File size: 3,365 Bytes
a6ad6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440a6e6
a6ad6ce
 
440a6e6
 
 
a6ad6ce
440a6e6
 
 
a6ad6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440a6e6
a6ad6ce
440a6e6
 
 
a6ad6ce
440a6e6
 
 
a6ad6ce
440a6e6
a6ad6ce
440a6e6
 
 
a6ad6ce
440a6e6
 
 
a6ad6ce
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: hate-phi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hate-phi

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3268
- Classification Report:               precision    recall  f1-score   support

           0       0.57      0.08      0.14       438
           1       0.91      0.97      0.93      5755
           2       0.80      0.79      0.80      1242

    accuracy                           0.89      7435
   macro avg       0.76      0.61      0.62      7435
weighted avg       0.87      0.89      0.87      7435


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Classification Report                                                                                                                                                                                                                                                                                                                                                                        |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 0.8106        | 0.37  | 25   | 0.4551          |               precision    recall  f1-score   support

           0       0.18      0.03      0.04       438
           1       0.85      0.97      0.91      5755
           2       0.75      0.46      0.57      1242

    accuracy                           0.83      7435
   macro avg       0.59      0.49      0.51      7435
weighted avg       0.79      0.83      0.80      7435
 |
| 0.3677        | 0.74  | 50   | 0.3374          |               precision    recall  f1-score   support

           0       0.51      0.09      0.16       438
           1       0.91      0.95      0.93      5755
           2       0.77      0.83      0.80      1242

    accuracy                           0.88      7435
   macro avg       0.73      0.63      0.63      7435
weighted avg       0.87      0.88      0.87      7435
 |


### Framework versions

- PEFT 0.11.1
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2