adalbertojunior's picture
Update README.md
8b12255 verified
|
raw
history blame
3.79 kB
metadata
library_name: transformers
base_model: models/distill-robertalex-3L-trained
tags:
  - generated_from_trainer
datasets:
  - adalbertojunior/entities
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test_v6
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: adalbertojunior/entities
          type: adalbertojunior/entities
          config: segmentacao
          split: validation
          args: segmentacao
        metrics:
          - name: Precision
            type: precision
            value: 0.7678083439606486
          - name: Recall
            type: recall
            value: 0.8550415905863258
          - name: F1
            type: f1
            value: 0.8090804377039739
          - name: Accuracy
            type: accuracy
            value: 0.9699217442249749

test_v6

This model is a fine-tuned version of models/distill-robertalex-3L-trained on the adalbertojunior/entities dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1536
  • Precision: 0.7678
  • Recall: 0.8550
  • F1: 0.8091
  • Accuracy: 0.9699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0925 19.3898 7000 0.1536 0.7678 0.8550 0.8091 0.9699

Test set results

Label Precision Recall F1-Score Support
ATRIBUICAO 0.82 0.82 0.82 221
DECISAO 0.81 0.82 0.82 544
FUNCAO 0.94 0.89 0.91 486
FUNDAMENTO 0.89 0.83 0.86 1501
LOCAL 0.85 0.84 0.85 245
ORGANIZACAO 0.90 0.86 0.88 626
PEDIDO 0.86 0.81 0.83 4341
PESSOA 0.95 0.94 0.95 654
REFLEXO 0.85 0.84 0.85 358
TIPO_ACAO 0.93 0.89 0.91 341
TRIBUNAL 0.96 0.92 0.94 190
VALOR_ACORDO 0.91 0.71 0.79 41
VALOR_CAUSA 0.89 0.92 0.90 62
VALOR_CONDENACAO 0.89 0.76 0.82 72
VALOR_CUSTAS 0.95 0.93 0.94 134
VALOR_PEDIDO 0.94 0.81 0.87 308
VARA 0.95 0.96 0.96 81
micro avg 0.88 0.84 0.86 10205
macro avg 0.90 0.86 0.88 10205
weighted avg 0.88 0.84 0.86 10205

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.21.0