hate-phi
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
Loss: 0.3268
Classification Report: precision recall f1-score support
0 0.57 0.08 0.14 438 1 0.91 0.97 0.93 5755 2 0.80 0.79 0.80 1242
accuracy 0.89 7435 macro avg 0.76 0.61 0.62 7435
weighted avg 0.87 0.89 0.87 7435
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Classification Report |
---|---|---|---|---|
0.8106 | 0.37 | 25 | 0.4551 | precision recall f1-score support |
0 0.18 0.03 0.04 438
1 0.85 0.97 0.91 5755
2 0.75 0.46 0.57 1242
accuracy 0.83 7435
macro avg 0.59 0.49 0.51 7435 weighted avg 0.79 0.83 0.80 7435 | | 0.3677 | 0.74 | 50 | 0.3374 | precision recall f1-score support
0 0.51 0.09 0.16 438
1 0.91 0.95 0.93 5755
2 0.77 0.83 0.80 1242
accuracy 0.88 7435
macro avg 0.73 0.63 0.63 7435 weighted avg 0.87 0.88 0.87 7435 |
Framework versions
- PEFT 0.11.1
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 2
Model tree for datafreak/hate-phi
Base model
microsoft/phi-2