test_crf
This model is a fine-tuned version of BAAI/bge-m3-retromae on the adalbertojunior/segmentacao dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0063
- eval_model_preparation_time: 0.0032
- eval_precision: 0.6294
- eval_recall: 0.6832
- eval_f1: 0.6552
- eval_accuracy: 0.9989
- eval_runtime: 12.8447
- eval_samples_per_second: 3.893
- eval_steps_per_second: 3.893
- step: 0
Usage
from transformers import pipeline
segmenter = pipeline("ner", model="./models/test_crf_v2", aggregation_strategy="simple", device=0)
entities = segmenter(text)
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 11
Model tree for datalawyer/segmenter-v0.1
Base model
BAAI/bge-m3-retromae