text
stringlengths
65
488
label
int64
0
1
Artin, M.; Stafford, J. T., Semiprime graded algebras of dimension two, J. Algebra, 227, 1, 68-123, (2000) Davies, Andrew, Cocycle twists of 4-dimensional Sklyanin algebras, J. Algebra, 457, 323-360, (2016)
0
Artin, M.; Stafford, J. T., Semiprime graded algebras of dimension two, J. Algebra, 227, 1, 68-123, (2000) D.-M. Lu, J. H. Palmieri, Q.-S. Wu, and J. J. Zhang, ''Regular algebras of dimension 4 and their A -Extalgebras,'' Duke Math. J. 137(3), 537--584 (2007).
1
Artin, M.; Stafford, J. T., Semiprime graded algebras of dimension two, J. Algebra, 227, 1, 68-123, (2000) J.~T. Stafford and M. van~den Bergh, \emph{Noncommutative curves and noncommutative surfaces}, Bull. Amer. Math. Soc. (N.S.) \textbf{38} (2001), no.~2, 171--216. \MR{1816070}
1
Artin, M.; Stafford, J. T., Semiprime graded algebras of dimension two, J. Algebra, 227, 1, 68-123, (2000) Chan, D.: Noncommutative rational double points. J. algebra 232, 725-766 (2000)
0
Artin, M.; Stafford, J. T., Semiprime graded algebras of dimension two, J. Algebra, 227, 1, 68-123, (2000) Z. Reichstein, D. Rogalski, and J. J. Zhang, \textit{Projectively simple rings}, Adv. Math., 203:2 (2006), 365--407. MR2227726
0
Artin, M.; Stafford, J. T., Semiprime graded algebras of dimension two, J. Algebra, 227, 1, 68-123, (2000) Reiten, I.; Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, \textit{J. Am. Math. Soc.}, 15, 295-366, (2002)
1
Artin, M.; Stafford, J. T., Semiprime graded algebras of dimension two, J. Algebra, 227, 1, 68-123, (2000) Chan, D.: Twisted rings and moduli stacks of ''fat'' point modules in non-commutative projective geometry, Adv. math. 229, No. 4, 2184-2209 (2012)
0
D. Morrison, Mirror symmetry and rational curves on quintic \(3\)-folds: A guide for mathematicians , preprint, Duke University, DUK-M-90-01, July 1991. C Doran, B Greene, S Judes, Families of quintic Calabi-Yau \(3\)-folds with discrete symmetries, Comm. Math. Phys. 280 (2008) 675
0
D. Morrison, Mirror symmetry and rational curves on quintic \(3\)-folds: A guide for mathematicians , preprint, Duke University, DUK-M-90-01, July 1991. Mayr, P., Mirror symmetry, N\ =\ 1 superpotentials and tensionless strings on Calabi-Yau four folds, Nucl. Phys., B 494, 489, (1997)
0
D. Morrison, Mirror symmetry and rational curves on quintic \(3\)-folds: A guide for mathematicians , preprint, Duke University, DUK-M-90-01, July 1991. R.P. Horja, \textit{Hypergeometric functions and mirror symmetry in toric varieties}, math/9912109.
1
D. Morrison, Mirror symmetry and rational curves on quintic \(3\)-folds: A guide for mathematicians , preprint, Duke University, DUK-M-90-01, July 1991. H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. \textit{Adv. Math.}, 222(2009), No.3, 1016-1079.
1
D. Morrison, Mirror symmetry and rational curves on quintic \(3\)-folds: A guide for mathematicians , preprint, Duke University, DUK-M-90-01, July 1991. B.R. Greene and C.I. Lazaroiu, \textit{Collapsing D-branes in Calabi-Yau moduli space. 1.}, \textit{Nucl. Phys.}\textbf{B 604} (2001) 181 [hep-th/0001025] [INSPIRE].
0
D. Morrison, Mirror symmetry and rational curves on quintic \(3\)-folds: A guide for mathematicians , preprint, Duke University, DUK-M-90-01, July 1991. de Bartolomeis, P.: Geometric Structures on Moduli Spaces of Special Lagrangian Submanifolds. Ann. di Mat. Pura ed Applicata, IV, vol. 179, 361--382 (2001)
0
D. Morrison, Mirror symmetry and rational curves on quintic \(3\)-folds: A guide for mathematicians , preprint, Duke University, DUK-M-90-01, July 1991. Lazaroiu, CI, Collapsing D-branes in one parameter models and small / large radius duality, Nucl. Phys., B 605, 159, (2001)
0
D. Morrison, Mirror symmetry and rational curves on quintic \(3\)-folds: A guide for mathematicians , preprint, Duke University, DUK-M-90-01, July 1991. Baraglia, D., Variation of Hodge structure for generalized complex manifolds, Differ. geom. appl., 36, 98-133, (2014)
0
H. Bresinsky, P. Schenzel, and J. Stückrad, Quasi-complete intersection ideals of height 2, J. Pure Appl. Algebra 127 (1998), no. 2, 137 -- 145. Stückrad, J. (1992). On quasi-complete intersections. Archiv der Mathematik 58, 529--538.
1
H. Bresinsky, P. Schenzel, and J. Stückrad, Quasi-complete intersection ideals of height 2, J. Pure Appl. Algebra 127 (1998), no. 2, 137 -- 145. H. Bresinsky, Minimal free resolutions of monomial curves in \(\mathbb{P}\) k 3 . Linear Alg. Appl.59, 121--129 (1984)
0
H. Bresinsky, P. Schenzel, and J. Stückrad, Quasi-complete intersection ideals of height 2, J. Pure Appl. Algebra 127 (1998), no. 2, 137 -- 145. Dario Portelli and Walter Spangher, On the equations which are needed to define a closed subscheme of the projective space, J. Pure Appl. Algebra 98 (1995), no. 1, 83 -- 93.
0
H. Bresinsky, P. Schenzel, and J. Stückrad, Quasi-complete intersection ideals of height 2, J. Pure Appl. Algebra 127 (1998), no. 2, 137 -- 145. Severi, Über die Darstellung algebraischer Mannigfaltigkeiten als Durchschnitte von Formen, Abh. math. Sem. Hansische Univ. 15 pp 97-- (1943)
0
H. Bresinsky, P. Schenzel, and J. Stückrad, Quasi-complete intersection ideals of height 2, J. Pure Appl. Algebra 127 (1998), no. 2, 137 -- 145. Bresinsky, H.; Renschuch, B.: Basisbestimmung veronesescher projektionsideale mit allgemeiner nullstelle (tm0, tm-r0tr1, tm-s0ts1, tm1). Math. nachr. 96, 257-269 (1980)
0
H. Bresinsky, P. Schenzel, and J. Stückrad, Quasi-complete intersection ideals of height 2, J. Pure Appl. Algebra 127 (1998), no. 2, 137 -- 145. Perron, Über das Vahlensche Beispiel zu einem Satz von Kronecker, Math. Ann., Berlin 118 pp 441-- (1942)
0
--------, Subdivision schemes for iterated function systems , Proc. Amer. Math. Soc. 129 (2001), 1861-1872. JSTOR: C.A. Micchelli, D.-X. Zhou, Refinable functions: positivity and interpolation, Anal. Appl., 2003, to appear.
0
--------, Subdivision schemes for iterated function systems , Proc. Amer. Math. Soc. 129 (2001), 1861-1872. JSTOR: Sauer, T.: Differentiability of multivariate refinable functions and factorization. Adv. Comput. Math. 26(1--3), 211--235 (2006)
1
--------, Subdivision schemes for iterated function systems , Proc. Amer. Math. Soc. 129 (2001), 1861-1872. JSTOR: Chen, Z., Wu, B., Xu, Y.: Fast collocation methods for high dimensional weakly singular integral equations. J. Integral Equations Appl. 20, 49--92 (2008)
0
Julie Tzu-Yueh Wang, A note on Wronskians and the \?\?\? theorem in function fields of prime characteristic, Manuscripta Math. 98 (1999), no. 2, 255 -- 264. Wang, J.T.-Y., Integral points of projective spaces omitting hyperplanes over function fields of positive characteristic, J. number theory, 77, 2, 336-346, (1999)
0
Julie Tzu-Yueh Wang, A note on Wronskians and the \?\?\? theorem in function fields of prime characteristic, Manuscripta Math. 98 (1999), no. 2, 255 -- 264. Hsia, L. -C.; Wang, J. T. -Y.: The ABC theorem for higher-dimensional function fields. Trans. amer. Math. soc. 356, No. 7, 2871-2887 (2004)
1
Pérez, PDG; Teissier, B, Embedded resolutions of non necessarily normal affine toric varieties, C. R. Math. Acad. Sci. Paris, 334, 379-382, (2002) González, P.D., Teissier, B.: Toric geometry and the Semple-Nash modification. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A Matemáticas 108(1), 1-48 (2014)
1
Pérez, PDG; Teissier, B, Embedded resolutions of non necessarily normal affine toric varieties, C. R. Math. Acad. Sci. Paris, 334, 379-382, (2002) Bierstone, E., Milman, P.: Desingularization of toric and binomial varieties. J. Alg. Geom. 15, 443-486 (2006)
1
Pérez, PDG; Teissier, B, Embedded resolutions of non necessarily normal affine toric varieties, C. R. Math. Acad. Sci. Paris, 334, 379-382, (2002) Bodnár, G., Schicho, J.: A A computer program for the resolution of singularities. In: Hauser, H., Lipman, J., Oort, F., Quirós A.: (eds.) Resolution of Singularities. A Research Book in Tribute of Oscar Zariski. Progr. Math., vol. 181, p.~231-238. Birkhäuser, Basel (2000)
0
Pérez, PDG; Teissier, B, Embedded resolutions of non necessarily normal affine toric varieties, C. R. Math. Acad. Sci. Paris, 334, 379-382, (2002) Thompson, HM, Multiplier ideals of monomial space curves, Proc. Am. Math. Soc. Ser. B, 1, 33-41, (2014)
0
DOI: 10.1016/0021-8693(91)90169-9 DOI: 10.1216/RMJ-1989-19-3-973
0
DOI: 10.1016/0021-8693(91)90169-9 Bochnak, J.; Coste, M.; Roy, M.-F., Géométrie algébrique Réelle, (1987), Springer-Verlag Berlin
0
DOI: 10.1016/0021-8693(91)90169-9 B. R. McDonald and William C. Waterhouse, Projective modules over rings with many units, Proc. Amer. Math. Soc. 83 (1981), no. 3, 455-458.
0
DOI: 10.1016/0021-8693(91)90169-9 M. Marshall and L. Walter, Signatures of higher level on rings with many units, Math. Z. 204 (1990), no. 1, 129-143.
0
DOI: 10.1016/0021-8693(91)90169-9 Bröcker, Ludwig, Zur Theorie der quadratischen Formen über formal reellen Körpern, Math. Ann., 210, 233-256, (1974)
0
DOI: 10.1016/0021-8693(91)90169-9 M. A. Marshall, The Witt ring of a space oforderings. Trans. Amer. Math. Soc. 258 (1980), 505--521
0
DOI: 10.1016/0021-8693(91)90169-9 M. Knebusch, On the local theory of signatures and reduced quadratic forms. Abh. math. Sem. Univ. Hamburg51, 149--195 (1981).
0
DOI: 10.1016/0021-8693(91)90169-9 Gräter, J.: Integral closure and valuation rings with zero divisors. Studia sci. Math. hungar., 457-458 (1982)
0
DOI: 10.1016/0021-8693(91)90169-9 Schülting, H. W.: Real holomorphy rings in real algebraic geometry, Lect. notes math. 959, 433-442 (1982)
0
DOI: 10.1016/0021-8693(91)90169-9 Manis M.,Valuations on a commutative ring, Proc. Amer. Math. Soc.,20 (1969), 193--198.
0
DOI: 10.1016/0021-8693(91)90169-9 Griffin, M.: Valuations and Prüfer rings. Canad. J. Math. 26, 412-429 (1974)
0
DOI: 10.1016/0021-8693(91)90169-9 R. Brown and M. Marshall, ''The reduced theory of quadratic forms,'' Rocky Mount. J. Math.,11, No. 2, 161--175 (1981).
0
DOI: 10.1016/0021-8693(91)90169-9 T. Y. Lam, An introduction to real algebra, in \textit{Ordered Fields and real Algebraic Geometry (Boulder, Colo., 1983)}, Rocky Mountain J. Math., 14 (1984), 767-814.
0
DOI: 10.1016/0021-8693(91)90169-9 Becker, E.; Bröcker, L.: On the description of the reduced Witt ring. J. algebra 52, 328-346 (1978)
0
DOI: 10.1016/0021-8693(91)90169-9 K. G. Valente, The \?-primes of a commutative ring, Pacific J. Math. 126 (1987), no. 2, 385 -- 400.
0
DOI: 10.1016/0021-8693(91)90169-9 M. A. Marshall, Spaces of orderings: systems of quadratic forms, local structure, and saturation. Communications in Algebra 12 (1984), 723--743
0
DOI: 10.1016/0021-8693(91)90169-9 Kadison, R.V.: A representation theory for commutative topological algebra. Mem. Am. Math. Soc. \textbf{1951}(7), 39 (1951)
0
DOI: 10.1016/0021-8693(91)90169-9 Dubois D.W., Pac. J. Math 24 pp 57-- (1968)
0
DOI: 10.1016/0021-8693(91)90169-9 M. A. Marshall, Spaces oforderings IV. Canad. J. Math. 32(1980), 603--627
0
DOI: 10.1016/0021-8693(91)90169-9 Dubois, D.W., A note on david harrison's theory of preprimes, Pac. J. Math., 21, 15-19, (1967)
0
DOI: 10.1016/0021-8693(91)90169-9 T. Y. Lam, Orderings, \textit{Valuations and Quadratic Forms}, CBMS Regional Conference Series in Mathematics, Vol. 52, American Mathematical Society, Providence, RI, 1983.
0
DOI: 10.1016/0021-8693(91)90169-9 H. W. Schülting, Über reelle Stellen eines Körpers und ihren Holomorphiering, Dissertation, Universität Dortmund (1979).
0
Cirre F.J.: Complex automorphism groups of real algebraic curves of genus 2. J. Pure Appl. Algebra 157(2--3), 157--181 (2001) Bujalance, E., Cirre F. J. and Turbek, P.: Riemann surfaces with real forms which have maximal cyclic symmetry. J. Algebra 283 (2005), no. 2, 447-456.
1
Cirre F.J.: Complex automorphism groups of real algebraic curves of genus 2. J. Pure Appl. Algebra 157(2--3), 157--181 (2001) Bujalance, E., Conder, M., Gamboa, J.M., Gromadzki, G., Izquierdo, M.: Double coverings of Klein surfaces by a given Riemann surface. J. Pure Appl. Algebra 169(2--3), 137--151 (2002)
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gallego F.J., Purnaprajna B.P. (2003). On the canonical rings of covers of surfaces of minimal degree. Trans. Amer. Math. Soc. 355:2715--2732
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Bauer, I. C.; Pignatelli, R., Surfaces with \textit{K}2 = 8, \textit{p}_{\textit{g}} = 4 and canonical involution, \textit{Osaka J. Math.}, 46, 3, 799-820, (2009)
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Catanese, F.; Liu, W.; Pignatelli, R., The moduli space of even surfaces of general type with \textit{K}2 = 8, \textit{p}_{\textit{g}} = 4 and \textit{q} = 0, \textit{J. Math. Pures Appl.}, 101, 6, 925-948, (2014)
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gallego, F.J., Purnaprajna, B.P.: Classification of quadruple Galois canonical covers I. Trans. Am. Math. Soc. 360(10), 5489--5507 (2008)
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Werner, C., Surfaces of general type with \textit{K}2 = 2\textit{ {\(\chi\)}}-1, \textit{Kyoto J. Math.}, 55, 1, 29-41, (2015)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) [HS]B. Hunt and R. Schimmrigk, K3-fibered Calabi--Yau threefolds, I, the twist map, Int. J. Math. 10 (1999), 833--867.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Martí Sánchez, Surfaces with K2 = 2{\(\chi\)} - 2 and pg 5, Geom. Dedicata 150 pp 49-- (2011)
0
Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) S. Kitagawa, Maximal Mordell-Weil lattices of fibred surfaces with \(p_{g}=q=0\), Rend. Semin. Mat. Univ. Padova 117 (2007), 205--230.
0
Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) K. V. Nguyen, On certain Mordell-Weil lattices of hyperelliptic type on rational surfaces, J. Math. Sci. (New York) 102 (2000), no. 2, 3938--3977.
0
Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) S. KITAGAWA - K. KONNO, Fibred rational surfaces with extremal MordellWeil lattices, Math. Z., 251 (2005), pp. 179-204. Zbl1082.14038 MR2176471
1
Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Ulmer, Douglas, Curves and Jacobians over function fields.Arithmetic geometry over global function fields, Adv. Courses Math. CRM Barcelona, 283-337, (2014), Birkhäuser/Springer, Basel
0
Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) J.J. Heckman, D.R. Morrison and C. Vafa, \textit{On the Classification of 6D SCFTs and Generalized ADE Orbifolds}, \textit{JHEP}\textbf{05} (2014) 028 [\textit{Erratum ibid.}\textbf{1506} (2015) 017] [arXiv:1312.5746] [INSPIRE].
0
Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Gong, C; Lu, X; Tan, S-L, Families of curves over \({\mathbb{P}}^1\) with 3 singular fibers, C. R. Math. Acad. Sci. Paris, 351, 375-380, (2013)
0
Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Dimca, A.: Differential forms and hypersurface singularities. In: Singularity theory and its applications, Part I (Coventry, 1988/1989), vol. 1462 of Lecture Notes in Math., pp. 122-153. Springer, Berlin (1991)
1
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) Oliveira, G; Stöhr, K-O, Moduli spaces of curves with quasi-symmetric Weierstrass gap sequences, Geom. Dedic., 67, 65-82, (1997)
1
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) Stöhr, K-O, On the moduli spaces of Gorenstein curves with symmetric Weierstrass semigroups, J. Reine Angew. Math., 441, 189-213, (1993)
0
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) Pimentel, F, Intersection divisors of a canonically embedded curve with its osculating spaces, Geom. Dedic., 85, 125-134, (2001)
0
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) Oliveira, G; Stöhr, K-O, Gorenstein curves with quasi-symmetric Weierstrass semigroups, Geom. Dedic., 67, 45-63, (1997)
0
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) Komeda, J, On the existence of Weierstrass gaps sequences on curves of genus \(\leq 8\), J. Pure Appl. Algebra, 97, 51-71, (1994)
0
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) Milnor, J.: On the 3-dimensional Brieskorn manifolds \textit{M(p, q, r)}. In: Neuwirth, L.P. (ed.) Knots, Groups, and 3-Manifolds (Papers Dedicated to the Memory of R. H. Fox), pp. 175-225. Princeton Univ. Press, Princeton, N. J. (1975)
0
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) David Eisenbud and Joe Harris, When ramification points meet, Invent. Math. 87 (1987), no. 3, 485 -- 493. , https://doi.org/10.1007/BF01389239 David Eisenbud and Joe Harris, Existence, decomposition, and limits of certain Weierstrass points, Invent. Math. 87 (1987), no. 3, 495 -- 515.
0
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) Mumford, David , '' Curves and Their Jacobians ''. University of Michigan Press, Ann Arbor, Michigan, second printing 1976 edition, 1975.
0
Pimentel, F, Algorithm for computing the moduli space of pointed Gorenstein curves with Weierstrass gap sequence \(1, 2, \dots , g-2, {\lambda }, 2g-3\), J. Algebra, 276, 280-291, (2004) Eisenbud D, \textit{Commutative Algebra: With a View Toward Algebraic Geometry}, 150, Springer New York, 1995.
0