hifi-kpi-lite / README.md
rasmus-aau's picture
Update README.md
ddf1e03 verified
---
tags:
- financial NLP
- named entity recognition
- XBRL
task_categories:
- token-classification
- text-classification
task_ids:
- named-entity-recognition
pretty_name: "HiFi-KPI Lite: Expert-Curated Financial KPI Extraction"
dataset_name: "HiFi-KPI Lite"
size_categories:
- 10K<n<100K
language:
- en
---
# HiFi-KPI Lite: Expert-Curated Financial KPI Extraction
## Dataset Summary
HiFi-KPI Lite is a manually curated subset of the HiFi-KPI dataset, designed for evaluating structured financial KPI extraction. Unlike the full **[HiFi-KPI dataset](https://huggingface.co/datasets/AAU-NLP/HiFi-KPI)**, HiFi-KPI Lite maps financial entities to a much reduced, expert-defined label space. The dataset consists of **∼8K paragraphs** and **∼25K entities**, making it suitable for rapid model evaluation.
## Supported Tasks
The dataset is optimized for:
- **Named Entity Recognition (NER)**: Identifying financial KPIs from text.
- **Structured Data Extraction**: Extracting numerical values, currencies, and corresponding time periods from financial statements.
- **Text Classification**: Associating financial statements with expert-mapped KPI labels.
## Languages
The dataset is in **English**, sourced from SEC 10-K and 10-Q filings.
## Dataset Structure
### Data Fields
Each entry in HiFi-KPI Lite includes:
- **form_type**: "10-K" or "10-Q"
- **accession_number**: Unique filing identifier
- **filing_date**: Timestamp of the filing
- **company_name**: Name of the reporting entity
- **text**: Extracted paragraph from the filing
- **entities** (list of extracted entities):
- **label**: Expert-defined financial KPI category(Ebit, revnues ..)
- **start_date_for_period** / **end_date_for_period**: Time period of the financial figure
- **currency/unit**: Currency (e.g., USD, EUR)
- **value**: Extracted numerical figure
### Dataset Statistics
| Split | # Paragraphs | # Entities |
|--------|------------|------------|
| Train | 6,359 | 19,749 |
| Dev | 768 | 2,601 |
| Test | 856 | 2,437 |
## Baseline Model Performance
We establish baselines using:
- **Sequence Labeling**: fine-tuning **BERT (bert-base-uncased)** with a token classification head.
- **LLM-based Structured Extraction**: Few-shot prompting for **NuExtract, Qwen-2.5-14B, and DeepSeek-V3**.
### Macro F1 Performance on HiFi-KPI Lite
| Model | Precision | Recall | Micro F1 |
|---------------|----------|--------|----------|
| [BERT (SL)](https://huggingface.co/AAU-NLP/Lite-BERT-SL) | 89.2 | 91.8 | 89.1 |
| Qwen-2.5-14B | 63.7 | 60.2 | 49.5 |
| DeepSeek-V3 | 67.8 | 65.9 | 46.4 |
## Uses and Applications
HiFi-KPI Lite is useful for:
- **Benchmarking KPI Extraction**: Evaluating model performance on structured financial data extraction.
- **Fine-Grained Financial NLP Tasks**: Training models on structured financial entity recognition.
- **Evaluation of Large Language Models (LLMs)**: Testing how well LLMs generalize to financial entity extraction.
## Citation
If you use HiFi-KPI Lite in your research, please cite:
```
@article{aavang2025hifi,
title={HiFi-KPI: A Dataset for Hierarchical KPI Extraction from Earnings Filings},
author={Aavang, Rasmus and Rizzi, Giovanni and Bøggild, Rasmus and Iolov, Alexandre and Zhang, Mike and Bjerva, Johannes},
journal={arXiv preprint arXiv:2502.15411},
year={2025}
}
```
## Access
Example code and repo with links to all models at [GitHub Repository](https://github.com/rasmus393/HiFi-KPI)