test_crf

This model is a fine-tuned version of BAAI/bge-m3-retromae on the adalbertojunior/segmentacao dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.0063
  • eval_model_preparation_time: 0.0032
  • eval_precision: 0.6294
  • eval_recall: 0.6832
  • eval_f1: 0.6552
  • eval_accuracy: 0.9989
  • eval_runtime: 12.8447
  • eval_samples_per_second: 3.893
  • eval_steps_per_second: 3.893
  • step: 0

Usage

from transformers import pipeline
segmenter = pipeline("ner", model="./models/test_crf_v2", aggregation_strategy="simple", device=0)
entities = segmenter(text)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.0

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
567M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for datalawyer/segmenter-v0.1

Finetuned
(2)
this model