Datasets:
ArXiv:
DOI:
License:
File size: 6,199 Bytes
a0d9759 d5333b8 de7f72c 8a1a19e 1b469e8 8a1a19e bef61de 1b469e8 d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c d5333b8 de7f72c 4023dde d5333b8 2fa7223 d5333b8 2fa7223 de7f72c 4023dde de7f72c 2fa7223 de7f72c 4023dde de7f72c d5333b8 de7f72c 2fa7223 d5333b8 2fa7223 de7f72c 2fa7223 de7f72c 2fa7223 de7f72c d5333b8 2fa7223 4023dde d5333b8 de7f72c d5333b8 4023dde d5333b8 4023dde d5333b8 4023dde 2fa7223 d5333b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
license: mit
---
# Quakeflow_NC
## Introduction
This dataset is part of the data (1970-2020) from [NCEDC (Northern California Earthquake Data Center)](https://ncedc.org/index.html) and is organized as several HDF5 files. The dataset structure is shown below, and you can find more information about the format at [AI4EPS](https://ai4eps.github.io/homepage/ml4earth/seismic_event_format1/))
Cite the NCEDC and PhaseNet:
Zhu, W., & Beroza, G. C. (2018). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. arXiv preprint arXiv:1803.03211.
NCEDC (2014), Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/NCEDC.
Acknowledge the NCEDC:
Waveform data, metadata, or data products for this study were accessed through the Northern California Earthquake Data Center (NCEDC), doi:10.7932/NCEDC.
```
Group: / len:16227
|- Group: /nc71111584 len:2
| |-* begin_time = 2020-01-02T07:01:19.620
| |-* depth_km = 3.69
| |-* end_time = 2020-01-02T07:03:19.620
| |-* event_id = nc71111584
| |-* event_time = 2020-01-02T07:01:48.240
| |-* event_time_index = 2862
| |-* latitude = 37.6545
| |-* longitude = -118.8798
| |-* magnitude = -0.15
| |-* magnitude_type = D
| |-* num_stations = 2
| |- Dataset: /nc71111584/NC.MCB..HH (shape:(3, 12000))
| | |- (dtype=float32)
| | | |-* azimuth = 233.0
| | | |-* component = ['E' 'N' 'Z']
| | | |-* distance_km = 1.9
| | | |-* dt_s = 0.01
| | | |-* elevation_m = 2391.0
| | | |-* emergence_angle = 159.0
| | | |-* event_id = ['nc71111584' 'nc71111584']
| | | |-* latitude = 37.6444
| | | |-* location =
| | | |-* longitude = -118.8968
| | | |-* network = NC
| | | |-* phase_index = [3000 3101]
| | | |-* phase_polarity = ['U' 'N']
| | | |-* phase_remark = ['IP' 'ES']
| | | |-* phase_score = [1 2]
| | | |-* phase_time = ['2020-01-02T07:01:49.620' '2020-01-02T07:01:50.630']
| | | |-* phase_type = ['P' 'S']
| | | |-* snr = [2.82143 3.055604 1.8412642]
| | | |-* station = MCB
| | | |-* unit = 1e-6m/s
| |- Dataset: /nc71111584/NC.MCB..HN (shape:(3, 12000))
| | |- (dtype=float32)
| | | |-* azimuth = 233.0
| | | |-* component = ['E' 'N' 'Z']
......
```
## How to use
### Requirements
- datasets
- h5py
- fsspec
- pytorch
### Usage
Import the necessary packages:
```python
import h5py
import numpy as np
import torch
from datasets import load_dataset
```
We have 6 configurations for the dataset:
- "station"
- "event"
- "station_train"
- "event_train"
- "station_test"
- "event_test"
"station" yields station-based samples one by one, while "event" yields event-based samples one by one. The configurations with no suffix are the full dataset, while the configurations with suffix "_train" and "_test" only have corresponding split of the full dataset. Train split contains data from 1970 to 2019, while test split contains data in 2020.
The sample of `station` is a dictionary with the following keys:
- `data`: the waveform with shape `(3, nt)`, the default time length is 8192
- `begin_time`: the begin time of the waveform data
- `end_time`: the end time of the waveform data
- `phase_time`: the phase arrival time
- `phase_index`: the time point index of the phase arrival time
- `phase_type`: the phase type
- `phase_polarity`: the phase polarity in ('U', 'D', 'N')
- `event_time`: the event time
- `event_time_index`: the time point index of the event time
- `event_location`: the event location with shape `(3,)`, including latitude, longitude, depth
- `station_location`: the station location with shape `(3,)`, including latitude, longitude and depth
The sample of `event` is a dictionary with the following keys:
- `data`: the waveform with shape `(n_station, 3, nt)`, the default time length is 8192
- `begin_time`: the begin time of the waveform data
- `end_time`: the end time of the waveform data
- `phase_time`: the phase arrival time with shape `(n_station,)`
- `phase_index`: the time point index of the phase arrival time with shape `(n_station,)`
- `phase_type`: the phase type with shape `(n_station,)`
- `phase_polarity`: the phase polarity in ('U', 'D', 'N') with shape `(n_station,)`
- `event_time`: the event time
- `event_time_index`: the time point index of the event time
- `event_location`: the space-time coordinates of the event with shape `(n_staion, 3)`
- `station_location`: the space coordinates of the station with shape `(n_station, 3)`, including latitude, longitude and depth
The default configuration is `station_test`. You can specify the configuration by argument `name`. For example:
```python
# load dataset
# ATTENTION: Streaming(Iterable Dataset) is difficult to support because of the feature of HDF5
# So we recommend to directly load the dataset and convert it into iterable later
# The dataset is very large, so you need to wait for some time at the first time
# to load "station_test" with test split
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", split="test")
# or
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
# to load "event" with train split
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="event", split="train")
```
#### Example loading the dataset
```python
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
# print the first sample of the iterable dataset
for example in quakeflow_nc:
print("\nIterable test\n")
print(example.keys())
for key in example.keys():
if key == "data":
print(key, np.array(example[key]).shape)
else:
print(key, example[key])
break
# %%
quakeflow_nc = quakeflow_nc.with_format("torch")
dataloader = DataLoader(quakeflow_nc, batch_size=8, num_workers=0, collate_fn=lambda x: x)
for batch in dataloader:
print("\nDataloader test\n")
print(f"Batch size: {len(batch)}")
print(batch[0].keys())
for key in batch[0].keys():
if key == "data":
print(key, np.array(batch[0][key]).shape)
else:
print(key, batch[0][key])
break
``` |