Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
action
sequencelengths
6
6
observation.state
sequencelengths
6
6
timestamp
float64
0
4.4
task_index
int64
0
0
episode_index
int64
4
4
frame_index
int64
0
44
index
int64
62
106
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
4
0
62
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
4
1
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
4
2
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
4
3
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
4
4
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
4
5
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
4
6
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
4
7
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
4
8
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
4
9
71
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
4
10
72
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
4
11
73
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
4
12
74
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
4
13
75
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
4
14
76
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
4
15
77
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
4
16
78
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
4
17
79
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
4
18
80
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
4
19
81
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
4
20
82
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
4
21
83
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
4
22
84
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
4
23
85
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
4
24
86
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
4
25
87
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.6
0
4
26
88
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.7
0
4
27
89
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.8
0
4
28
90
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.9
0
4
29
91
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3
0
4
30
92
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.1
0
4
31
93
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.2
0
4
32
94
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.3
0
4
33
95
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.4
0
4
34
96
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.5
0
4
35
97
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.6
0
4
36
98
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.7
0
4
37
99
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.8
0
4
38
100
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.9
0
4
39
101
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4
0
4
40
102
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.1
0
4
41
103
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.2
0
4
42
104
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.3
0
4
43
105
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.4
0
4
44
106
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
4
0
62
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
4
1
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
4
2
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
4
3
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
4
4
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
4
5
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
4
6
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
4
7
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
4
8
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
4
9
71
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
4
10
72
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
4
11
73
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
4
12
74
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
4
13
75
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
4
14
76
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
4
15
77
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
4
16
78
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
4
17
79
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
4
18
80
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
4
19
81
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
4
20
82
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
4
21
83
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
4
22
84
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
4
23
85
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
4
24
86
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
4
25
87
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.6
0
4
26
88
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.7
0
4
27
89
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.8
0
4
28
90
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.9
0
4
29
91
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3
0
4
30
92
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.1
0
4
31
93
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.2
0
4
32
94
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.3
0
4
33
95
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.4
0
4
34
96
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.5
0
4
35
97
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.6
0
4
36
98
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.7
0
4
37
99
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.8
0
4
38
100
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.9
0
4
39
101
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4
0
4
40
102
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.1
0
4
41
103
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.2
0
4
42
104
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.3
0
4
43
105
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.4
0
4
44
106
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
4
0
62
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
4
1
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
4
2
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
4
3
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
4
4
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
4
5
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
4
6
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
4
7
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
4
8
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
4
9
71

example_dataset

This dataset was generated using a phospho dev kit.

This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.

Downloads last month
73