPokuhz74LYw+5z2VPm0ipD6XTrw+kJTmPi7uFD9nol0/AACAPwXjrj1JA2q8iMQ8PaZcfT04y1W/ABLLOVx3vz4bw1k+AAAAAChSkT8AIEK3NsNvPwB47bgAAAAARNpfPoXfYD5RRGc+eUtzPisWgz45ZpI+lyWsPlob1z6QLBI/0GxgPy+r0j7Kvaq8R7iXPheAULxtEFe/LgN/v+D9Mj1zw4A/AAAAAJDNjz+EAIA/EkoSP7ilX78AAAAAiPWRPuCdkz5uyJg+pRiiPiPZsD6Ee8c+5c7qPvCrEj/mZkk/AACAPyT77D20t989AiPuPe+MjLtP0I4/AABAtFQjqD4AAIC/AAAAALHfI7/qvhW/wAC6PAEAgL8AAAAAjqCmPvkCqT7Ms68+VhS9PicK0D4i5Oo+lBMJPznKJz8952A/AACAP2TNkz0MWp09pAr9Pda/7z2/IAu/38YOP+w/Kz4AAIC/AAAAAJnzjD9Mx/W9irPXPrXkfL8AAIA/bWidPg4ynz5ZxKQ+lM+uPkq4vj4sIdc+5zn9PnTFHj8CB1w/AACAPwoxJD5r0Ic8An6sPfoSB72LoWW+ZwO3PlCq/b4AAIC/AAAAABrvkD8AAAAA/Fc0Pv3/fz8AAAAAn2GlPm5Cpz75HK0+cqq3PnZhyD7gBuI+0AYFP+GmIz9Yz1c/AACAPyzM5z5vYxU98hklPC2Q77yjIhw/j9t0P5iypz7P/z0/AAAAAKP6RL4i9mi+4JfuvcfiZr0AAAAAUr3SPv8h1T6Kl9w+7gnqPohW/z5NAhA/1YIpP6/EUz8AAIA/AACAP2aL0r0o+Ki92jplPuU/hz2MMTK/B+Y9P+QDEz8AAIC/AAAAALxkjj8AAAAA6CxdP6JYHD8AAIA/p7qePglGnz6GBKM+FNKrPiB1uz71v9I+rEz2PmeYGD84OUw/AACAP2Ae8D6mjWq8e5EwPi0lhjr9/FG/AADAMgAA3rq5IJM9AACAP8BJkD8AAAAAxuE2PwEAgL8AAAAAy+aPPjuGjj5lRZA+z+aVPtwjoD6q/7A+CIfMPhrx/j447TY/AACAP9Z/JL7Rg5I9LBlFPnwJBT75siW/rGmJPghMFj8DAIC/AAAAAADqkD8AAAAAglQCPwEAgL8AAAAAI5bBPkfWwT6H48U+a33PPl+a4D6ziv0+PpoVP7+eOj8AAIA/AACAP81eIj8cJmW9JOpTPlZynz1cq1S/AABqNrxkm75YR8g+AACAPySXbD8uBu0+KPUuPgEAgL8AAAAAeKiNPqBDjz5N2JM+wWKcPjIOqj43wL8+sBDmPqg1Dz8EMUY/AACAPxqnmj68G/s8TBBgPrFKhr1cEwy/mq1qv0AdhTzj7/0+AACAP+T0WT/oRlG+JAQ0PwAAgD8AAAAAN7qlPsW5pT6swak+Qs+xPgBPvz4lBtU+BWL6PsPCGj/pQVI/AACAP7LNvj1Yw4e8QwscPvNulbymmPE+3KHkvK5KH78AI5C6AACAPwHXfD+FGoU+IJIFPdgBgD8AAIA/Vfe1Pn9puD4M674+jQvKPs/33T7f5/0+HaQUPy4mNT80vHc/AACAP3JpaD4oHO692eIwPmhRpTu7dk+/4f+dPkhc+D3F0dc+AAAAAPa9ij+gfl09GlZtP/3/fz8AAAAAEYCAPi6zgT7ldYY+DQOPPtpJnT4lTLM+NobWPmPCCz+Wxj8/AACAP1oxtj5pRKk9qDpRPhZwIr0bJaC+lkt3v7gWZr71Ank+AACAPwrYkD8AAAAAfuIlP/n/fz8AAAAABze5PnP8uT5Od74+9G/HPlsn1j5Uee8+390KP2MWLj8UFGs/AACAPxm5aT9jeGy9f8tjPqRl6zw4TlK/AICSOIBd0r7rI2o+AAAAAHo3kD8AADK2KEViP8RJ3L4AAAAA4aOVPlIelD7n15U+TmuePnAwrD5WW70+5v3WPkrm/T6nLyc/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
65
  },
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
@@ -71,16 +71,16 @@
71
  "_episode_num": 0,
72
  "use_sde": false,
73
  "sde_sample_freq": -1,
74
- "_current_progress_remaining": -0.015808000000000044,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
- ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdSDrqdV6X8CUhpRSlIwBbJRLqYwBdJRHQJOgJr/Khct1fZQoaAZoCWgPQwh3ZRcMritSQJSGlFKUaBVNQAZoFkdAk6JWjGkvb3V9lChoBmgJaA9DCNC1L6AX/E1AlIaUUpRoFU1ABmgWR0CTote/Yao/dX2UKGgGaAloD0MIx735DRPoW8CUhpRSlGgVSzBoFkdAk6RJKzzErHV9lChoBmgJaA9DCHL4pBMJ2lBAlIaUUpRoFU1ABmgWR0CTpinfEXLvdX2UKGgGaAloD0MIIzKs4o1SWsCUhpRSlGgVS5FoFkdAk6a8urZJ1HV9lChoBmgJaA9DCDwyVpv/lFVAlIaUUpRoFU1ABmgWR0CTpqfoA4n4dX2UKGgGaAloD0MI3BK54AwiXMCUhpRSlGgVS0BoFkdAk6i7JGOMl3V9lChoBmgJaA9DCBIxJZLo81NAlIaUUpRoFU1ABmgWR0CTqOpwS8J2dX2UKGgGaAloD0MIsffii/ayWsCUhpRSlGgVS1FoFkdAk6jBi9ZieHV9lChoBmgJaA9DCO25TE2CXlvAlIaUUpRoFUtEaBZHQJOqvjKgZjx1fZQoaAZoCWgPQwhdixagbV9cwJSGlFKUaBVLUmgWR0CTqzef7JnydX2UKGgGaAloD0MIjGoRUUweU8CUhpRSlGgVTeYCaBZHQJOv85CF9KF1fZQoaAZoCWgPQwjGo1TCE/lRQJSGlFKUaBVNQAZoFkdAk7F0daMaTHV9lChoBmgJaA9DCDzAkxYuR0bAlIaUUpRoFU27BGgWR0CUItYZ2pyZdX2UKGgGaAloD0MI7PtwkBBDSkCUhpRSlGgVTUAGaBZHQJQi2j+Jgst1fZQoaAZoCWgPQwhEUgslk4NWQJSGlFKUaBVNQAZoFkdAlCOZ6Uqx1XV9lChoBmgJaA9DCA0dO6jEr17AlIaUUpRoFUuJaBZHQJQkZSydFv11fZQoaAZoCWgPQwg/x0eLM/lXwJSGlFKUaBVLe2gWR0CUJyVUuL75dX2UKGgGaAloD0MITwgddAmvUkCUhpRSlGgVTUAGaBZHQJQt9gH/tIF1fZQoaAZoCWgPQwjryJHOwOhZQJSGlFKUaBVNQAZoFkdAlDHp9ZzPr3V9lChoBmgJaA9DCDMWTWcnCVrAlIaUUpRoFUtQaBZHQJQ0K34Kx9p1fZQoaAZoCWgPQwguHt5zYOFTQJSGlFKUaBVNQAZoFkdAlDQIfCAMD3V9lChoBmgJaA9DCM6pZACozlNAlIaUUpRoFU1ABmgWR0CUNPd+G47SdX2UKGgGaAloD0MIPl5Ih4fKTECUhpRSlGgVTUAGaBZHQJQ9y6MBIWh1fZQoaAZoCWgPQwhZFkz8UYJIQJSGlFKUaBVNQAZoFkdAlD4IfCAMD3V9lChoBmgJaA9DCEUqjC0EJFzAlIaUUpRoFUtSaBZHQJRAajua4MF1fZQoaAZoCWgPQwiFC3kEN9RSQJSGlFKUaBVNQAZoFkdAlEIdSZSeiHV9lChoBmgJaA9DCLOVl/xPu1rAlIaUUpRoFUtdaBZHQJRDK56MR6F1fZQoaAZoCWgPQwh96lil9KhLQJSGlFKUaBVNQAZoFkdAlERjnA6+4HV9lChoBmgJaA9DCAA6zJcX61rAlIaUUpRoFUspaBZHQJREZz2exwB1fZQoaAZoCWgPQwgiVKnZA85awJSGlFKUaBVLVWgWR0CURJ3hGYrsdX2UKGgGaAloD0MI3PY96q+OVECUhpRSlGgVTUAGaBZHQJRGnoA4n4R1fZQoaAZoCWgPQwgJbTmX4rtXQJSGlFKUaBVNQAZoFkdAlEhvkBCD3HV9lChoBmgJaA9DCDbOpiOAD1FAlIaUUpRoFU1ABmgWR0CUSOK4x1xLdX2UKGgGaAloD0MII79+iA00VkCUhpRSlGgVTUAGaBZHQJRNsofCAMF1fZQoaAZoCWgPQwiu8C4X8StXQJSGlFKUaBVNQAZoFkdAlFGhhQWN3nV9lChoBmgJaA9DCEBtVKcDBFhAlIaUUpRoFU1ABmgWR0CUUaTTvy9VdX2UKGgGaAloD0MIMjhKXp17VkCUhpRSlGgVTUAGaBZHQJRTKNcW0qp1fZQoaAZoCWgPQwgANiBCXBRYQJSGlFKUaBVNQAZoFkdAlFYCdSVGC3V9lChoBmgJaA9DCP1nzY+/SVzAlIaUUpRoFUtjaBZHQJRWE7uDzy11fZQoaAZoCWgPQwg/jubIyr1awJSGlFKUaBVLRGgWR0CUWANi6QNkdX2UKGgGaAloD0MIv7m/ety1QECUhpRSlGgVTUAGaBZHQJRc7Ve8f3h1fZQoaAZoCWgPQwgyPWGJB/RYwJSGlFKUaBVLWWgWR0CUzqH8TBZZdX2UKGgGaAloD0MIHauUnumHSUCUhpRSlGgVTUAGaBZHQJTSW7f51vF1fZQoaAZoCWgPQwi13m+046xQQJSGlFKUaBVNQAZoFkdAlNI7dnCfpXV9lChoBmgJaA9DCOenOA68T1/AlIaUUpRoFUuMaBZHQJTS0Djin511fZQoaAZoCWgPQwgdAkcCDUdYQJSGlFKUaBVNQAZoFkdAlNMsXenAI3V9lChoBmgJaA9DCCdMGM1KomDAlIaUUpRoFUuaaBZHQJTWvlA/s3R1fZQoaAZoCWgPQwgg66nVVwZWQJSGlFKUaBVNQAZoFkdAlNv+d07r9nV9lChoBmgJaA9DCGixFMlXa1vAlIaUUpRoFUsyaBZHQJTdfOTq0MR1fZQoaAZoCWgPQwjjxi3m55xNwJSGlFKUaBVN4QVoFkdAlN+zU/fO2XV9lChoBmgJaA9DCHSWWYRiilRAlIaUUpRoFU1ABmgWR0CU4pC4z7/GdX2UKGgGaAloD0MIJcreUs6wVECUhpRSlGgVTUAGaBZHQJTixAu7HyV1fZQoaAZoCWgPQwgUQDGyZNVTQJSGlFKUaBVNQAZoFkdAlOS2bwz+FXV9lChoBmgJaA9DCIwsmWN5lVzAlIaUUpRoFUsvaBZHQJTmDVlPJq91fZQoaAZoCWgPQwiuLqcExMRNQJSGlFKUaBVNQAZoFkdAlOZzJZGKAXV9lChoBmgJaA9DCOuLhLacM1VAlIaUUpRoFU1ABmgWR0CU5uS39aUzdX2UKGgGaAloD0MIxxAAHHu8T0CUhpRSlGgVTUAGaBZHQJTrtVbRne11fZQoaAZoCWgPQwghBrr2BY1bwJSGlFKUaBVLxWgWR0CU7MCw8nuzdX2UKGgGaAloD0MIll6bjZUPXMCUhpRSlGgVSz5oFkdAlO2VMZgogHV9lChoBmgJaA9DCKHbSxqjWUJAlIaUUpRoFU1ABmgWR0CU75xfv4M4dX2UKGgGaAloD0MIH7sLlBQCV0CUhpRSlGgVTUAGaBZHQJTvn863iJh1fZQoaAZoCWgPQwhbJy7HKzRVQJSGlFKUaBVNQAZoFkdAlPRHb212JXV9lChoBmgJaA9DCDHSi9r9AVNAlIaUUpRoFU1ABmgWR0CU9jiRnvlVdX2UKGgGaAloD0MIOs0C7Q5CW8CUhpRSlGgVS3FoFkdAlPeLah6By3V9lChoBmgJaA9DCHQlAtU/sFZAlIaUUpRoFU1ABmgWR0CVAUC1JDmbdX2UKGgGaAloD0MIfjZy3ZSLVkCUhpRSlGgVTUAGaBZHQJUBslzEJjV1fZQoaAZoCWgPQwh9dVWgFidVQJSGlFKUaBVNQAZoFkdAlQITcqOLi3V9lChoBmgJaA9DCDyInSl0dFrAlIaUUpRoFUtjaBZHQJUENqDbrTp1fZQoaAZoCWgPQwgi4Xt/g8ZYQJSGlFKUaBVNQAZoFkdAlQWr6UJOWXV9lChoBmgJaA9DCITTghd991/AlIaUUpRoFUtYaBZHQJUIMfwI+nt1fZQoaAZoCWgPQwihoBSt3EhZwJSGlFKUaBVLT2gWR0CVhP4XoC+2dX2UKGgGaAloD0MInKVkOQn5RkCUhpRSlGgVTUAGaBZHQJWG1JAdGRV1fZQoaAZoCWgPQwj4pumzA/tYQJSGlFKUaBVNQAZoFkdAlYkmNedCmnV9lChoBmgJaA9DCJsg6j4AgUvAlIaUUpRoFU0qBmgWR0CViz5hScbzdX2UKGgGaAloD0MILA5nfjV7U0CUhpRSlGgVTUAGaBZHQJWMHaBZpzt1fZQoaAZoCWgPQwhA3UCBd7BdwJSGlFKUaBVLWGgWR0CVjc7qY7aJdX2UKGgGaAloD0MIflcE/1vQXMCUhpRSlGgVS0doFkdAlY4hLbpNbnV9lChoBmgJaA9DCPhsHRzsdFVAlIaUUpRoFU1ABmgWR0CVj2WZ7XxwdX2UKGgGaAloD0MIj6hQ3VyCV0CUhpRSlGgVTUAGaBZHQJWP0idJ8OV1fZQoaAZoCWgPQwghdxGmKCpXQJSGlFKUaBVNQAZoFkdAlZYcHGCI13V9lChoBmgJaA9DCOId4EkL3FpAlIaUUpRoFU1ABmgWR0CVlus4T9KmdX2UKGgGaAloD0MIuJIdG4GSUUCUhpRSlGgVTUAGaBZHQJWZCbkOqed1fZQoaAZoCWgPQwhp4h3gSYRUQJSGlFKUaBVNQAZoFkdAlZkNpqREGHV9lChoBmgJaA9DCO5BCMiXylzAlIaUUpRoFUt6aBZHQJWZso5PuXx1fZQoaAZoCWgPQwjHSWHe4wJcQJSGlFKUaBVNQAZoFkdAlZ9lev6j33V9lChoBmgJaA9DCLcnSGx3gVtAlIaUUpRoFU1ABmgWR0CVoMggX/HYdX2UKGgGaAloD0MInPwWnSyvSMCUhpRSlGgVTVQDaBZHQJWiFdpqREF1fZQoaAZoCWgPQwg4+S06WbJcQJSGlFKUaBVNQAZoFkdAlarfykKu0XV9lChoBmgJaA9DCNAJoYMuKl1AlIaUUpRoFU1ABmgWR0CVq0AHVwxWdX2UKGgGaAloD0MInStKCcF9WUCUhpRSlGgVTUAGaBZHQJWtX67/XGx1fZQoaAZoCWgPQwikiAyreE5awJSGlFKUaBVLQ2gWR0CVrUMSK3uvdX2UKGgGaAloD0MIglX18juNVkCUhpRSlGgVTUAGaBZHQJWzvUjLSu11fZQoaAZoCWgPQwia0CSxpLRJQJSGlFKUaBVNQAZoFkdAlbWTlDF6zHV9lChoBmgJaA9DCPS/XIsW91rAlIaUUpRoFUs2aBZHQJW3J50KZ2J1fZQoaAZoCWgPQwjy0k1iEMpXQJSGlFKUaBVNQAZoFkdAlbxy83++/XV9lChoBmgJaA9DCLRYiuQr1FdAlIaUUpRoFU1ABmgWR0CVvOjSXt0FdX2UKGgGaAloD0MIkKLO3ENmXECUhpRSlGgVTUAGaBZHQJW+JUlzEJl1fZQoaAZoCWgPQwjpYtNKIWlVQJSGlFKUaBVNQAZoFkdAlb6PYvnKXHVlLg=="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
- "_n_updates": 310,
84
  "n_steps": 2048,
85
  "gamma": 0.999,
86
  "gae_lambda": 0.95,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f76823021f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7682302280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7682302310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f76823023a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7682302430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f76823024c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7682302550>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f76823025e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7682302670>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7682302700>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7682302790>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f76822f9bd0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
47
  "_np_random": null
48
  },
49
  "n_envs": 16,
50
+ "num_timesteps": 3014656,
51
+ "_total_timesteps": 3000000,
52
  "_num_timesteps_at_start": 0,
53
  "seed": null,
54
  "action_noise": null,
55
+ "start_time": 1670656021110262053,
56
  "learning_rate": 0.0003,
57
  "tensorboard_log": null,
58
  "lr_schedule": {
 
61
  },
62
  "_last_obs": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAaiMz+wXJK9+3uUPuS9xLztXlG/AJuBvIym4r5QMp4+AACAP0E8Pz/0o4O9pv08P784gD8AAAAAs42JPswhjD6QIZM+w5GePpUmsD6ZA8w++On9PnBINj8AAIA/AACAPzHRbj/rUYE9dOe9Pl2ePr4ZVSe/46CAv+CJI7/AXq+8AACAP0bvGT9efYC/iKZHP5Mmfz8AAAAAvtSUPgDrlT5gdpo+SdqjPgmisT41tMM+E3jgPqYeCj8u4Tc/AACAP4m+Yj8huJ49PvyQPiz1qb1Ngi+/AACAvyyM8r5EbjM+AACAP4Boiz+cemO+QPBCPgAAgD8AAAAAVrihPoz2oz4C/6k+1lu0PmJhxT5TRd0+cl7+PszjGT9kBFE/AACAP6ezfz+BK9q9nGrdPnqTzzsmnlW/AICiONw8/748o5A+AACAP1eAdj+4wns/nqVsP1VVFTUAAAAAt7adPkQAoT7dW6g+a1WzPhklxT68IuA+3J8DP/eTID/o4Ug/AACAP2hN5j4/8/293IaxPj3MCT5rvFO/AEA3OGCCWT74dWk/AAAAANppjj8AAPi1CFZvP6uqmbcAAAAAiMmbPnIPnT7mP6M+0nuuPulcvj4RHdg+x0EBP4haLD8AAIA/AACAP0ExUD5M3zw9JuGNPpYu6rtYnc49nDCAvQTOxr4BAIA/AAAAAM8Paj++hxI/xxcOPwEAgL8AAAAAINHQPiP50D46Rdc+uYXkPpFC+z7DXw4/o/woPz5PVj8AAIA/AACAP5ihB76l8SS9Az1sPsZhTT7gghi/fLN+P4d6Lz+JBYC/AAAAAKlsjz8AgNo4sBdsP60z2b0AAIA/mNSqPoFkqz6lma4+gxu1PkGlwD5NQtQ+MdzzPq3bEj8CM0I/AACAP+cBJD4c80Y9qtZvPrjM1b0k85M+GAcuv2gpmr4BAIA/AAAAAKfKkD8AAAAAoPYHvQMAgD8AAAAAKqDVPl6m1T5IZ9s+defoPnkZ/j6nWg8/Gd0rP58zYT8AAIA/AACAP26SKD/O3NS9+lXSPkCA7LwZ21W/wApCvGw1uL5FxuE+AACAP7G3Gz9EIFG+6oIAP+QvgD8AAAAAo2GJPgvxij7gzY8+2GuXPsN9oz4SWLo+35bfPlSXEj+0+U4/AACAPwF2WL2hdtu8SH+uPlYmvz3mu1G/sAoCv78YNj94/X8/AACAPyG+kT8AAPY1Nmh8P+37b74AAIA/ZsKEPhQFhj7RtYo+xnWSPqEfnj58nLE+NbnQPohwAD/aVzI/AACAP6SrXT8uuCc9mdTMPipoFL7dcE6/AACAv8xq574rFF8+AACAP8e2AT8ku9O9iA0uP0HQer8AAAAAFsGUPo5xlj7Dn5k+u5qfPnyhrD5LPMI+m2bmPl4wED8730g/AACAPx7kVD+vjsg9DfkUPj+jlL1wo5K+4Etfv6C3I7+rwq46AAAAAEfCeT/BZv++VANgPz/+fz8AAAAAuqqnPi6SqT5vga8+PjS6PmQmyz6LJuU+c90GP0N8KD89qGc/AACAPwXiCT4EpBU9ad5sPtbEHT1Lkgw9CBxLP2wKlb581x0/AAAAAJc0iD8BAIA/QFIevbDOob8AAAAAfg/EPn5Jxj4HOs0+o7zZPm+N7T7CTAY/0hAhPwIfSD8AAIA/AACAP4jRIz/1nAM9gVuDPp+Iib1Ch++9A/8Qv9g3Er9rwDS8AACAP4Q2hj/2SeM+pF2EPnATpr4AAAAAjCGuPpUCrj5rSrM+yRS9PnNxzD43UeI+0A4DP0v+IT+r3mE/AACAP1PvBT/KWsY9a5OyPtC2Cr5y9Iy9YhESv4jO+b4BAIC/AACAP1Qbjj8AAAAAut2XPgEAgL8AAAAALKO+PoTEwT66f8k+HaDWPmso6j53RQU/qMYbP4WIRz8AAIA/AACAPz4jF75T9jS9oKhePpOwQD6NTDa/YmpFvvqKUz9ZEIA/AACAP2NpkT8AAJM2anRwPyso6rwAAIA/CnCePkGEnz67CKQ+B9arPi5Zuj63EtE+TNPwPojVFT8KdFQ/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
65
  },
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
 
71
  "_episode_num": 0,
72
  "use_sde": false,
73
  "sde_sample_freq": -1,
74
+ "_current_progress_remaining": -0.004885333333333408,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkdPX8/VkcECUhpRSlIwBbJRNQAaMAXSUR0Ct0o4593KTdX2UKGgGaAloD0MI9DehEAG9cECUhpRSlGgVTQ0GaBZHQK3StMFEAo51fZQoaAZoCWgPQwhWndUCu8NwQJSGlFKUaBVN9gVoFkdArdM8Ouq3mXV9lChoBmgJaA9DCNwvn6zYjXBAlIaUUpRoFU04BmgWR0Ct05b1yvLYdX2UKGgGaAloD0MIX0IFh9eXcECUhpRSlGgVTSQGaBZHQK3Tt0Dlo111fZQoaAZoCWgPQwiYNEbrqJtwQJSGlFKUaBVNKQZoFkdArdX+JWNm2HV9lChoBmgJaA9DCH11VaCW3nBAlIaUUpRoFU3pBWgWR0Ct11g8r7O3dX2UKGgGaAloD0MI7UrLSD2UcECUhpRSlGgVTe0FaBZHQK3awdRR/Ex1fZQoaAZoCWgPQwhMw/ARMSlwQJSGlFKUaBVNQAZoFkdArdrxbyH2y3V9lChoBmgJaA9DCGqjOh3Ip3BAlIaUUpRoFU0qBmgWR0Ct303+l0o0dX2UKGgGaAloD0MI54wo7Q3VbkCUhpRSlGgVTUAGaBZHQK3gS2DQJHB1fZQoaAZoCWgPQwiDvvT2p6dwQJSGlFKUaBVNFgZoFkdAreG16iTMaHV9lChoBmgJaA9DCKfMzTfiS3BAlIaUUpRoFU1ABmgWR0CuGY/9xZMddX2UKGgGaAloD0MI9DP1usXicECUhpRSlGgVTd0FaBZHQK4bbRJEpiJ1fZQoaAZoCWgPQwgguMoTCCxwQJSGlFKUaBVNQAZoFkdArh12tp22X3V9lChoBmgJaA9DCG5OJQMA5XBAlIaUUpRoFU3rBWgWR0CuHbx1xKg7dX2UKGgGaAloD0MIJ92WyMWEcECUhpRSlGgVTSUGaBZHQK4e5L26ClJ1fZQoaAZoCWgPQwgkgJvFC5BwQJSGlFKUaBVNIAZoFkdArh7/RZ2ZA3V9lChoBmgJaA9DCCUGgZVDtnBAlIaUUpRoFU0UBmgWR0CuH65uAI6bdX2UKGgGaAloD0MIlE25wvtxcECUhpRSlGgVTUAGaBZHQK4f78KG+K11fZQoaAZoCWgPQwg429yYXohwQJSGlFKUaBVNIAZoFkdArh/13hXKbXV9lChoBmgJaA9DCBL27SRipXBAlIaUUpRoFU0EBmgWR0CuIdrCN0eVdX2UKGgGaAloD0MIO3DOiNJicECUhpRSlGgVTSgGaBZHQK4jsuCf6Gh1fZQoaAZoCWgPQwichqjC36pwQJSGlFKUaBVN6wVoFkdAriYuf29L6HV9lChoBmgJaA9DCNTVHYstVHBAlIaUUpRoFU1ABmgWR0CuJ5HssxwidX2UKGgGaAloD0MIyVht/l+5cECUhpRSlGgVTQwGaBZHQK4rPXlr/Kh1fZQoaAZoCWgPQwiRC87gb7twQJSGlFKUaBVNDQZoFkdAriw555Z8r3V9lChoBmgJaA9DCL1RK0zf3zfAlIaUUpRoFU0vAmgWR0CuLh4sNDtxdX2UKGgGaAloD0MIqtIW1/icb0CUhpRSlGgVTUAGaBZHQK4uZf1Hvtt1fZQoaAZoCWgPQwh2wktw6u5vQJSGlFKUaBVNQAZoFkdArjBRJK8L8nV9lChoBmgJaA9DCCFAho7d1XBAlIaUUpRoFU0HBmgWR0CuMVy3solVdX2UKGgGaAloD0MICMiXUMHscECUhpRSlGgVTfQFaBZHQK4zWuAZsKt1fZQoaAZoCWgPQwjv5xTkZ4FwQJSGlFKUaBVNGgZoFkdArjOgMa0hNnV9lChoBmgJaA9DCP7UeOkmmnBAlIaUUpRoFU0ZBmgWR0CuNSSMcZLqdX2UKGgGaAloD0MIbCOe7Obpb0CUhpRSlGgVTUAGaBZHQK41qGzKLbZ1fZQoaAZoCWgPQwjxnC0gtJdwQJSGlFKUaBVNCgZoFkdArjW0yP+4snV9lChoBmgJaA9DCC3MQjvn5nBAlIaUUpRoFU36BWgWR0CuNcLg4wRHdX2UKGgGaAloD0MIA9L+B9h6cECUhpRSlGgVTUAGaBZHQK5tGlLvkR11fZQoaAZoCWgPQwiV8loJ3XRwQJSGlFKUaBVNOwZoFkdArm7zfixVyXV9lChoBmgJaA9DCETEzanki3BAlIaUUpRoFU0rBmgWR0CucI4NI9TxdX2UKGgGaAloD0MI7nn+tBEncECUhpRSlGgVTUAGaBZHQK50ue3hGYt1fZQoaAZoCWgPQwiVuflGtKFwQJSGlFKUaBVNDAZoFkdArnejLwF1S3V9lChoBmgJaA9DCFe1pKNc0XBAlIaUUpRoFU3gBWgWR0Cud/ufmLccdX2UKGgGaAloD0MIdA0zNF68cECUhpRSlGgVTegFaBZHQK56Qclw97p1fZQoaAZoCWgPQwgT7wBPGqtwQJSGlFKUaBVNGQZoFkdArnqsW43FUHV9lChoBmgJaA9DCJAuNq1UmnBAlIaUUpRoFU0gBmgWR0CufPSfcvdudX2UKGgGaAloD0MIfCk8aPaVcECUhpRSlGgVTRsGaBZHQK597TS9du51fZQoaAZoCWgPQwh5XFSLSL1wQJSGlFKUaBVNJAZoFkdAroAOmelKsnV9lChoBmgJaA9DCE91yM0wa3BAlIaUUpRoFU1ABmgWR0CugLal+EytdX2UKGgGaAloD0MIg2itaDPpcECUhpRSlGgVTQEGaBZHQK6BVayrxRV1fZQoaAZoCWgPQwh/aydKQvJwQJSGlFKUaBVN+wVoFkdAroG80+C9RXV9lChoBmgJaA9DCLK8qx7wzXBAlIaUUpRoFU3/BWgWR0CugdmG/N7jdX2UKGgGaAloD0MI38FPHECjcECUhpRSlGgVTR0GaBZHQK6CNJiAlOZ1fZQoaAZoCWgPQwj5oj1eCKRwQJSGlFKUaBVNFgZoFkdAroMvr+o993V9lChoBmgJaA9DCHdOs0A7cnBAlIaUUpRoFU0zBmgWR0CuhW/+0gKXdX2UKGgGaAloD0MILjpZaj0DcUCUhpRSlGgVTQEGaBZHQK6GU4tpVS51fZQoaAZoCWgPQwgJ/yJoTKBwQJSGlFKUaBVNAgZoFkdArscdzKcNIHV9lChoBmgJaA9DCHDs2XOZ2hjAlIaUUpRoFU1iAmgWR0CuyGeHaewtdX2UKGgGaAloD0MIY0UNpiGScECUhpRSlGgVTRUGaBZHQK7KZ9w3o9t1fZQoaAZoCWgPQwg2PpP9c8RwQJSGlFKUaBVNGwZoFkdArsrYwGnn+3V9lChoBmgJaA9DCHPaU3KOxXBAlIaUUpRoFU0FBmgWR0CuzNPTgEU1dX2UKGgGaAloD0MIFF6CU1/1cECUhpRSlGgVTfkFaBZHQK7NEhouf291fZQoaAZoCWgPQwjOM/Ylm+RwQJSGlFKUaBVNzAVoFkdArs67CtRvWHV9lChoBmgJaA9DCDOMu0G0q3BAlIaUUpRoFU0HBmgWR0Cu0I2FN+LFdX2UKGgGaAloD0MIS+oENBEwXkCUhpRSlGgVTUIFaBZHQK7RKCW/rSp1fZQoaAZoCWgPQwhkrDb/L91wQJSGlFKUaBVN/QVoFkdArtKNAE+xGHV9lChoBmgJaA9DCCHmkqrtInFAlIaUUpRoFU3SBWgWR0Cu0pnB+F10dX2UKGgGaAloD0MIPWNfsjHEcECUhpRSlGgVTQAGaBZHQK7UPrMTviN1fZQoaAZoCWgPQwjs9lllJsxwQJSGlFKUaBVNEQZoFkdArtT5JGvwE3V9lChoBmgJaA9DCIy7QbRWg3BAlIaUUpRoFU1ABmgWR0Cu1Uu9eyAydX2UKGgGaAloD0MIPdNLjOUpcECUhpRSlGgVTUAGaBZHQK7Y3agVXV91fZQoaAZoCWgPQwipUN1cvIxwQJSGlFKUaBVNJAZoFkdArtltlwtJ4HV9lChoBmgJaA9DCPbuj/dqsHBAlIaUUpRoFU0pBmgWR0Cu3ah0ZFXrdX2UKGgGaAloD0MI9pZyvpjZcECUhpRSlGgVTf4FaBZHQK7eUVLzwtt1fZQoaAZoCWgPQwi28/3UOMxwQJSGlFKUaBVNAwZoFkdAruBVhAnlXHV9lChoBmgJaA9DCMTr+gW7YXBAlIaUUpRoFU1ABmgWR0Cu4Z4Vh1DCdX2UKGgGaAloD0MIgy9MporucECUhpRSlGgVTdMFaBZHQK7iCkX1rZd1fZQoaAZoCWgPQwhzK4TVWKpwQJSGlFKUaBVNHQZoFkdArxmEQsf7rXV9lChoBmgJaA9DCFmkiXfAqXBAlIaUUpRoFU0mBmgWR0CvG0D/lyR0dX2UKGgGaAloD0MIGTkLexqmcECUhpRSlGgVTesFaBZHQK8cOf2bobJ1fZQoaAZoCWgPQwiQ2sTJ/QVxQJSGlFKUaBVN2QVoFkdArxyT+BH09XV9lChoBmgJaA9DCGKh1jTvjXBAlIaUUpRoFU0fBmgWR0CvHvaS9ugpdX2UKGgGaAloD0MIh/iHLb2FcECUhpRSlGgVTUAGaBZHQK8fYcZtNzt1fZQoaAZoCWgPQwiVgm4vqclwQJSGlFKUaBVNEgZoFkdAryBtnkDIR3V9lChoBmgJaA9DCFNb6iAvlnBAlIaUUpRoFU0aBmgWR0CvITal+EytdX2UKGgGaAloD0MI+FROewq5cECUhpRSlGgVTRcGaBZHQK8hgBltj1B1fZQoaAZoCWgPQwgzUBn/Ps5wQJSGlFKUaBVNEwZoFkdAryTgmNR3vHV9lChoBmgJaA9DCNCX3v6cuHBAlIaUUpRoFU37BWgWR0CvJRUhV2iddX2UKGgGaAloD0MIwqONIxZ/cECUhpRSlGgVTTQGaBZHQK8qEeEIw/R1fZQoaAZoCWgPQwgB/FOqxPNwQJSGlFKUaBVNCAZoFkdAryoaeNDMNnV9lChoBmgJaA9DCLqEQ2+xt3BAlIaUUpRoFU0tBmgWR0CvLKck2P1ddX2UKGgGaAloD0MIJO1GH/PpcECUhpRSlGgVTf8FaBZHQK8tU8vmHQB1fZQoaAZoCWgPQwhBnfLoRrdwQJSGlFKUaBVNIQZoFkdAry43C/GlynV9lChoBmgJaA9DCCxmhLdH2XBAlIaUUpRoFU0BBmgWR0CvLw6uGKyfdX2UKGgGaAloD0MIK2nFN1S+cECUhpRSlGgVTScGaBZHQK8xXLA57w91fZQoaAZoCWgPQwg6lQwAVaRwQJSGlFKUaBVNJAZoFkdArzJES/TLGXV9lChoBmgJaA9DCEg0gSIWenBAlIaUUpRoFU02BmgWR0CvMt7hm5DrdX2UKGgGaAloD0MIY3st6P2ccECUhpRSlGgVTRQGaBZHQK801Iwudwx1fZQoaAZoCWgPQwiWXMXid51wQJSGlFKUaBVNDQZoFkdArzUnz6JqI3V9lChoBmgJaA9DCA7Y1eRpz3BAlIaUUpRoFU33BWgWR0CvNeX7k4m1dWUu"
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
+ "_n_updates": 920,
84
  "n_steps": 2048,
85
  "gamma": 0.999,
86
  "gae_lambda": 0.95,
ppo_walker/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a169921e81ea08e7d0dbece14c022c808f44c628da2fa8fc92ed3e59f072aab7
3
  size 105008
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:724e453e74ab12a9072c2bc28ad9d11675a7199879545b6b5efcab4e1198638a
3
  size 105008
ppo_walker/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fbe160d9f3b71686082a3e00c544f38fc7d52f71888cd9feeb1b8fef2ded84df
3
  size 51710
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45231a8b8567631de1293ab639b9f90c33eb2263f90b0b51a50ddae0376dafe7
3
  size 51710
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 105.66298329838783, "std_reward": 93.67651232104464, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T06:55:59.220733"}
 
1
+ {"mean_reward": 297.59063424319163, "std_reward": 2.1406722304440957, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T08:14:33.287527"}