|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- adalbertojunior/entities |
|
model-index: |
|
- name: test_v4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test_v4 |
|
|
|
This model is a fine-tuned version of [./models/entities/test_v4](https://huggingface.co/./models/entities/test_v4) on the adalbertojunior/entities dataset. |
|
It achieves the following results on the evaluation set: |
|
- eval_loss: 0.1648 |
|
- eval_model_preparation_time: 0.0009 |
|
- eval_precision: 0.8411 |
|
- eval_recall: 0.8900 |
|
- eval_f1: 0.8649 |
|
- eval_accuracy: 0.9744 |
|
- eval_runtime: 177.3832 |
|
- eval_samples_per_second: 27.962 |
|
- eval_steps_per_second: 27.962 |
|
- step: 0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20.0 |
|
|
|
### Testset Results |
|
|
|
| Label | Precision | Recall | F1-Score | Support | |
|
|---------------------|-----------|--------|----------|---------| |
|
| ATRIBUICAO | 0.82 | 0.82 | 0.82 | 221 | |
|
| DECISAO | 0.81 | 0.82 | 0.82 | 544 | |
|
| FUNCAO | 0.94 | 0.89 | 0.91 | 486 | |
|
| FUNDAMENTO | 0.89 | 0.83 | 0.86 | 1501 | |
|
| LOCAL | 0.85 | 0.84 | 0.85 | 245 | |
|
| ORGANIZACAO | 0.90 | 0.86 | 0.88 | 626 | |
|
| PEDIDO | 0.86 | 0.81 | 0.83 | 4341 | |
|
| PESSOA | 0.95 | 0.94 | 0.95 | 654 | |
|
| REFLEXO | 0.85 | 0.84 | 0.85 | 358 | |
|
| TIPO_ACAO | 0.93 | 0.89 | 0.91 | 341 | |
|
| TRIBUNAL | 0.96 | 0.92 | 0.94 | 190 | |
|
| VALOR_ACORDO | 0.91 | 0.71 | 0.79 | 41 | |
|
| VALOR_CAUSA | 0.89 | 0.92 | 0.90 | 62 | |
|
| VALOR_CONDENACAO | 0.89 | 0.76 | 0.82 | 72 | |
|
| VALOR_CUSTAS | 0.95 | 0.93 | 0.94 | 134 | |
|
| VALOR_PEDIDO | 0.94 | 0.81 | 0.87 | 308 | |
|
| VARA | 0.95 | 0.96 | 0.96 | 81 | |
|
| **micro avg** | 0.88 | 0.84 | 0.86 | 10205 | |
|
| **macro avg** | 0.90 | 0.86 | 0.88 | 10205 | |
|
| **weighted avg** | 0.88 | 0.84 | 0.86 | 10205 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.21.0 |
|
|