text
stringlengths 65
488
| label
int64 0
1
|
---|---|
Gordon B. and Lewis J.\ D., Indecomposable higher Chow cycles on products of elliptic curves, J. Alg. Geom. 8 (1999), 543-567. Turkmen I.\ U., Regulator indecomposable cycles on a product of elliptic curves, Canad. Math. Bull. 56 (2013), no. 3, 640-646. | 1 |
Gordon B. and Lewis J.\ D., Indecomposable higher Chow cycles on products of elliptic curves, J. Alg. Geom. 8 (1999), 543-567. Chen X. and Lewis J.\ D., The Hodge-\({\mathcal{D}}\)-conjecture for \(K3\) and Abelian surfaces, J. Algebraic Geom. 14 (2005), no. 2, 213-240. | 1 |
Gordon B. and Lewis J.\ D., Indecomposable higher Chow cycles on products of elliptic curves, J. Alg. Geom. 8 (1999), 543-567. Angel, PL; Müller-Stach, S, The transcendental part of the regulator map for \({K}_1\) on a mirror family of K3-surfaces, Duke Math. J., 112, 581-598, (2002) | 0 |
Gordon B. and Lewis J.\ D., Indecomposable higher Chow cycles on products of elliptic curves, J. Alg. Geom. 8 (1999), 543-567. Chen, X., Doran, C., Kerr, M., Lewis, J.: Normal functions, Picard-Fuchs equations and elliptic fibrations on K3 surfaces. J. Reine Angew. Math (\textbf{to appear}) | 0 |
Mori, Shigefumi, On a hyperplane section theorem of Gurjar, Math. Ann., 0025-5831, 319, 3, 533-537, (2001) P. Nang and K. Takeuchi, Characteristic cycles of perverse sheaves and Milnor fibers, Math. Z. 249 (2005), 493-511. | 0 |
Goren, E. Z., \textit{on certain reduction problems concerning abelian surfaces}, Manuscripta Math., 94, 33-43, (1997) Zaytsev, Generalization of Deuring reduction theorem, J. Algebra 392 pp 97-- (2013) | 0 |
Goren, E. Z., \textit{on certain reduction problems concerning abelian surfaces}, Manuscripta Math., 94, 33-43, (1997) Sugiyama, K., On a generalization of Deuring's results, Finite Fields Appl., 26, 69-85, (2014) | 0 |
Goren, E. Z., \textit{on certain reduction problems concerning abelian surfaces}, Manuscripta Math., 94, 33-43, (1997) M. Streng, \textit{Computing Igusa class polynomials}, arXiv:0903.4766. | 0 |
Goren, E. Z., \textit{on certain reduction problems concerning abelian surfaces}, Manuscripta Math., 94, 33-43, (1997) DOI: 10.1016/j.jnt.2010.05.002 | 0 |
O. Porras, ''Rank varieties and their desingularizations,''J. Algebra,186, 677--723 (1996). M. Catalisano, A. Geramita, and A. Gimigliano, \textit{Ranks of tensors, secant varieties of Segre varieties and fat points}, Linear Algebra Appl., 355 (2002), pp. 263--285, . | 1 |
O. Porras, ''Rank varieties and their desingularizations,''J. Algebra,186, 677--723 (1996). V. Kanev, Chordal varieties of Veronese varieties and catalecticant matrices,J. Math. Sci. 94, (1999), 1114--1125. | 1 |
O. Porras, ''Rank varieties and their desingularizations,''J. Algebra,186, 677--723 (1996). Sam, S. V., Ideals of bounded rank symmetric tensors are generated in bounded degree, Invent. Math., 1-21, (2016), appeared online | 1 |
O. Porras, ''Rank varieties and their desingularizations,''J. Algebra,186, 677--723 (1996). J. V. Chipalkatti, Decomposable ternary cubics. Experiment. Math. 11 (2002), 69-80. Zbl1046.14500 MR1960301 | 0 |
O. Porras, ''Rank varieties and their desingularizations,''J. Algebra,186, 677--723 (1996). Chipalkatti, J.: The Waring loci of ternary quartics. Exp. math. 13, No. 1, 93-101 (2004) | 0 |
O. Porras, ''Rank varieties and their desingularizations,''J. Algebra,186, 677--723 (1996). DOI: 10.1081/AGB-120028789 | 0 |
O. Porras, ''Rank varieties and their desingularizations,''J. Algebra,186, 677--723 (1996). DOI: 10.1307/mmj/1049832900 | 0 |
Lombardi, H., Relecture constructive de la théorie d'artin-Schreier, Ann. pure appl. logic, 91, 59-92, (1998) Lombardi, H., Algèbre dynamique, espaces topologiques sans points et programme de Hilbert, Ann. Pure Appl. Logic, 137, 256-290, (2006) | 0 |
Lombardi, H., Relecture constructive de la théorie d'artin-Schreier, Ann. pure appl. logic, 91, 59-92, (1998) Coste, Michel; Lombardi, Henri; Roy, Marie-Françoise, Dynamical method in algebra: effective Nullstellensätze, Ann. Pure Appl. Logic, 111, 3, 203-256, (2001) | 1 |
Lombardi, H., Relecture constructive de la théorie d'artin-Schreier, Ann. pure appl. logic, 91, 59-92, (1998) Lombardi, H.; Quitté, C.; Yengui, I., Hidden constructions in abstract algebra (6) the theorem of maroscia, brewer and costa, J. pure appl. algebra, 212, 1575-1582, (2008) | 0 |
Lombardi, H., Relecture constructive de la théorie d'artin-Schreier, Ann. pure appl. logic, 91, 59-92, (1998) Lombardi, H., \textit{hidden constructions in abstract algebra. I. integral dependance}, Journal of Pure and Applied Algebra, 167, 259-267, (2002) | 0 |
Lombardi, H., Relecture constructive de la théorie d'artin-Schreier, Ann. pure appl. logic, 91, 59-92, (1998) A. Ellouz, H. Lombardi, I. Yengui, A constructive comparison between the rings R(X) and R\langleX\rangle and application to the Lequain-Simis induction theorem, J. Algebra (in press) | 0 |
Lombardi, H., Relecture constructive de la théorie d'artin-Schreier, Ann. pure appl. logic, 91, 59-92, (1998) F.-V. Kuhlmann, S. Kuhlmann, Explicit construction of exponential-logarithmic power series, preprint. | 0 |
G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Barnette, D.,An invertible non-polyhedral diagram. Israel J. Math.36 (1980), 86--96. | 0 |
G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. P. Mani: Spheres with few vertices. J. Comb. Theor. 13 (1972), 346--352 | 1 |
G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Kleinschmidt, P, Sphären mit wenigen ecken, Geom. Dedicata, 5, 307-320, (1976) | 1 |
G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Schulz, Ch.; An Invertible 3-Diagram with 8 Vertices, Discrete Math. 28 (1979), 201--205 | 0 |
G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Connelly, R. and Henderson, D. W., A convex 3-complex is not simplicially isomorphic to a strictly convex complex,Math. Proc. Cambridge Philos. Soc. 88 (1980), 299--306. | 0 |
G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. D. Barnette, ''Diagrams and Schlegel Diagrams,'' in Combinatorial Structures and Their Applications: Proc. Int. Conf., Calgary, 1969 (Gordon and Breach, New York, 1970), pp. 1--4. | 0 |
G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Bokowski, J. andSturmfels, B.,Computational Synthetic Geometry. (Lecture Notes in Math., No. 1355). Springer, Berlin--Heidelberg--New York, 1989. | 0 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. O. Kȩdzierski, The G-Hilbert scheme for \(\frac{1}{r}\)(1,a,r-a), Glasg. Math. J. 53 (2010), 115 -129. | 0 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Maclagan D., Thomas R.R.: The toric Hilbert scheme of a rank two lattice is smooth and irreducible. J. Comb. Theory Ser. A 104, 29--48 (2003) | 0 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. O. Riemenschneider, Special representations and the two-dimensional McKay correspondence, Hokkaido Math. J. 32 (2003), 317--333. | 1 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Craw, A., Ito, Y., Karmazyn, J.: Multigraded linear series and recollement (2017). arXiv:1701.01679 (to appear in Math. Z.) | 0 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Craw, A, The special mckay correspondence as an equivalence of derived categories, Q. J. Math., 62, 573-591, (2011) | 1 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Wemyss, M., Reconstruction algebras of type \textit{D} (I), J. Algebra, 356, 158-194, (2012) | 1 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Wemyss, M, Reconstruction algebras of type \(A\), Trans. Am. Math. Soc., 363, 3101-3132, (2011) | 1 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Alvaro Nolla de Celis, \(G\)-graphs and special representations for binary dihedral groups in \(\mathrm{GL}(2,\mathbf{C})\). (to appear in Glasgow Mathematical Journal). | 0 |
Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. doi:10.1007/s11512-007-0065-6 | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Breuil, Christophe, Construction de représentations \textit{p}-adiques semi-stables, Ann. Sci. Éc. Norm. Supér., 31, 281-327, (1998) | 1 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Breuil, Christophe, Représentations semi-stables et modules fortement divisibles, Invent. Math., 136, 1, 89-122, (1999) | 1 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Caruso, Xavier, Représentations semi-stables de torsion dans le case \(e r < p - 1\), J. Reine Angew. Math., 594, 35-92, (2006) | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Caruso, X., Représentations galoisiennes \textit{p}-adiques et (\(######\)modules, Duke Math. J., 162, 13, 2525-2607, (2013) | 1 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) BREUIL (C.) . - Cohomologie étale de p-torsion et cohomologie cristalline en réduction semi-stable , en préparation. | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Caruso, X.; Savitt, D., Polygons de Hodge, de Newton et de línertie moderee des representations semi-stables, Math. Ann., 343, 773-789, (2009) | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Liu, T., Torsion \textit{p}-adic Galois representations and a conjecture of Fontaine, Ann. Sci. Éc. Norm. Supér. (4), 40, 4, 633-674, (2007) | 1 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) 10. Liu, Tong A note on lattices in semi-stable representations \textit{Math. Ann.}346 (2010) 117--138 Math Reviews MR2558890 | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) T. Gee and D. Savitt, Serre weights for mod \textit{p} Hilbert modular forms: The totally ramified case, J. reine angew. Math. 660 (2011), 1-26. | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Breuil, C.: Log-syntomic topology, log-crystalline cohomology and cech cohomology. Bulletin de la soc. Mathématique de France 124, 587-647 (1996) | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Caruso, X., David, A., Mézard, A.: Un calcul d'anneaux de déformations potentiellement Barsotti-Tate. Trans. Am. Math. Soc. arXiv:1402.2616 (\textbf{to appear}) | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) F.~Andreatta, A.~Iovita, and M.~Kim, \emph{A \(p\)-adic non-abelian criterion for good reduction of curves}, Duke Math. J. \textbf{164} (2015), no.~13, 2597--2642. DOI 10.1215/00127094-3146817; zbl 1347.11051; MR3405595 | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Caruso, X., Savitt, D.: Poids de l'inertie modérée de certaines représentations cristallines, en préparation | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Liu, T., Lattices in filtered (\({\phi}\), \textit{N})-modules, J. Inst. Math. Jussieu 2, 11, 3, 659-693, (2012) | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Gee, T.; Liu, T.; Savitt, D., The weight part of Serre's conjecture for \(\operatorname{GL}(2)\), Forum Math. Pi, 3, (2015) | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Iovita, Adrian; Marmora, Adriano, On the continuity of the finite Bloch-Kato cohomology, Rend. Semin. Mat. Univ. Padova, 134, 239-271, (2015), MR 3428419 | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) 5. Gee, Toby and Liu, Tong and Savitt, David The Buzzard-Diamond-Jarvis conjecture for unitary groups \textit{J.~Amer. Math. Soc.}27 (2014) 389--435 Math Reviews MR3164985 | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Caruso, Xavier, Conjecture de l'inertie modérée de Serre, Invent. Math., 171, 3, 629-699, (2008) | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Toby Gee, Florian Herzig & David Savitt, ''General Serre weight conjectures'', preprint, , 2015 | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) Alain Genestier & Vincent Lafforgue, ''Chtoucas restreints pour les groupes réductifs et paramétrisation de Langlands locale'', en préparation | 0 |
Breuil, C., Représentations \textit{p}-adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 191-224, (1997) DOI: 10.1007/s00208-004-0514-5 | 0 |
Howard Garland, The arithmetic theory of loop groups. II. The Hilbert-modular case, J. Algebra 209 (1998), no. 2, 446 -- 532. ] Garland, H., Absolute convergence of Eisenstein series on loop groups, Duke Math. J. 135 (2006), no. 2, 203-260, DOI 10.1215/S0012-7094-06-13521-4, \MR{2267283} | 1 |
Howard Garland, The arithmetic theory of loop groups. II. The Hilbert-modular case, J. Algebra 209 (1998), no. 2, 446 -- 532. Lee, K-H; Lombardo, P, Eisenstein series on affine Kac-Moody groups over function fields, Tran. Am. Math. Soc., 366, 2121-2165, (2014) | 0 |
Howard Garland, The arithmetic theory of loop groups. II. The Hilbert-modular case, J. Algebra 209 (1998), no. 2, 446 -- 532. A. Braverman and D. Kazhdan, Some Examples of Hecke Algebras over 2-Dimensional Local Fields, arXiv: math. RT/0510538. | 0 |
Reiner V., Roberts J.: Minimal resolutions and the homology of matching and chessboard complexes. J. Algebraic Combin. 11(2), 135--154 (2000) Vrećica, S.; Živaljević, R.: Cycle-free chessboard complexes and symmetric homology of algebras, European J. Combin. 30, 542-554 (2009) | 0 |
Reiner V., Roberts J.: Minimal resolutions and the homology of matching and chessboard complexes. J. Algebraic Combin. 11(2), 135--154 (2000) Jonsson J.: Five-torsion in the homology of the matching complex on 14 vertices. J. Algebraic Combin. 29(1), 81--90 (2009) | 0 |
Reiner V., Roberts J.: Minimal resolutions and the homology of matching and chessboard complexes. J. Algebraic Combin. 11(2), 135--154 (2000) Karaguezian, DB; Reiner, V; Wachs, ML, Matching complexes, bounded degree graph complexes, and weight spaces of \(GL_n\)-complexes, J. Algebra, 239, 77-92, (2001) | 0 |
Reiner V., Roberts J.: Minimal resolutions and the homology of matching and chessboard complexes. J. Algebraic Combin. 11(2), 135--154 (2000) Jonsson, J.: On the 3-torsion part of the homology of the chessboard complex, Ann. comb. 14, No. 4, 487-505 (2010) | 0 |
Reiner V., Roberts J.: Minimal resolutions and the homology of matching and chessboard complexes. J. Algebraic Combin. 11(2), 135--154 (2000) Jonsson J.: Exact sequences for the homology of the matching complex. J. Combin. Theory Ser. A 115(8), 1504--1526 (2008) | 0 |
Reiner V., Roberts J.: Minimal resolutions and the homology of matching and chessboard complexes. J. Algebraic Combin. 11(2), 135--154 (2000) Vrećica, Chessboard complexes indomitable, J. Combin. Theory, Ser. A 118 pp 2157-- (2011) | 0 |
Reiner V., Roberts J.: Minimal resolutions and the homology of matching and chessboard complexes. J. Algebraic Combin. 11(2), 135--154 (2000) Jonsson, J.: More torsion in the homology of the matching complex. Experiment. Math. (to appear) | 0 |
Reiner V., Roberts J.: Minimal resolutions and the homology of matching and chessboard complexes. J. Algebraic Combin. 11(2), 135--154 (2000) X. Dong, ''Topology of bounded degree graph complexes,'' J. Algebra 262 (2003), 287--312. | 0 |
Patrick D., J. Algebra 233 pp 16-- (2000) Ingalls, C.; Patrick, D.: Blowing up quantum weighted projective planes. J. algebra 254, 92-114 (2002) | 0 |
Patrick D., J. Algebra 233 pp 16-- (2000) Nyman, A, The geometry of arithmetic noncommutative projective lines, J. Algebra, 414, 190-240, (2014) | 1 |
Patrick D., J. Algebra 233 pp 16-- (2000) Hart, J.; Nyman, A.: Duals of simple two-sided vector spaces, Comm. algebra 40, 2405-2419 (2012) | 0 |
Patrick D., J. Algebra 233 pp 16-- (2000) J.~T. Stafford and M. van~den Bergh, \emph{Noncommutative curves and noncommutative surfaces}, Bull. Amer. Math. Soc. (N.S.) \textbf{38} (2001), no.~2, 171--216. \MR{1816070} | 1 |
Patrick D., J. Algebra 233 pp 16-- (2000) Nyman, A; Pappacena, CJ, Two-sided vector spaces, Linear Algebra Appl., 420, 339-360, (2007) | 1 |
Patrick D., J. Algebra 233 pp 16-- (2000) Bergh, M, Non-commutative \(\mathbb{P}^1\)-bundles over commutative schemes, Trans. Am. Math. Soc., 364, 6279-6313, (2012) | 0 |
Patrick D., J. Algebra 233 pp 16-- (2000) Chan, D., Nyman, A.: Species and noncommutative \(\mathbb {P}^{1}\)'s over non-algebraic bimodules, in progress | 0 |
Kontogeorgis, A.I.: The group of automorphisms of the function fields of the curve \(x^n + y^ m + 1 = 0\). J. Number Theory \textbf{72}, 110-136 (1998) Miura, K; Ohbuchi, A, Automorphism group of plane curve computed by Galois points, Beiträge zur Algebra und Geometrie, 56, 695-702, (2015) | 0 |
Kontogeorgis, A.I.: The group of automorphisms of the function fields of the curve \(x^n + y^ m + 1 = 0\). J. Number Theory \textbf{72}, 110-136 (1998) Kontogeorgis, Aristides, Field of moduli versus field of definition for cyclic covers of the projective line, J. Théor. Nombres Bordeaux, 21, 3, 679-692, (2009) | 1 |
Kontogeorgis, A.I.: The group of automorphisms of the function fields of the curve \(x^n + y^ m + 1 = 0\). J. Number Theory \textbf{72}, 110-136 (1998) Anuradha, N.: Zeta function of the projective curve ay2l=bX2l+cZ2l over a class of finite fields, for odd primes l, Proc. indian acad. Sci. math. Sci. 115, No. 1, 1-14 (2005) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Ito, Y., Nakamura, I.: McKay correspondence and Hilbert schemes. Proc. Japan Acad. Ser. A Math. Sci., 72, 135--138 (1996) | 1 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Sekiya, Y.; Yamaura, K., \textit{tilting theoretical approach to moduli spaces over preprojective algebras}, Algebr. Represent. Theory, 16, 1733-1786, (2013) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. T. Becker, \textit{An example of an} SL\_{}\{2\}-\textit{Hilbert scheme with multiplicities}, Transform. Groups \textbf{16} (2011), no. 4, 915-938. | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. R. Terpereau, \textit{Invariant Hilbert schemes and desingularizations of quotients by classical groups}, Transform. Groups \textbf{19} (2014), no. 1, 247-281. | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Scala, L, Some remarks on tautological sheaves on Hilbert schemes of points on a surface, Geom. Dedicata, 139, 313-329, (2009) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Fujii, Sh., Minabe, S.: A combinatorial study on quiver varieties. SIGMA Symmetry Integrability Geom. Methods Appl. \textbf{13}, Art. No. 052 (2017) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Ishii, A., Ueda, K.: The special McKay correspondence and exceptional collections. Tohoku Math. J. (2) \textbf{67}(4), 585-609 (2015) | 1 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. K.B. Alkalaev and V.A. Belavin, \textit{Conformal blocks of}\( {\mathcal{W}}_n \)\textit{Minimal Models and AGT correspondence}, arXiv:1404.7094 [INSPIRE]. | 1 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Lehn, C; Terpereau, R, Invariant deformation theory of affine schemes with reductive group action, J. Pure Appl. Algebra, 219, 4168-4202, (2015) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Ishii, A., On the mckay correspondence for a finite small subgroup of \(\operatorname{GL}(2, \mathbb{C})\), J. Reine Angew. Math., 549, 221-233, (2002), MR 1916656 | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Scala L: Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles. Duke Math. J 2009,150(2):211--267. 10.1215/00127094-2009-050 | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. P. Boddington and D. Rumynin, ''On Curtis' theorem about finite octonionic loops,'' Proc. Amer. Math. Soc. 135 (2007), 1651--1657. | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Á. Nolla de Celis, Dihedral \({G}\)-Hilb via representations of the McKay quiver , Proc. Japan Acad. Ser. A 88 (2012), 78-83. | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Becker, T.; Terpereau, R., Moduli spaces of \((G, h)\)-constellations, Transform. Groups, 20, 2, 335-366, (2015) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Craw, A., An explicit construction of the McKay correspondence for \(A\)-Hilb \({\mathbb{C}^3}\), J. Algebra, 285, 682-705, (2005) | 1 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Craw, A., Ito, Y., Karmazyn, J.: Multigraded linear series and recollement (2017). arXiv:1701.01679 (to appear in Math. Z.) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Kȩdzierski, O.: Danilov's resolution and representations of the mckay quiver. Tohoku math. J. (2) 66, No. 3, 355-375 (2014) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. Craw, A.; Maclagan, D.; Thomas, R.R., Moduli of mckay quiver representations II: Gröbner basis techniques, J. algebra, 316, 2, 514-535, (2007) | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. DOI: 10.1016/j.jalgebra.2011.08.033 | 0 |
Y. Ito, I. Nakamura, \textit{Hilbert schemes and simple singularities}, in: \textit{New Trends in Algebraic Geometry} (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151-233. doi:10.1007/s11512-007-0065-6 | 0 |