File size: 8,422 Bytes
07ffa4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d337a9
07ffa4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
084120a
07ffa4b
 
084120a
07ffa4b
 
 
 
 
 
 
beed4ec
07ffa4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
084120a
 
e34bd4b
 
 
07ffa4b
 
 
 
 
 
 
084120a
 
e34bd4b
 
07ffa4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5082a90
07ffa4b
5082a90
07ffa4b
 
 
 
 
 
 
 
5082a90
e34bd4b
5082a90
07ffa4b
084120a
 
 
 
e34bd4b
 
 
084120a
07ffa4b
 
 
 
 
 
e34bd4b
07ffa4b
 
e34bd4b
 
5082a90
 
 
e34bd4b
 
07ffa4b
 
 
 
 
 
084120a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from typing import List

import datasets
import fsspec
import h5py
import numpy as np

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {NCEDC dataset for QuakeFlow},
author={Zhu et al.},
year={2023}
}
"""

_DESCRIPTION = """\
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.
"""

_HOMEPAGE = ""

_LICENSE = ""

_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_demo/resolve/main/data"
_FILES = ["1990.h5"]
_URLS = {
    "station": [f"{_REPO}/{x}" for x in _FILES],
    "event": [f"{_REPO}/{x}" for x in _FILES],
    "station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
    "event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
    "station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
    "event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
}


class BatchBuilderConfig(datasets.BuilderConfig):
    """
    yield a batch of event-based sample, so the number of sample stations can vary among batches
    Batch Config for QuakeFlow_NC
    :param batch_size: number of samples in a batch
    :param num_stations_list: possible number of stations in a batch
    """

    def __init__(self, batch_size: int, num_stations: List, **kwargs):
        super().__init__(**kwargs)
        self.batch_size = batch_size
        self.num_stations = num_stations


class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
    """QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""

    VERSION = datasets.Version("1.1.0")

    nt = 12000
    sampling_rate = 100.0

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="station", version=VERSION, description="yield station-based samples one by one of whole dataset"
        ),
        datasets.BuilderConfig(
            name="event", version=VERSION, description="yield event-based samples one by one of whole dataset"
        ),
        datasets.BuilderConfig(
            name="station_train",
            version=VERSION,
            description="yield station-based samples one by one of training dataset",
        ),
        datasets.BuilderConfig(
            name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset"
        ),
        datasets.BuilderConfig(
            name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset"
        ),
        datasets.BuilderConfig(
            name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset"
        ),
    ]

    DEFAULT_CONFIG_NAME = "station_test"

    def _info(self):
        if (
            (self.config.name == "station")
            or (self.config.name == "station_train")
            or (self.config.name == "station_test")
        ):
            features = datasets.Features(
                {
                    "data": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
                    "event_id": datasets.Value("string"),
                    "station_id": datasets.Value("string"),
                    "phase_type": datasets.Sequence(datasets.Value("string")),
                    "phase_index": datasets.Sequence(datasets.Value("int32")),
                    "snr": datasets.Sequence(datasets.Value("float32")),
                }
            )

        elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
            features = datasets.Features(
                {
                    "data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
                    "event_id": datasets.Value("string"),
                    "station_ids": datasets.Sequence(datasets.Value("string")),
                    "phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                    "phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        files = dl_manager.download_and_extract(urls)
        print(files)

        if self.config.name == "station" or self.config.name == "event":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": files[:-1],
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": files[-1:], "split": "test"},
                ),
            ]
        elif self.config.name == "station_train" or self.config.name == "event_train":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": files,
                        "split": "train",
                    },
                ),
            ]
        elif self.config.name == "station_test" or self.config.name == "event_test":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": files, "split": "test"},
                ),
            ]
        else:
            raise ValueError("config.name is not in BUILDER_CONFIGS")

    def _generate_examples(self, filepath, split):
        for file in filepath:
            with fsspec.open(file, "rb") as fs:
                with h5py.File(fs, "r") as fp:
                    for event_id in sorted(list(fp.keys())):
                        event = fp[event_id]
                        event_attrs = event.attrs
                        station_ids = list(event.keys())
                        if (
                            (self.config.name == "station")
                            or (self.config.name == "station_train")
                            or (self.config.name == "station_test")
                        ):
                            waveforms = np.zeros([3, self.nt], dtype="float32")

                            for i, station_id in enumerate(station_ids):
                                station_attrs = event[station_id].attrs
                                waveforms[:, : self.nt] = event[station_id][:, : self.nt]

                                yield f"{event_id}/{station_id}", {
                                    "data": waveforms,
                                    "event_id": event_id,
                                    "station_id": station_id,
                                    "phase_type": station_attrs["phase_type"],
                                    "phase_index": station_attrs["phase_index"],
                                    "snr": station_attrs["snr"],
                                }

                        elif (
                            (self.config.name == "event")
                            or (self.config.name == "event_train")
                            or (self.config.name == "event_test")
                        ):
                            station_attrs = event[station_id].attrs
                            waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")

                            phase_type = []
                            phase_index = []
                            for i, station_id in enumerate(station_ids):
                                waveforms[i, :, :] = event[station_id][:, : self.nt]
                                station_attrs = event[station_id].attrs
                                phase_type.append(station_attrs["phase_type"])
                                phase_index.append(station_attrs["phase_index"])

                            std = np.std(waveforms, axis=1, keepdims=True)
                            std[std == 0] = 1.0
                            waveforms = (waveforms - np.mean(waveforms, axis=1, keepdims=True)) / std
                            waveforms = waveforms.astype(np.float32)

                            yield event_id, {"data": waveforms, "event_id": event_id, "station_ids": station_ids}