image
imagewidth (px)
20
14k
text
stringlengths
1
18.8k
S=\bigcup_{i=0}^{i_{0}}S_{i}.
\sum_{i=0}^{d-1}\beta_{i}f_{i}=0
\sum_{i=0}^{d-1}\beta_{i}f_{i}(w_{j})=0.
\sum_{i=0}^{m-1}\beta_{i}f_{\rho^{i}(q)}=0
a(n)=\xi_{m}^{e_{k:v}(n)},
C(x,y)=\sum_{m=0}^{c}C_{m}(x)y^{m},
\eta_{j}=\sum_{i=0}^{s_{0}-1}\omega^{jk^{i}}.
\prod_{j=0}^{q-1}C(x^{u_{j}},y)=\sum_{m=0}^{qc}D_{m}(x)y^{m}.
\displaystyle\sigma_{pn}(\lambda)
\sum_{m=0}^{qc}D_{m}(\omega)A(k^{ms}n;\omega)=0
\displaystyle x^{2^{s+1}-1}T\left(2^{s+1};\frac{1}{x}\right)
p=(T(2^{s_{0}};\omega))^{q},
1=\Phi_{r_{0}}(1)=|T(2^{s_{0}};\omega)|^{2},
(-1)^{s_{0}/2}=[\omega T(2^{s_{0}/2},\omega)]^{2}.
(\omega T(2^{s_{0}/2};\omega)-1)(\omega T(2^{s_{0}/2};\omega)+1)=0.
\displaystyle m_{ij}(k^{t+1};x)
M_{vw}=M_{v}M_{w}.
f(vw)=M_{v}f(w)
\displaystyle 0,n>1;
F(n;x)=[F_{0}(n;x),\ldots,F_{d-1}(n;x)]^{T}.
\displaystyle F(k^{u+t};x)
\displaystyle F^{R}(k^{u+t};x)
\displaystyle F_{i}(k^{u+1};x)
\displaystyle=\sum_{j=0}^{d-1}m_{ij}(x^{k^{u}})F_{j}(k^{u};x)
\displaystyle=\sum_{j=0}^{c}\widehat{m}_{ij}(x^{k^{u}})F_{j}(k^{u};x),
\widehat{F}(k^{u+t};x)=\widehat{M}(k^{t};x^{k^{u}})\widehat{F}(k^{u};x).
\widehat{F}(k^{ms};\omega)=\widehat{M}^{m}(k^{s};\omega)\widehat{F}(1;\omega).
\sum_{m=0}^{l}C_{m}(\omega)\widehat{F}(k^{ms};\omega)=0.
\sum_{m=0}^{l}C_{m}(\omega)\widehat{F}(k^{ms}n;\omega)=0.
\displaystyle\sigma_{p1}(\lambda)
\sum_{m=0}^{l}C_{m}(\omega)\widehat{F}^{R}(k^{ms}n;\omega)=0.
\rho(p,t)=(p+1\bmod{m},t).
f_{\rho(q)}=\xi_{m}f_{q},
\displaystyle\widehat{M}(k^{s};\omega)
\displaystyle\widehat{M}(k^{s};\omega^{k})
\sum_{m=0}^{qc}D_{m}(\omega)A(k^{ms}n;\omega)=0.
\displaystyle T(J_{\mu}(x/2)J_{\nu}(-x/2))
\displaystyle O^{q}(\kappa_{1},\kappa_{2})
\displaystyle O^{G}(\kappa_{1},\kappa_{2})
\displaystyle O^{q}_{\rm 5}(\kappa_{1},\kappa_{2})
\displaystyle\sigma_{1}(\lambda)\Theta(\lambda-Q);
\displaystyle O^{G}_{\rm 5}(\kappa_{1},\kappa_{2})
\displaystyle\frac{\langle p_{1}|O^{i}|p_{2}\rangle}{(i\tilde{x}p_{+})^{h_{i}}}
\displaystyle\langle p_{1}|O^{i}|p_{2}\rangle\cdot(\kappa_{-})^{h_{i}}
h_{q}=1,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}h_{G}=2~{}.
\displaystyle\mu^{2}\frac{d}{d\mu^{2}}O^{i}(\kappa_{1},\kappa_{2})
\displaystyle K^{qq}(\alpha_{1},\alpha_{2})
\displaystyle K^{qG}(\alpha_{1},\alpha_{2})
\displaystyle K^{Gq}(\alpha_{1},\alpha_{2})
\displaystyle K^{GG}(\alpha_{1},\alpha_{2})
\displaystyle C_{A}\left\{4(1-\alpha_{1}-\alpha_{2})+12\alpha_{1}\alpha_{2}\right.
\displaystyle\sigma_{h1}(\lambda)
\displaystyle\Delta K^{qq}(\alpha_{1},\alpha_{2})
\displaystyle K^{qq}(\alpha_{1},\alpha_{2}),
\displaystyle\Delta K^{qG}(\alpha_{1},\alpha_{2})
\displaystyle-2N_{f}T_{R}\kappa_{-}\left\{1-\alpha_{1}-\alpha_{2}\right\},
\displaystyle\Delta K^{Gq}(\alpha_{1},\alpha_{2})
\displaystyle\Delta K^{GG}(\alpha_{1},\alpha_{2})
\displaystyle K^{GG}(\alpha_{1},\alpha_{2})-12C_{A}\alpha_{1}\alpha_{2}~{}.
\displaystyle D\alpha
\displaystyle\mu^{2}\frac{d}{d\mu^{2}}G^{i}(z_{+},z_{-})
\displaystyle\Phi_{i}(t,\tau)
\displaystyle\sigma_{1}(\lambda)\Theta(Q-\lambda).
\displaystyle\int_{-\infty}^{+\infty}dz_{-}F_{i}(t-\tau z_{-},z_{-}),
\displaystyle F_{i}(z_{+},z_{-})
\displaystyle\mu^{2}\frac{d}{d\mu^{2}}\Phi^{i}(t,\tau)
\displaystyle V_{ext}^{ij}(t,t^{\prime},\tau)
\displaystyle V^{qq}_{ext}(t,t^{\prime},\tau)
\displaystyle V^{qG}_{ext}(t,t^{\prime},\tau)
\displaystyle V^{Gq}_{ext}(t,t^{\prime},\tau)
\displaystyle V^{GG}_{ext}(t,t^{\prime},\tau)
\displaystyle+\frac{1}{4\tau}\beta_{0}\delta(x-y)
\displaystyle\Delta V^{qq}_{ext}(t,t^{\prime},\tau)
\displaystyle\log(f(\epsilon_{\lambda n}(\lambda)))
\displaystyle\Delta V^{qG}_{ext}(t,t^{\prime},\tau)
\displaystyle\Delta V^{Gq}_{ext}(t,t^{\prime},\tau)
\displaystyle\Delta V^{GG}_{ext}(t,t^{\prime},\tau)
\displaystyle+\frac{1}{4\tau}\beta_{0}\delta(x-y),
\displaystyle V^{qq}(x,y)
\displaystyle C_{F}\left[\frac{x}{y}-\frac{1}{y}+\frac{1}{(y-x)_{+}}\right]
\displaystyle V^{qG}(x,y)
\displaystyle-2N_{f}T_{R}\frac{x}{y}\left[4(1-x)+\frac{1-2x}{y}\right]
\displaystyle V^{Gq}(x,y)
\displaystyle C_{F}\left[1-\frac{x^{2}}{y}\right]