Datasets:

ArXiv:
DOI:
License:

seismic network update

#2
by kylewhy - opened
Files changed (3) hide show
  1. README.md +130 -0
  2. ncedc_event_dataset_000.h5.txt +0 -0
  3. quakeflow_nc.py +71 -14
README.md CHANGED
@@ -1,3 +1,133 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # Quakeflow_NC
6
+
7
+ ## Introduction
8
+ This dataset is part of the data from NCEDC (Northern California Earthquake Data Center) and is organised as several HDF5 files. The dataset structure is shown below: (File [ncedc_event_dataset_000.h5.txt](./ncedc_event_dataset_000.h5.txt) shows the structure of the firsr shard of the dataset, and you can find more information about the format at [AI4EPS](https://ai4eps.github.io/homepage/ml4earth/seismic_event_format1/))
9
+
10
+ ```
11
+ Group: / len:10000
12
+ |- Group: /nc100012 len:5
13
+ | |-* begin_time = 1987-05-08T00:15:48.890
14
+ | |-* depth_km = 7.04
15
+ | |-* end_time = 1987-05-08T00:17:48.890
16
+ | |-* event_id = nc100012
17
+ | |-* event_time = 1987-05-08T00:16:14.700
18
+ | |-* event_time_index = 2581
19
+ | |-* latitude = 37.5423
20
+ | |-* longitude = -118.4412
21
+ | |-* magnitude = 1.1
22
+ | |-* magnitude_type = D
23
+ | |-* num_stations = 5
24
+ | |- Dataset: /nc100012/NC.MRS..EH (shape:(3, 12000))
25
+ | | |- (dtype=float32)
26
+ | | | |-* azimuth = 265.0
27
+ | | | |-* component = ['Z']
28
+ | | | |-* distance_km = 39.1
29
+ | | | |-* dt_s = 0.01
30
+ | | | |-* elevation_m = 3680.0
31
+ | | | |-* emergence_angle = 93.0
32
+ | | | |-* event_id = ['nc100012' 'nc100012']
33
+ | | | |-* latitude = 37.5107
34
+ | | | |-* location =
35
+ | | | |-* longitude = -118.8822
36
+ | | | |-* network = NC
37
+ | | | |-* phase_index = [3274 3802]
38
+ | | | |-* phase_polarity = ['U' 'N']
39
+ | | | |-* phase_remark = ['IP' 'S']
40
+ | | | |-* phase_score = [1 1]
41
+ | | | |-* phase_time = ['1987-05-08T00:16:21.630' '1987-05-08T00:16:26.920']
42
+ | | | |-* phase_type = ['P' 'S']
43
+ | | | |-* snr = [0. 0. 1.98844361]
44
+ | | | |-* station = MRS
45
+ | | | |-* unit = 1e-6m/s
46
+ | |- Dataset: /nc100012/NN.BEN.N1.EH (shape:(3, 12000))
47
+ | | |- (dtype=float32)
48
+ | | | |-* azimuth = 329.0
49
+ | | | |-* component = ['Z']
50
+ | | | |-* distance_km = 22.5
51
+ | | | |-* dt_s = 0.01
52
+ | | | |-* elevation_m = 2476.0
53
+ | | | |-* emergence_angle = 102.0
54
+ | | | |-* event_id = ['nc100012' 'nc100012']
55
+ | | | |-* latitude = 37.7154
56
+ | | | |-* location = N1
57
+ | | | |-* longitude = -118.5741
58
+ | | | |-* network = NN
59
+ | | | |-* phase_index = [3010 3330]
60
+ | | | |-* phase_polarity = ['U' 'N']
61
+ | | | |-* phase_remark = ['IP' 'S']
62
+ | | | |-* phase_score = [0 0]
63
+ | | | |-* phase_time = ['1987-05-08T00:16:18.990' '1987-05-08T00:16:22.190']
64
+ | | | |-* phase_type = ['P' 'S']
65
+ | | | |-* snr = [0. 0. 7.31356192]
66
+ | | | |-* station = BEN
67
+ | | | |-* unit = 1e-6m/s
68
+ ......
69
+ ```
70
+
71
+ ## How to use
72
+
73
+ ### Requirements
74
+ - datasets
75
+ - h5py
76
+ - torch (for PyTorch)
77
+
78
+ ### Usage
79
+ ```python
80
+ import h5py
81
+ import numpy as np
82
+ import torch
83
+ from torch.utils.data import Dataset, IterableDataset, DataLoader
84
+ from datasets import load_dataset
85
+
86
+ # load dataset
87
+ # ATTENTION: Streaming(Iterable Dataset) is difficult to support because of the feature of HDF5
88
+ # So we recommend to directly load the dataset and convert it into iterable later
89
+ # The dataset is very large, so you need to wait for some time at the first time
90
+ quakeflow_nc = datasets.load_dataset("AI4EPS/quakeflow_nc", split="train")
91
+ quakeflow_nc
92
+ ```
93
+ If you want to use the first several shards of the dataset, you can download the script `quakeflow_nc.py` and change the code below:
94
+ ```python
95
+ # change the 37 to the number of shards you want
96
+ _URLS = {
97
+ "NCEDC": [f"{_REPO}/ncedc_event_dataset_{i:03d}.h5" for i in range(37)]
98
+ }
99
+ ```
100
+ Then you can use the dataset like this:
101
+ ```python
102
+ quakeflow_nc = datasets.load_dataset("./quakeflow_nc.py", split="train")
103
+ quakeflow_nc
104
+ ```
105
+ Then you can change the dataset into PyTorch format iterable dataset, and view the first sample:
106
+ ```python
107
+ quakeflow_nc = quakeflow_nc.to_iterable_dataset()
108
+ quakeflow_nc = quakeflow_nc.with_format("torch")
109
+ # because add examples formatting to get tensors when using the "torch" format
110
+ # has not been implemented yet, we need to manually add the formatting
111
+ quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
112
+ try:
113
+ isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
114
+ except:
115
+ raise Exception("quakeflow_nc is not an IterableDataset")
116
+
117
+ # print the first sample of the iterable dataset
118
+ for example in quakeflow_nc:
119
+ print("\nIterable test\n")
120
+ print(example.keys())
121
+ for key in example.keys():
122
+ print(key, example[key].shape, example[key].dtype)
123
+ break
124
+
125
+ dataloader = DataLoader(quakeflow_nc, batch_size=4)
126
+
127
+ for batch in dataloader:
128
+ print("\nDataloader test\n")
129
+ print(batch.keys())
130
+ for key in batch.keys():
131
+ print(key, batch[key].shape, batch[key].dtype)
132
+ break
133
+ ```
ncedc_event_dataset_000.h5.txt ADDED
The diff for this file is too large to render. See raw diff
 
quakeflow_nc.py CHANGED
@@ -21,7 +21,11 @@ import csv
21
  import json
22
  import os
23
  import h5py
 
 
 
24
  from glob import glob
 
25
 
26
  import datasets
27
 
@@ -52,7 +56,7 @@ _LICENSE = ""
52
  # TODO: Add link to the official dataset URLs here
53
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
54
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
55
- _REPO = "https://huggingface.co/datasets/AI4EPS/QuakeFlow_NC/resolve/main/data"
56
  _URLS = {
57
  "NCEDC": [f"{_REPO}/ncedc_event_dataset_{i:03d}.h5" for i in range(37)]
58
  }
@@ -85,9 +89,10 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
85
  # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
86
  features=datasets.Features(
87
  {
88
- "event_id": datasets.Value("string"),
89
- "station_id": datasets.Value("string"),
90
- "waveform": datasets.Array2D(shape=(3, 12000), dtype="float32"),
 
91
  }
92
  )
93
  return datasets.DatasetInfo(
@@ -144,21 +149,73 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
144
  # },
145
  # ),
146
  ]
 
 
 
 
 
 
 
147
 
148
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
149
  def _generate_examples(self, filepath, split):
150
  # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
151
  # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
152
-
 
153
  for file in filepath:
154
  with h5py.File(file, "r") as fp:
155
- for event_id in sorted(list(fp.keys())):
 
156
  event = fp[event_id]
157
- for station_id in sorted(list(event.keys())):
158
- station = event[station_id]
159
- # print(f"{event_id = } {station_id = }")
160
- yield event_id + "_" + station_id, {
161
- "event_id": event_id,
162
- "station_id": station_id,
163
- "waveform": station[:],
164
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  import json
22
  import os
23
  import h5py
24
+ import numpy as np
25
+ import torch
26
+ import fsspec
27
  from glob import glob
28
+ from typing import Dict, List, Optional, Tuple, Union
29
 
30
  import datasets
31
 
 
56
  # TODO: Add link to the official dataset URLs here
57
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
58
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
59
+ _REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/data"
60
  _URLS = {
61
  "NCEDC": [f"{_REPO}/ncedc_event_dataset_{i:03d}.h5" for i in range(37)]
62
  }
 
89
  # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
90
  features=datasets.Features(
91
  {
92
+ "waveform": datasets.Array3D(shape=(3, self.nt, self.num_stations), dtype='float32'),
93
+ "phase_pick": datasets.Array3D(shape=(3, self.nt, self.num_stations), dtype='float32'),
94
+ "event_location": [datasets.Value("float32")],
95
+ "station_location": datasets.Array2D(shape=(self.num_stations, 3), dtype="float32"),
96
  }
97
  )
98
  return datasets.DatasetInfo(
 
149
  # },
150
  # ),
151
  ]
152
+
153
+ degree2km = 111.32
154
+ nt = 8192
155
+ feature_nt = 512
156
+ feature_scale = int(nt / feature_nt)
157
+ sampling_rate=100.0
158
+ num_stations = 10
159
 
160
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
161
  def _generate_examples(self, filepath, split):
162
  # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
163
  # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
164
+ num_stations = self.num_stations
165
+
166
  for file in filepath:
167
  with h5py.File(file, "r") as fp:
168
+ # for event_id in sorted(list(fp.keys())):
169
+ for event_id in fp.keys():
170
  event = fp[event_id]
171
+ station_ids = list(event.keys())
172
+ if len(station_ids) < num_stations:
173
+ continue
174
+ else:
175
+ station_ids = np.random.choice(station_ids, num_stations, replace=False)
176
+
177
+ waveforms = np.zeros([3, self.nt, len(station_ids)])
178
+ phase_pick = np.zeros_like(waveforms)
179
+ attrs = event.attrs
180
+ event_location = [attrs["longitude"], attrs["latitude"], attrs["depth_km"], attrs["event_time_index"]]
181
+ station_location = []
182
+
183
+ for i, sta_id in enumerate(station_ids):
184
+ # trace_id = event_id + "/" + sta_id
185
+
186
+ waveforms[:, :, i] = event[sta_id][:,:self.nt]
187
+ attrs = event[sta_id].attrs
188
+ p_picks = attrs["phase_index"][attrs["phase_type"] == "P"]
189
+ s_picks = attrs["phase_index"][attrs["phase_type"] == "S"]
190
+ phase_pick[:, :, i] = generate_label([p_picks, s_picks], nt=self.nt)
191
+
192
+ station_location.append([attrs["longitude"], attrs["latitude"], -attrs["elevation_m"]/1e3])
193
+
194
+ std = np.std(waveforms, axis=1, keepdims=True)
195
+ std[std == 0] = 1.0
196
+ waveforms = (waveforms - np.mean(waveforms, axis=1, keepdims=True)) / std
197
+ waveforms = waveforms.astype(np.float32)
198
+
199
+ yield event_id, {
200
+ "waveform": torch.from_numpy(waveforms).float(),
201
+ "phase_pick": torch.from_numpy(phase_pick).float(),
202
+ "event_location": event_location,
203
+ "station_location": station_location,
204
+ }
205
+
206
+
207
+
208
+ def generate_label(phase_list, label_width=[150, 150], nt=8192):
209
+
210
+ target = np.zeros([len(phase_list) + 1, nt], dtype=np.float32)
211
+
212
+ for i, (picks, w) in enumerate(zip(phase_list, label_width)):
213
+ for phase_time in picks:
214
+ t = np.arange(nt) - phase_time
215
+ gaussian = np.exp(-(t**2) / (2 * (w / 6) ** 2))
216
+ gaussian[gaussian < 0.1] = 0.0
217
+ target[i + 1, :] += gaussian
218
+
219
+ target[0:1, :] = np.maximum(0, 1 - np.sum(target[1:, :], axis=0, keepdims=True))
220
+
221
+ return target