metadata
library_name: transformers
base_model: models/distill-robertalex-3L-trained
tags:
- generated_from_trainer
datasets:
- adalbertojunior/entities
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test_v6
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: adalbertojunior/entities
type: adalbertojunior/entities
config: segmentacao
split: validation
args: segmentacao
metrics:
- name: Precision
type: precision
value: 0.7678083439606486
- name: Recall
type: recall
value: 0.8550415905863258
- name: F1
type: f1
value: 0.8090804377039739
- name: Accuracy
type: accuracy
value: 0.9699217442249749
test_v6
This model is a fine-tuned version of models/distill-robertalex-3L-trained on the adalbertojunior/entities dataset. It achieves the following results on the evaluation set:
- Loss: 0.1536
- Precision: 0.7678
- Recall: 0.8550
- F1: 0.8091
- Accuracy: 0.9699
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0925 | 19.3898 | 7000 | 0.1536 | 0.7678 | 0.8550 | 0.8091 | 0.9699 |
Test set results
Label | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
ATRIBUICAO | 0.82 | 0.82 | 0.82 | 221 |
DECISAO | 0.81 | 0.82 | 0.82 | 544 |
FUNCAO | 0.94 | 0.89 | 0.91 | 486 |
FUNDAMENTO | 0.89 | 0.83 | 0.86 | 1501 |
LOCAL | 0.85 | 0.84 | 0.85 | 245 |
ORGANIZACAO | 0.90 | 0.86 | 0.88 | 626 |
PEDIDO | 0.86 | 0.81 | 0.83 | 4341 |
PESSOA | 0.95 | 0.94 | 0.95 | 654 |
REFLEXO | 0.85 | 0.84 | 0.85 | 358 |
TIPO_ACAO | 0.93 | 0.89 | 0.91 | 341 |
TRIBUNAL | 0.96 | 0.92 | 0.94 | 190 |
VALOR_ACORDO | 0.91 | 0.71 | 0.79 | 41 |
VALOR_CAUSA | 0.89 | 0.92 | 0.90 | 62 |
VALOR_CONDENACAO | 0.89 | 0.76 | 0.82 | 72 |
VALOR_CUSTAS | 0.95 | 0.93 | 0.94 | 134 |
VALOR_PEDIDO | 0.94 | 0.81 | 0.87 | 308 |
VARA | 0.95 | 0.96 | 0.96 | 81 |
micro avg | 0.88 | 0.84 | 0.86 | 10205 |
macro avg | 0.90 | 0.86 | 0.88 | 10205 |
weighted avg | 0.88 | 0.84 | 0.86 | 10205 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.0.1
- Tokenizers 0.21.0