Questions
stringlengths
14
191
Answers
stringlengths
6
29k
What causes Coronary Microvascular Disease ?
The same risk factors that cause atherosclerosis may cause coronary microvascular disease. Atherosclerosis is a disease in which plaque builds up inside the arteries. Risk factors for atherosclerosis include: Diabetes. It is a disease in which the bodys blood sugar level is too high because the body doesnt make enough insulin or doesnt use its insulin properly. Family history of early heart disease. Your risk of atherosclerosis increases if your father or a brother was diagnosed with heart disease before age 55, or if your mother or a sister was diagnosed with heart disease before age 65. High blood pressure. Blood pressure is considered high if it stays at or above 140/90mmHg over time. If you have diabetes or chronic kidney disease, high blood pressure is defined as 130/80 mmHg or higher. (The mmHg is millimeters of mercurythe units used to measure blood pressure.) Insulin resistance. This condition occurs if the body cant use its insulin properly. Insulin is a hormone that helps move blood sugar into cells where its used for energy. Overtime, insulin resistance can lead to diabetes. Lack of physical activity. Physical inactivity can worsen some other risk factors for atherosclerosis, such as unhealthy blood cholesterol levels, high blood pressure, diabetes, and overweight or obesity. Older age. As you age, your risk for atherosclerosis increases. The process of atherosclerosis begins in youth and typically progresses over many decades before disease develops. Overweight and obesity. The terms overweight and obesity refer to body weight thats greater than what is considered healthy for a certain height. Smoking. Smoking can damage and tighten blood vessels, lead to unhealthy cholesterol levels, and raise blood pressure. Smoking also doesnt allow enough oxygen to reach the bodys tissues. Unhealthy blood cholesterol levels. This includes high LDL (bad) cholesterol and low HDL (good) cholesterol. Unhealthy diet. An unhealthy diet can raise your risk for atherosclerosis. Foods that are high in saturated and trans fats, cholesterol, sodium (salt), and sugar can worsen other risk factors for atherosclerosis. In women, coronary microvascular disease also may be linked to low estrogen levels occurring before or after menopause. Also, the disease may be linked to anemia or conditions that affect blood clotting. Anemia is thought to slow the growth of cells needed to repair damaged blood vessels. Researchers continue to explore other possible causes of coronary microvascular disease.
Who is at risk for Coronary Microvascular Disease? ?
Coronary microvascular disease can affect both men and women. However, women may be at risk for coronary microvascular disease if they have lower than normal levels of estrogen at any point in their adult lives. (This refers to the estrogen that the ovaries produce, not the estrogen used in hormone therapy.) Low estrogen levels before menopause can raise younger womens risk for the disease. Causes of low estrogen levels in younger women can be mental stress or a problem with the function of theovaries. The causes of coronary microvascular disease and atherosclerosis are also considered risk factors for the disease.
What are the symptoms of Coronary Microvascular Disease ?
The signs and symptoms of coronary microvascular disease (MVD) often differ from the signs and symptoms of traditional coronary heart disease (CHD). Many women with coronary MVD have angina (an-JI-nuh or AN-juh-nuh). Angina is chest pain or discomfort that occurs when your heart muscle doesn't get enough oxygen-rich blood. Angina may feel like pressure or squeezing in your chest. You also may feel it in your shoulders, arms, neck, jaw, or back. Angina pain may even feel like indigestion. Angina also is a common symptom of CHD. However, the angina that occurs in coronary MVD may differ from the typical angina that occurs in CHD. In coronary MVD, the chest pain usually lasts longer than 10 minutes, and it can last longer than 30 minutes. Typical angina is more common in women older than 65. Other signs and symptoms of coronary MVD are shortness of breath, sleep problems, fatigue (tiredness), and lack of energy. Coronary MVD symptoms often are first noticed during routine daily activities (such as shopping, cooking, cleaning, and going to work) and times of mental stress. It's less likely that women will notice these symptoms during physical activity (such as jogging or walking fast). This differs from CHD, in which symptoms often first appear while a person is being physically activesuch as while jogging, walking on a treadmill, or going up stairs.
How to diagnose Coronary Microvascular Disease ?
Your doctor will diagnose coronary microvascular disease (MVD) based on your medical history, a physical exam, and test results. He or she will check to see whether you have any risk factors for heart disease. For example, your doctor may measure your weight and height to check for overweight or obesity. He or she also may recommend tests for high blood cholesterol, metabolic syndrome, and diabetes. Your doctor may ask you to describe any chest pain, including when it started and how it changed during physical activity or periods of stress. He or she also may ask about other symptoms, such as fatigue (tiredness), lack of energy, and shortness of breath. Women may be asked about their menopausal status. Specialists Involved Cardiologists and doctors who specialize in family and internal medicine might help diagnose and treat coronary MVD. Cardiologists are doctors who specialize in diagnosing and treating heart diseases and conditions. Diagnostic Tests The risk factors for coronary MVD and traditional coronary heart disease (CHD) often are the same. Thus, your doctor may recommend tests for CHD, such as: Coronary angiography (an-jee-OG-rah-fee). This test uses dye and special x rays to show the insides of your coronary arteries. Coronary angiography can show plaque buildup in the large coronary arteries. This test often is done during a heart attack to help find blockages in the coronary arteries. Stress testing. This test shows how blood flows through your heart during physical stress, such as exercise. Even if coronary angiography doesn't show plaque buildup in the large coronary arteries, a stress test may still show abnormal blood flow. This may be a sign of coronary MVD. Cardiac MRI (magnetic resonance imaging) stress test. Doctors may use this test to evaluate people who have chest pain. Unfortunately, standard tests for CHD aren't designed to detect coronary MVD. These tests look for blockages in the large coronary arteries. Coronary MVD affects the tiny coronary arteries. If test results show that you don't have CHD, your doctor might still diagnose you with coronary MVD. This could happen if signs are present that not enough oxygen is reaching your heart's tiny arteries. Coronary MVD symptoms often first occur during routine daily tasks. Thus, your doctor may ask you to fill out a questionnaire called the Duke Activity Status Index (DASI). The questionnaire will ask you how well you're able to do daily activities, such as shopping, cooking, and going to work. The DASI results will help your doctor decide which kind of stress test you should have. The results also give your doctor information about how well blood is flowing through your coronary arteries. Your doctor also may recommend blood tests, including a test for anemia. Anemia is thought to slow the growth of cells needed to repair damaged blood vessels. Research is ongoing for better ways to detect and diagnose coronary MVD. Currently, researchers have not agreed on the best way to diagnose the disease.
What are the treatments for Coronary Microvascular Disease ?
Relieving pain is one of the main goals of treating coronary microvascular disease (MVD). Treatments also are used to control risk factors and other symptoms. Treatments may include medicines, such as: ACE inhibitors and beta blockers to lower blood pressure and decrease the hearts workload Aspirin to help prevent blood clots or control inflammation Nitroglycerin to relax blood vessels, improve blood flow to the heart muscle, and treat chest pain Statin medicines to control or lower your blood cholesterol. Take all medicines regularly, as your doctor prescribes. Dont change the amount of your medicine or skip a dose unless your doctor tells you to. If youre diagnosed with coronary MVD and also haveanemia, you may benefit from treatment for that condition. Anemia is thought to slow the growth of cells needed to repair damaged blood vessels. If youre diagnosed with and treated for coronary MVD, you should get ongoing care from your doctor. Research is under way to find the best treatments for coronary MVD.
How to prevent Coronary Microvascular Disease ?
No specific studies have been done on how to prevent coronary microvascular disease. Researchers dont yet know how or in what way preventing coronary microvascular disease differs from preventing coronary heart disease. Coronary microvascular disease affects the tiny coronary arteries; coronary heart disease affects the large coronary arteries. Taking action to control risk factors for heart disease can help prevent or delay coronary heart disease. You cant control some risk factors, such as older age and family history of heart disease. However, you can take steps to prevent or control other risk factors, such as high blood pressure, overweight and obesity, high blood cholesterol, diabetes, and smoking. Heart-healthy lifestyle changes and ongoing medical care can help you lower your risk for heartdisease. Heart-Healthy Lifestyle Changes Your doctor may recommend heart-healthy lifestyle changes if you have coronary microvascular disease. Heart-healthy lifestyle changes include: Heart-healthy eating Maintaining a healthy weight Managing stress Physical activity Quitting smoking Heart-Healthy Eating Your doctor may recommend a heart-healthy eating plan, which should include: Fat-free or low-fat dairy products, such as skim milk Fish high in omega-3 fatty acids, such as salmon, tuna, and trout, about twice a week Fruits, such as apples, bananas, oranges, pears, and prunes Legumes, such as kidney beans, lentils, chickpeas, black-eyed peas, and lima beans Vegetables, such as broccoli, cabbage, and carrots Whole grains, such as oatmeal, brown rice, and corn tortillas. When following a heart-healthy diet, you should avoid eating: A lot of red meat Palm and coconut oils Sugary foods and beverages Two nutrients in your diet make blood cholesterol levels rise: Saturated fatfound mostly in foods that come from animals Trans fat (trans fatty acids)found in foods made with hydrogenated oils and fats, such as stick margarine; baked goods, such as cookies, cakes, and pies; crackers; frostings; and coffee creamers. Some trans fats also occur naturally in animal fats andmeats. Saturated fat raises your blood cholesterol more than anything else in your diet. When you follow a heart-healthy eating plan, only 5 percent to 6 percent of your daily calories should come from saturated fat. Food labels list the amounts of saturated fat. To help you stay on track, here are some examples: 1,200 calories a day 8 grams of saturated fat a day 1,500 calories a day 10 grams of saturated fat a day 1,800 calories a day 12 grams of saturated fat a day 2,000 calories a day 13 grams of saturated fat a day 2,500 calories a day 17 grams of saturated fat a day Not all fats are bad. Monounsaturated and polyunsaturated fats actually help lower blood cholesterollevels. Some sources of monounsaturated and polyunsaturated fats are: Avocados Corn, sunflower, and soybean oils Nuts and seeds, such as walnuts Olive, canola, peanut, safflower, and sesame oils Peanut butter Salmon and trout Tofu Sodium You should try to limit the amount of sodium that you eat. This means choosing and preparing foods that are lower in salt and sodium. Try to use low-sodium and no added salt foods and seasonings at the table or while cooking. Food labels tell you what you need to know about choosing foods that are lower in sodium. Try to eat no more than 2,300 milligrams of sodium a day. If you have high blood pressure, you may need to restrict your sodium intake even more. Dietary Approaches to Stop Hypertension Your doctor may recommend the Dietary Approaches to Stop Hypertension (DASH) eating plan if you have high blood pressure. The DASH eating plan focuses on fruits, vegetables, whole grains, and other foods that are heart healthy and low in fat, cholesterol, and sodium and salt. The DASH eating plan is a good heart-healthy eating plan, even for those who dont have high blood pressure. Read more about DASH. Alcohol Try to limit alcohol intake. Too much alcohol canraise your blood pressure and triglyceride levels, a type of fat found in the blood. Alcohol also adds extra calories, which may cause weight gain. Men should have no more than two drinks containing alcohol a day. Women should have no more than one drink containing alcohol a day. One drink is: 12 ounces of beer 5 ounces of wine 1 ounces of liquor Maintaining a Healthy Weight Maintaining a healthy weight is important for overall health and can lower your risk for coronary heart disease. Aim for a Healthy Weight by following a heart-healthy eating plan and keeping physically active. Knowing your body mass index (BMI) helps you find out if youre a healthy weight in relation to your height and gives an estimate of your total body fat. To figure out your BMI, check out the National Heart, Lung, and Blood Institutes (NHLBI) online BMI calculator or talk to your doctor. A BMI: Below 18.5 is a sign that you are underweight. Between 18.5 and 24.9 is in the normal range. Between 25 and 29.9 is considered overweight. Of 30 or more is considered obese. A general goal to aim for is a BMI below 25. Your doctor or health care provider can help you set an appropriate BMI goal. Measuring waist circumference helps screen for possible health risks. If most of your fat is around your waist rather than at your hips, youre at a higher risk for heart disease and type 2 diabetes. This risk may be high with a waist size that is greater than 35 inches for women or greater than 40 inches for men. To learn how to measure your waist, visit Assessing Your Weight and Health Risk. If youre overweight or obese, try to lose weight. A loss of just 3 percent to 5 percent of your current weight can lower your triglycerides, blood glucose, and the risk of developing type 2 diabetes. Greater amounts of weight loss can improve blood pressure readings, lower LDL cholesterol, and increase HDL cholesterol. Managing Stress Research shows that the most commonly reported trigger for a heart attack is an emotionally upsetting eventparticularly one involving anger. Also, some of the ways people cope with stresssuch as drinking, smoking, or overeatingarent healthy. Learning how to manage stress, relax, and cope with problems can improve your emotional and physical health. Consider healthy stress-reducing activities, such as: A stress management program Meditation Physical activity Relaxation therapy Talking things out with friends or family Physical Activity Routine physical activity can lower many coronary heart disease risk factors, including LDL (bad) cholesterol, high blood pressure, and excess weight. Physical activity also can lower your risk for diabetes and raise your HDL cholesterol level. HDL is the good cholesterol that helps prevent coronary heart disease. Everyone should try to participate in moderate-intensity aerobic exercise at least 2hours and 30minutes per week, or vigorous aerobic exercise for 1hour and 15minutes per week. Aerobic exercise, such as brisk walking, is any exercise in which your heart beats faster and you use more oxygen than usual. The more active you are, the more you will benefit. Participate in aerobic exercise for at least 10minutes at a time spread throughout the week. Read more about physical activity at: Physical Activity and Your Heart U.S. Department of Health and Human Services 2008 Physical Activity Guidelines forAmericans Talk with your doctor before you start a new exercise plan. Ask your doctor how much and what kinds of physical activity are safe for you. Quitting Smoking If you smoke, quit. Smoking can raise your risk for coronary heart disease and heart attack and worsen other coronary heart disease risk factors. Talk with your doctor about programs and products that can help you quit smoking. Also, try to avoid secondhand smoke. If you have trouble quitting smoking on your own, consider joining a support group. Many hospitals, workplaces, and community groups offer classes to help people quit smoking. Read more about quitting smoking at Smoking and Your Heart. Ongoing Medical Care Learn more about heart disease and the traits, conditions, and habits that can raise your risk for developing it. Talk with your doctor about your risk factors for heart disease and how to controlthem. If lifestyle changes arent enough, your doctor may prescribe medicines to control your risk factors. Take all of your medicines as your doctor advises. Visit your doctor regularly and have recommended testing. Know your numbers. Ask your doctor for these three tests and have the results explained toyou: Blood pressure measurement. Fasting blood glucose. This test is for diabetes. Lipoprotein panel. This test measures total cholesterol, LDL (bad) cholesterol, HDL (good) cholesterol, and triglycerides (a type of fat in the blood). Finally, know your family history of heart disease. If you or someone in your family has heart disease, tell your doctor.
What is (are) Pernicious Anemia ?
Pernicious anemia (per-NISH-us uh-NEE-me-uh) is a condition in which the body can't make enough healthy red blood cells because it doesn't have enough vitamin B12. Vitamin B12 is a nutrient found in some foods. The body needs this nutrient to make healthy red blood cells and to keep its nervous system working properly. People who have pernicious anemia can't absorb enough vitamin B12 from food. This is because they lack intrinsic (in-TRIN-sik) factor, a protein made in the stomach. A lack of this protein leads to vitamin B12 deficiency. Other conditions and factors also can cause vitamin B12 deficiency. Examples include infections, surgery, medicines, and diet. Technically, the term "pernicious anemia" refers to vitamin B12 deficiency due to a lack of intrinsic factor. Often though, vitamin B12 deficiency due to other causes also is called pernicious anemia. This article discusses pernicious anemia due to a lack of intrinsic factor and other causes. Overview Pernicious anemia is a type of anemia. The term "anemia" usually refers to a condition in which the blood has a lower than normal number of red blood cells. In pernicious anemia, the body can't make enough healthy red blood cells because it doesn't have enough vitamin B12. Without enough vitamin B12, your red blood cells don't divide normally and are too large. They may have trouble getting out of the bone marrowa sponge-like tissue inside the bones where blood cells are made. Without enough red blood cells to carry oxygen to your body, you may feel tired and weak. Severe or long-lasting pernicious anemia can damage the heart, brain, and other organs in the body. Pernicious anemia also can cause other problems, such as nerve damage, neurological problems (such as memory loss), and digestive tract problems. People who have pernicious anemia also may be at higher risk for weakened bone strength and stomach cancer. Outlook The term pernicious means deadly. The condition is called pernicious anemia because it often was fatal in the past, before vitamin B12 treatments were available. Now, pernicious anemia usually is easy to treat with vitamin B12 pills or shots. With ongoing care and proper treatment, most people who have pernicious anemia can recover, feel well, and live normal lives. Without treatment, pernicious anemia can lead to serious problems with the heart, nerves, and other parts of the body. Some of these problems may be permanent.
What causes Pernicious Anemia ?
Pernicious anemia is caused by a lack of intrinsic factor or other causes, such as infections, surgery, medicines, or diet. Lack of Intrinsic Factor Intrinsic factor is a protein made in the stomach. It helps your body absorb vitamin B12. In some people, an autoimmune response causes a lack of intrinsic factor. An autoimmune response occurs if the bodys immune system makes antibodies (proteins) that mistakenly attack and damage the body's tissues or cells. In pernicious anemia, the body makes antibodies that attack and destroy the parietal (pa-RI-eh-tal) cells. These cells line the stomach and make intrinsic factor. Why this autoimmune response occurs isn't known. As a result of this attack, the stomach stops making intrinsic factor. Without intrinsic factor, your body can't move vitamin B12 through the small intestine, where it's absorbed. This leads to vitamin B12 deficiency. A lack of intrinsic factor also can occur if you've had part or all of your stomach surgically removed. This type of surgery reduces the number of parietal cells available to make intrinsic factor. Rarely, children are born with an inherited disorder that prevents their bodies from making intrinsic factor. This disorder is called congenital pernicious anemia. Other Causes Pernicious anemia also has other causes, besides a lack of intrinsic factor. Malabsorption in the small intestine and a diet lacking vitamin B12 both can lead to pernicious anemia. Malabsorption in the Small Intestine Sometimes pernicious anemia occurs because the body's small intestine can't properly absorb vitamin B12. This may be the result of: Too many of the wrong kind of bacteria in the small intestine. This is a common cause of pernicious anemia in older adults. The bacteria use up the available vitamin B12 before the small intestine can absorb it. Diseases that interfere with vitamin B12 absorption. One example is celiac disease. This is a genetic disorder in which your body can't tolerate a protein called gluten. Another example is Crohn's disease, an inflammatory bowel disease. HIV also may interfere with vitamin B12 absorption. Certain medicines that alter bacterial growth or prevent the small intestine from properly absorbing vitamin B12. Examples include antibiotics and certain diabetes and seizure medicines. Surgical removal of part or all of the small intestine. A tapeworm infection. The tapeworm feeds off of the vitamin B12. Eating undercooked, infected fish may cause this type of infection. Diet Lacking Vitamin B12 Some people get pernicious anemia because they don't have enough vitamin B12 in their diets. This cause of pernicious anemia is less common than other causes. Good food sources of vitamin B12 include: Breakfast cereals with added vitamin B12 Meats such as beef, liver, poultry, and fish Eggs and dairy products (such as milk, yogurt, and cheese) Foods fortified with vitamin B12, such as soy-based beverages and vegetarian burgers Strict vegetarians who don't eat any animal or dairy products and don't take a vitamin B12 supplement are at risk for pernicious anemia. Breastfed infants of strict vegetarian mothers also are at risk for pernicious anemia. These infants can develop anemia within months of being born. This is because they haven't had enough time to store vitamin B12 in their bodies. Doctors treat these infants with vitamin B12 supplements. Other groups, such as the elderly and people who suffer from alcoholism, also may be at risk for pernicious anemia. These people may not get the proper nutrients in their diets.
Who is at risk for Pernicious Anemia? ?
Pernicious anemia is more common in people of Northern European and African descent than in other ethnic groups. Older people also are at higher risk for the condition. This is mainly due to a lack of stomach acid and intrinsic factor, which prevents the small intestine from absorbing vitamin B12. As people grow older, they tend to make less stomach acid. Pernicious anemia also can occur in younger people and other populations. You're at higher risk for pernicious anemia if you: Have a family history of the condition. Have had part or all of your stomach surgically removed. The stomach makes intrinsic factor. This protein helps your body absorb vitamin B12. Have an autoimmune disorder that involves the endocrine glands, such as Addison's disease, type 1 diabetes, Graves' disease, or vitiligo. Research suggests a link may exist between these autoimmune disorders and pernicious anemia that's caused by an autoimmune response. Have had part or all of your small intestine surgically removed. The small intestine is where vitamin B12 is absorbed. Have certain intestinal diseases or other disorders that may prevent your body from properly absorbing vitamin B12. Examples include Crohn's disease, intestinal infections, and HIV. Take medicines that prevent your body from properly absorbing vitamin B12. Examples of such medicines include antibiotics and certain seizure medicines. Are a strict vegetarian who doesn't eat any animal or dairy products and doesn't take a vitamin B12 supplement, or if you eat poorly overall.
What are the symptoms of Pernicious Anemia ?
A lack of vitamin B12 (vitamin B12 deficiency) causes the signs and symptoms of pernicious anemia. Without enough vitamin B12, your body can't make enough healthy red blood cells, which causes anemia. Some of the signs and symptoms of pernicious anemia apply to all types of anemia. Other signs and symptoms are specific to a lack of vitamin B12. Signs and Symptoms of Anemia The most common symptom of all types of anemia is fatigue (tiredness). Fatigue occurs because your body doesnt have enough red blood cells to carry oxygen to its various parts. A low red blood cell count also can cause shortness of breath, dizziness, headache, coldness in your hands and feet, pale or yellowish skin, and chest pain. A lack of red blood cells also means that your heart has to work harder to move oxygen-rich blood through your body. This can lead to irregular heartbeats called arrhythmias (ah-RITH-me-ahs), heart murmur, an enlarged heart, or even heart failure. Signs and Symptoms of Vitamin B12 Deficiency Vitamin B12 deficiency may lead to nerve damage. This can cause tingling and numbness in your hands and feet, muscle weakness, and loss of reflexes. You also may feel unsteady, lose your balance, and have trouble walking. Vitamin B12 deficiency can cause weakened bones and may lead to hip fractures. Severe vitamin B12 deficiency can cause neurological problems, such as confusion, dementia, depression, and memory loss. Other symptoms of vitamin B12 deficiency involve the digestive tract. These symptoms include nausea (feeling sick to your stomach) and vomiting, heartburn, abdominal bloating and gas, constipation or diarrhea, loss of appetite, and weight loss. An enlarged liver is another symptom. A smooth, thick, red tongue also is a sign of vitamin B12 deficiency and pernicious anemia. Infants who have vitamin B12 deficiency may have poor reflexes or unusual movements, such as face tremors. They may have trouble feeding due to tongue and throat problems. They also may be irritable. If vitamin B12 deficiency isn't treated, these infants may have permanent growth problems.
How to diagnose Pernicious Anemia ?
Your doctor will diagnose pernicious anemia based on your medical and family histories, a physical exam, and test results. Your doctor will want to find out whether the condition is due to a lack of intrinsic factor or another cause. He or she also will want to find out the severity of the condition, so it can be properly treated. Specialists Involved Primary care doctorssuch as family doctors, internists, and pediatricians (doctors who treat children)often diagnose and treat pernicious anemia. Other kinds of doctors also may be involved, including: A neurologist (nervous system specialist) A cardiologist (heart specialist) A hematologist (blood disease specialist) A gastroenterologist (digestive tract specialist) Medical and Family Histories Your doctor may ask about your signs and symptoms. He or she also may ask: Whether you've had any stomach or intestinal surgeries Whether you have any digestive disorders, such as celiac disease or Crohn's disease About your diet and any medicines you take Whether you have a family history of anemia or pernicious anemia Whether you have a family history of autoimmune disorders (such as Addison's disease, type 1 diabetes, Graves' disease, or vitiligo). Research suggests a link may exist between these autoimmune disorders and pernicious anemia that's caused by an autoimmune response. Physical Exam During the physical exam, your doctor may check for pale or yellowish skin and an enlarged liver. He or she may listen to your heart for rapid or irregular heartbeats or a heart murmur. Your doctor also may check for signs of nerve damage. He or she may want to see how well your muscles, eyes, senses, and reflexes work. Your doctor may ask questions or do tests to check your mental status, coordination, and ability to walk. Diagnostic Tests and Procedures Blood tests and procedures can help diagnose pernicious anemia and find out what's causing it. Complete Blood Count Often, the first test used to diagnose many types of anemia is a complete blood count (CBC). This test measures many parts of your blood. For this test, a small amount of blood is drawn from a vein (usually in your arm) using a needle. A CBC checks your hemoglobin (HEE-muh-glow-bin) and hematocrit (hee-MAT-oh-crit) levels. Hemoglobin is an iron-rich protein that helps red blood cells carry oxygen from the lungs to the rest of the body. Hematocrit is a measure of how much space red blood cells take up in your blood. A low level of hemoglobin or hematocrit is a sign of anemia. The normal range of these levels may be lower in certain racial and ethnic populations. Your doctor can explain your test results to you. The CBC also checks the number of red blood cells, white blood cells, and platelets (PLATE-lets) in your blood. Abnormal results may be a sign of anemia, another blood disorder, an infection, or another condition. Finally, the CBC looks at mean corpuscular (kor-PUS-kyu-lar) volume (MCV). MCV is a measure of the average size of your red blood cells. MCV can be a clue as to what's causing your anemia. In pernicious anemia, the red blood cells tend to be larger than normal. Other Blood Tests If the CBC results confirm that you have anemia, you may need other blood tests to find out what type of anemia you have. A reticulocyte (re-TIK-u-lo-site) count measures the number of young red blood cells in your blood. The test shows whether your bone marrow is making red blood cells at the correct rate. People who have pernicious anemia have low reticulocyte counts. Serum folate, iron, and iron-binding capacity tests also can help show whether you have pernicious anemia or another type of anemia. Another common test, called the Combined Binding Luminescence Test, sometimes gives false results. Scientists are working to develop a more reliable test. Your doctor may recommend other blood tests to check: Your vitamin B12 level. A low level of vitamin B12 in the blood indicates pernicious anemia. However, a falsely normal or high value of vitamin B12 in the blood may occur if antibodies interfere with the test. Your homocysteine and methylmalonic acid (MMA) levels. High levels of these substances in your body are a sign of pernicious anemia. For intrinsic factor antibodies and parietal cell antibodies. These antibodies also are a sign of pernicious anemia. Bone Marrow Tests Bone marrow tests can show whether your bone marrow is healthy and making enough red blood cells. The two bone marrow tests are aspiration (as-pi-RA-shun) and biopsy. For aspiration, your doctor removes a small amount of fluid bone marrow through a needle. For a biopsy, your doctor removes a small amount of bone marrow tissue through a larger needle. The samples are then examined under a microscope. In pernicious anemia, the bone marrow cells that turn into blood cells are larger than normal.
What are the treatments for Pernicious Anemia ?
Doctors treat pernicious anemia by replacing the missing vitamin B12 in the body. People who have pernicious anemia may need lifelong treatment. The goals of treating pernicious anemia include: Preventing or treating the anemia and its signs and symptoms Preventing or managing complications, such as heart and nerve damage Treating the cause of the pernicious anemia (if a cause can be found) Specific Types of Treatment Pernicious anemia usually is easy to treat with vitamin B12 shots or pills. If you have severe pernicious anemia, your doctor may recommend shots first. Shots usually are given in a muscle every day or every week until the level of vitamin B12 in your blood increases. After your vitamin B12 blood level returns to normal, you may get a shot only once a month. For less severe pernicious anemia, your doctor may recommend large doses of vitamin B12 pills. A vitamin B12 nose gel and spray also are available. These products may be useful for people who have trouble swallowing pills, such as older people who have had strokes. Your signs and symptoms may begin to improve within a few days after you start treatment. Your doctor may advise you to limit your physical activity until your condition improves. If your pernicious anemia is caused by something other than a lack of intrinsic factor, you may get treatment for the cause (if a cause can be found). For example, your doctor may prescribe medicines to treat a condition that prevents your body from absorbing vitamin B12. If medicines are the cause of your pernicious anemia, your doctor may change the type or dose of medicine you take. Infants of strict vegetarian mothers may be given vitamin B12 supplements from birth.
How to prevent Pernicious Anemia ?
You can't prevent pernicious anemia caused by a lack of intrinsic factor. Without intrinsic factor, you won't be able to absorb vitamin B12 and will develop pernicious anemia. Although uncommon, some people develop pernicious anemia because they don't get enough vitamin B12 in their diets. You can take steps to prevent pernicious anemia caused by dietary factors. Eating foods high in vitamin B12 can help prevent low vitamin B12 levels. Good food sources of vitamin B12 include: Breakfast cereals with added vitamin B12 Meats such as beef, liver, poultry, and fish Eggs and dairy products (such as milk, yogurt, and cheese) Foods fortified with vitamin B12, such as soy-based beverages and vegetarian burgers If youre a strict vegetarian, talk with your doctor about having your vitamin B12 level checked regularly. Vitamin B12 also is found in multivitamins and B-complex vitamin supplements. Doctors may recommend supplements for people at risk for vitamin B12 deficiency, such as strict vegetarians or people who have had stomach surgery. Older adults may have trouble absorbing vitamin B12. Thus, doctors may recommend that older adults eat foods fortified with vitamin B12 or take vitamin B12 supplements.
What is (are) Hemophilia ?
Espaol Hemophilia (heem-o-FILL-ee-ah) is a rare bleeding disorder in which the blood doesn't clot normally. If you have hemophilia, you may bleed for a longer time than others after an injury. You also may bleed inside your body (internally), especially in your knees, ankles, and elbows. This bleeding can damage your organs and tissues and may be life threatening. Overview Hemophilia usually is inherited. "Inherited means that the disorder is passed from parents to children through genes. People born with hemophilia have little or no clotting factor. Clotting factor is a protein needed for normal blood clotting. There are several types of clotting factors. These proteins work with platelets (PLATE-lets) to help the blood clot. Platelets are small blood cell fragments that form in the bone marrowa sponge-like tissue in the bones. Platelets play a major role in blood clotting. When blood vessels are injured, clotting factors help platelets stick together to plug cuts and breaks on the vessels and stop bleeding. The two main types of hemophilia are A and B. If you have hemophilia A, you're missing or have low levels of clotting factor VIII (8). About 8 out of 10 people who have hemophilia have type A. If you have hemophilia B, you're missing or have low levels of clotting factor IX (9). Rarely, hemophilia can be acquired. "Acquired means you aren't born with the disorder, but you develop it during your lifetime. This can happen if your body forms antibodies (proteins) that attack the clotting factors in your bloodstream. The antibodies can prevent the clotting factors from working. This article focuses on inherited hemophilia. Outlook Hemophilia can be mild, moderate, or severe, depending on how much clotting factor is in your blood. About 7 out of 10 people who have hemophilia A have the severe form of the disorder. People who don't have hemophilia have a factor VIII activity of 100 percent. People who have severe hemophilia A have a factor VIII activity of less than 1 percent. Hemophilia usually occurs in males (with rare exceptions). About 1 in 5,000 males are born with hemophilia each year.
What causes Hemophilia ?
A defect in one of the genes that determines how the body makes blood clotting factor VIII or IX causes hemophilia. These genes are located on the X chromosomes (KRO-muh-somz). Chromosomes come in pairs. Females have two X chromosomes, while males have one X and one Y chromosome. Only the X chromosome carries the genes related to clotting factors. A male who has a hemophilia gene on his X chromosome will have hemophilia. When a female has a hemophilia gene on only one of her X chromosomes, she is a "hemophilia carrier and can pass the gene to her children. Sometimes carriers have low levels of clotting factor and have symptoms of hemophilia, including bleeding. Clotting factors are proteins in the blood that work together with platelets to stop or control bleeding. Very rarely, a girl may be born with a very low clotting factor level and have a greater risk for bleeding, similar to boys who have hemophilia and very low levels of clotting factor. There are several hereditary and genetic causes of this much rarer form of hemophilia in females. Some males who have the disorder are born to mothers who aren't carriers. In these cases, a mutation (random change) occurs in the gene as it is passed to the child. Below are two examples of how the hemophilia gene is inherited. Inheritance Pattern for HemophiliaExample 1 Each daughter has a 50 percent chance of inheriting the hemophilia gene from her mother and being a carrier. Each son has a 50 percent chance of inheriting the hemophilia gene from his mother and having hemophilia. Inheritance Pattern for HemophiliaExample 2 Each daughter will inherit the hemophilia gene from her father and be a carrier. None of the sons will inherit the hemophilia gene from their father; thus, none will have hemophilia.
What are the symptoms of Hemophilia ?
The major signs and symptoms of hemophilia are excessive bleeding and easy bruising. Excessive Bleeding The extent of bleeding depends on how severe the hemophilia is. Children who have mild hemophilia may not have signs unless they have excessive bleeding from a dental procedure, an accident, or surgery. Males who have severe hemophilia may bleed heavily after circumcision. Bleeding can occur on the body's surface (external bleeding) or inside the body (internal bleeding). Signs of external bleeding may include: Bleeding in the mouth from a cut or bite or from cutting or losing a tooth Nosebleeds for no obvious reason Heavy bleeding from a minor cut Bleeding from a cut that resumes after stopping for a short time Signs of internal bleeding may include: Blood in the urine (from bleeding in the kidneys or bladder) Blood in the stool (from bleeding in the intestines or stomach) Large bruises (from bleeding into the large muscles of the body) Bleeding in the Joints Bleeding in the knees, elbows, or other joints is another common form of internal bleeding in people who have hemophilia. This bleeding can occur without obvious injury. At first, the bleeding causes tightness in the joint with no real pain or any visible signs of bleeding. The joint then becomes swollen, hot to touch, and painful to bend. Swelling continues as bleeding continues. Eventually, movement in the joint is temporarily lost. Pain can be severe. Joint bleeding that isn't treated quickly can damage the joint. Bleeding in the Brain Internal bleeding in the brain is a very serious complication of hemophilia. It can happen after a simple bump on the head or a more serious injury. The signs and symptoms of bleeding in the brain include: Long-lasting, painful headaches or neck pain or stiffness Repeated vomiting Sleepiness or changes in behavior Sudden weakness or clumsiness of the arms or legs or problems walking Double vision Convulsions or seizures
How to diagnose Hemophilia ?
If you or your child appears to have a bleeding problem, your doctor will ask about your personal and family medical histories. This will reveal whether you or your family members, including women and girls, have bleeding problems. However, some people who have hemophilia have no recent family history of the disease. You or your child also will likely have a physical exam and blood tests to diagnose hemophilia. Blood tests are used to find out: How long it takes for your blood to clot Whether your blood has low levels of any clotting factors Whether any clotting factors are completely missing from your blood The test results will show whether you have hemophilia, what type of hemophilia you have, and how severe it is. Hemophilia A and B are classified as mild, moderate, or severe, depending on the amount of clotting factor VIII or IX in the blood. The severity of symptoms can overlap between the categories. For example, some people who have mild hemophilia may have bleeding problems almost as often or as severe as some people who have moderate hemophilia. Severe hemophilia can cause serious bleeding problems in babies. Thus, children who have severe hemophilia usually are diagnosed during the first year of life. People who have milder forms of hemophilia may not be diagnosed until they're adults. The bleeding problems of hemophilia A and hemophilia B are the same. Only special blood tests can tell which type of the disorder you or your child has. Knowing which type is important because the treatments are different. Pregnant women who are known hemophilia carriers can have the disorder diagnosed in their unborn babies as early as 12 weeks into their pregnancies. Women who are hemophilia carriers also can have "preimplantation diagnosis" to have children who don't have hemophilia. For this process, women have their eggs removed and fertilized by sperm in a laboratory. The embryos are then tested for hemophilia. Only embryos without the disorder are implanted in the womb.
What are the treatments for Hemophilia ?
Treatment With Replacement Therapy The main treatment for hemophilia is called replacement therapy. Concentrates of clotting factor VIII (for hemophilia A) or clotting factor IX (for hemophilia B) are slowly dripped or injected into a vein. These infusions help replace the clotting factor that's missing or low. Clotting factor concentrates can be made from human blood. The blood is treated to prevent the spread of diseases, such as hepatitis. With the current methods of screening and treating donated blood, the risk of getting an infectious disease from human clotting factors is very small. To further reduce the risk, you or your child can take clotting factor concentrates that aren't made from human blood. These are called recombinant clotting factors. Clotting factors are easy to store, mix, and use at homeit only takes about 15 minutes to receive the factor. You may have replacement therapy on a regular basis to prevent bleeding. This is called preventive or prophylactic (PRO-fih-lac-tik) therapy. Or, you may only need replacement therapy to stop bleeding when it occurs. This use of the treatment, on an as-needed basis, is called demand therapy. Demand therapy is less intensive and expensive than preventive therapy. However, there's a risk that bleeding will cause damage before you receive the demand therapy. Complications of Replacement Therapy Complications of replacement therapy include: Developing antibodies (proteins) that attack the clotting factor Developing viral infections from human clotting factors Damage to joints, muscles, or other parts of the body resulting from delays in treatment Antibodies to the clotting factor. Antibodies can destroy the clotting factor before it has a chance to work. This is a very serious problem. It prevents the main treatment for hemophilia (replacement therapy) from working. These antibodies, also called inhibitors, develop in about 2030 percent of people who have severe hemophilia A. Inhibitors develop in 25 percent of people who have hemophilia B. When antibodies develop, doctors may use larger doses of clotting factor or try different clotting factor sources. Sometimes the antibodies go away. Researchers are studying new ways to deal with antibodies to clotting factors. Viruses from human clotting factors. Clotting factors made from human blood can carry the viruses that cause HIV/AIDS and hepatitis. However, the risk of getting an infectious disease from human clotting factors is very small due to: Careful screening of blood donors Testing of donated blood products Treating donated blood products with a detergent and heat to destroy viruses Vaccinating people who have hemophilia for hepatitis A and B Damage to joints, muscles, and other parts of the body. Delays in treatment can cause damage such as: Bleeding into a joint. If this happens many times, it can lead to changes in the shape of the joint and impair the joint's function. Swelling of the membrane around a joint. Pain, swelling, and redness of a joint. Pressure on a joint from swelling, which can destroy the joint. Home Treatment With Replacement Therapy You can do both preventive (ongoing) and demand (as-needed) replacement therapy at home. Many people learn to do the infusions at home for their child or for themselves. Home treatment has several advantages: You or your child can get quicker treatment when bleeding happens. Early treatment lowers the risk of complications. Fewer visits to the doctor or emergency room are needed. Home treatment costs less than treatment in a medical care setting. Home treatment helps children accept treatment and take responsibility for their own health. Discuss options for home treatment with your doctor or your child's doctor. A doctor or other health care provider can teach you the steps and safety procedures for home treatment. Hemophilia treatment centers are another good resource for learning about home treatment (discussed in "Living With Hemophilia). Doctors can surgically implant vein access devices to make it easier for you to access a vein for treatment with replacement therapy. These devices can be helpful if treatment occurs often. However, infections can be a problem with these devices. Your doctor can help you decide whether this type of device is right for you or your child. Other Types of Treatment Desmopressin Desmopressin (DDAVP) is a man-made hormone used to treat people who have mild hemophilia A. DDAVP isn't used to treat hemophilia B or severe hemophilia A. DDAVP stimulates the release of stored factor VIII and von Willebrand factor; it also increases the level of these proteins in your blood. Von Willebrand factor carries and binds factor VIII, which can then stay in the bloodstream longer. DDAVP usually is given by injection or as nasal spray. Because the effect of this medicine wears off if it's used often, the medicine is given only in certain situations. For example, you may take this medicine prior to dental work or before playing certain sports to prevent or reduce bleeding. Antifibrinolytic Medicines Antifibrinolytic medicines (including tranexamic acid and epsilon aminocaproic acid) may be used with replacement therapy. They're usually given as a pill, and they help keep blood clots from breaking down. These medicines most often are used before dental work or to treat bleeding from the mouth or nose or mild intestinal bleeding. Gene Therapy Researchers are trying to find ways to correct the faulty genes that cause hemophilia. Gene therapy hasn't yet developed to the point that it's an accepted treatment for hemophilia. However, researchers continue to test gene therapy in clinical trials. For more information, go to the "Clinical Trials" section of this article. Treatment of a Specific Bleeding Site Pain medicines, steroids, and physical therapy may be used to reduce pain and swelling in an affected joint. Talk with your doctor or pharmacist about which medicines are safe for you to take. Which Treatment Is Best for You? The type of treatment you or your child receives depends on several things, including how severe the hemophilia is, the activities you'll be doing, and the dental or medical procedures you'll be having. Mild hemophiliaReplacement therapy usually isn't needed for mild hemophilia. Sometimes, though, DDAVP is given to raise the body's level of factor VIII. Moderate hemophiliaYou may need replacement therapy only when bleeding occurs or to prevent bleeding that could occur when doing certain activities. Your doctor also may recommend DDAVP prior to having a procedure or doing an activity that increases the risk of bleeding. Severe hemophiliaYou usually need replacement therapy to prevent bleeding that could damage your joints, muscles, or other parts of your body. Typically, replacement therapy is given at home two or three times a week. This preventive therapy usually is started in patients at a young age and may need to continue for life. For both types of hemophilia, getting quick treatment for bleeding is important. Quick treatment can limit damage to your body. If you or your child has hemophilia, learn to recognize signs of bleeding. Other family members also should learn to watch for signs of bleeding in a child who has hemophilia. Children sometimes ignore signs of bleeding because they want to avoid the discomfort of treatment.
What is (are) Fanconi Anemia ?
Fanconi anemia (fan-KO-nee uh-NEE-me-uh), or FA, is a rare, inherited blood disorder that leads to bone marrow failure. The disorder also is called Fanconis anemia. FA prevents your bone marrow from making enough new blood cells for your body to work normally. FA also can cause your bone marrow to make many faulty blood cells. This can lead to serious health problems, such as leukemia (a type of blood cancer). Although FA is a blood disorder, it also can affect many of your body's organs, tissues, and systems. Children who inherit FA are at higher risk of being born with birth defects. FA also increases the risk of some cancers and other serious health problems. FA is different from Fanconi syndrome. Fanconi syndrome affects the kidneys. It's a rare and serious condition that mostly affects children. Children who have Fanconi syndrome pass large amounts of key nutrients and chemicals through their urine. These children may have serious health and developmental problems. Bone Marrow and Blood Bone marrow is the spongy tissue inside the large bones of your body. Healthy bone marrow contains stem cells that develop into the three types of blood cells that the body needs: Red blood cells, which carry oxygen to all parts of your body. Red blood cells also remove carbon dioxide (a waste product) from your body's cells and carry it to the lungs to be exhaled. White blood cells, which help fight infections. Platelets (PLATE-lets), which help your blood clot. It's normal for blood cells to die. The lifespan of red blood cells is about 120 days. White blood cells live less than 1 day. Platelets live about 6 days. As a result, your bone marrow must constantly make new blood cells. If your bone marrow can't make enough new blood cells to replace the ones that die, serious health problems can occur. Fanconi Anemia and Your Body FA is one of many types of anemia. The term "anemia" usually refers to a condition in which the blood has a lower than normal number of red blood cells. FA is a type of aplastic anemia. In aplastic anemia, the bone marrow stops making or doesn't make enough of all three types of blood cells. Low levels of the three types of blood cells can harm many of the body's organs, tissues, and systems. With too few red blood cells, your body's tissues won't get enough oxygen to work well. With too few white blood cells, your body may have problems fighting infections. This can make you sick more often and make infections worse. With too few platelets, your blood cant clot normally. As a result, you may have bleeding problems. Outlook People who have FA have a greater risk than other people for some cancers. About 10percent of people who have FA develop leukemia. People who have FA and survive to adulthood are much more likely than others to develop cancerous solid tumors. The risk of solid tumors increases with age in people who have FA. These tumors can develop in the mouth, tongue, throat, or esophagus (eh-SOF-ah-gus). (The esophagus is the passage leading from the mouth to the stomach.) Women who have FA are at much greater risk than other women of developing tumors in the reproductive organs. FA is an unpredictable disease. The average lifespan for people who have FA is between 20 and 30 years. The most common causes of death related to FA are bone marrow failure, leukemia, and solid tumors. Advances in care and treatment have improved the chances of surviving longer with FA. Blood and marrow stem cell transplant is the major advance in treatment. However, even with this treatment, the risk of some cancers is greater in people who have FA.
What causes Fanconi Anemia ?
Fanconi anemia (FA) is an inherited disease. The term inherited means that the disease is passed from parents to children through genes. At least 13 faulty genes are associated with FA. FA occurs when both parents pass the same faulty FA gene to their child. People who have only one faulty FA gene are FA "carriers." Carriers don't have FA, but they can pass the faulty gene to their children. If both of your parents have a faulty FA gene, you have: A 25 percent chance of having FA A 25 percent chance of not having FA A 50 percent chance of being an FA carrier and passing the gene to any children you have If only one of your parents has a faulty FA gene, you won't have the disorder. However, you have a 50 percent chance of being an FA carrier and passing the gene to any children you have.
Who is at risk for Fanconi Anemia? ?
Fanconi anemia (FA) occurs in all racial and ethnic groups and affects men and women equally. In the United States, about 1 out of every 181 people is an FA carrier. This carrier rate leads to about 1 in 130,000 people being born with FA. Two ethnic groups, Ashkenazi Jews and Afrikaners, are more likely than other groups to have FA or be FA carriers. Ashkenazi Jews are people who are descended from the Jewish population of Eastern Europe. Afrikaners are White natives of South Africa who speak a language called Afrikaans. This ethnic group is descended from early Dutch, French, and German settlers. In the United States, 1 out of 90 Ashkenazi Jews is an FA carrier, and 1 out of 30,000 is born with FA. Major Risk Factors FA is an inherited diseasethat is, it's passed from parents to children through genes. At least 13 faulty genes are associated with FA. FA occurs if both parents pass the same faulty FA gene to their child. Children born into families with histories of FA are at risk of inheriting the disorder. Children whose mothers and fathers both have family histories of FA are at even greater risk. A family history of FA means that it's possible that a parent carries a faulty gene associated with the disorder. Children whose parents both carry the same faulty gene are at greatest risk of inheriting FA. Even if these children aren't born with FA, they're still at risk of being FA carriers. Children who have only one parent who carries a faulty FA gene also are at risk of being carriers. However, they're not at risk of having FA.
What are the symptoms of Fanconi Anemia ?
Major Signs and Symptoms Your doctor may suspect you or your child has Fanconi anemia (FA) if you have signs and symptoms of: Anemia Bone marrow failure Birth defects Developmental or eating problems FA is an inherited disorderthat is, it's passed from parents to children through genes. If a child has FA, his or her brothers and sisters also should be tested for the disorder. Anemia The most common symptom of all types of anemia is fatigue (tiredness). Fatigue occurs because your body doesn't have enough red blood cells to carry oxygen to its various parts. If you have anemia, you may not have the energy to do normal activities. A low red blood cell count also can cause shortness of breath, dizziness, headaches, coldness in your hands and feet, pale skin, and chest pain. Bone Marrow Failure When your bone marrow fails, it can't make enough red blood cells, white blood cells, and platelets. This can cause many problems that have various signs and symptoms. With too few red blood cells, you can develop anemia. In FA, the size of your red blood cells also can be much larger than normal. This makes it harder for the cells to work well. With too few white blood cells, you're at risk for infections. Infections also may last longer and be more serious than normal. With too few platelets, you may bleed and bruise easily, suffer from internal bleeding, or have petechiae (pe-TEE-kee-ay). Petechiae are tiny red or purple spots on the skin. Bleeding in small blood vessels just below your skin causes these spots. In some people who have FA, the bone marrow makes a lot of harmful, immature white blood cells called blasts. Blasts don't work like normal blood cells. As they build up, they prevent the bone marrow from making enough normal blood cells. A large number of blasts in the bone marrow can lead to a type of blood cancer called acute myeloid leukemia (AML). Birth Defects Many birth defects can be signs of FA. These include: Bone or skeletal defects. FA can cause missing, oddly shaped, or three or more thumbs. Arm bones, hips, legs, hands, and toes may not form fully or normally. People who have FA may have a curved spine, a condition called scoliosis (sco-le-O-sis). Eye and ear defects. The eyes, eyelids, and ears may not have a normal shape. Children who have FA also might be born deaf. Skin discoloration. This includes coffee-colored areas or odd-looking patches of lighter skin. Kidney problems. A child who has FA might be born with a missing kidney or kidneys that aren't shaped normally. Congenital heart defects. The most common congenital heart defect linked to FA is a ventricular septal defect (VSD). A VSD is a hole or defect in the lower part of the wall that separates the hearts left and right chambers. Developmental Problems Other signs and symptoms of FA are related to physical and mental development. They include: Low birth weight Poor appetite Delayed growth Below-average height Small head size Mental retardation or learning disabilities Signs and Symptoms of Fanconi Anemia in Adults Some signs and symptoms of FA may develop as you or your child gets older. Women who have FA may have some or all of the following: Sex organs that are less developed than normal Menstruating later than women who don't have FA Starting menopause earlier than women who don't have FA Problems getting pregnant and carrying a pregnancy to full term Men who have FA may have sex organs that are less developed than normal. They also may be less fertile than men who don't have the disease.
How to diagnose Fanconi Anemia ?
People who have Fanconi anemia (FA) are born with the disorder. They may or may not show signs or symptoms of it at birth. For this reason, FA isn't always diagnosed when a person is born. In fact, most people who have the disorder are diagnosed between the ages of 2 and 15 years. The tests used to diagnose FA depend on a person's age and symptoms. In all cases, medical and family histories are an important part of diagnosing FA. However, because FA has many of the same signs and symptoms as other diseases, only genetic testing can confirm its diagnosis. Specialists Involved A geneticist is a doctor or scientist who studies how genes work and how diseases and traits are passed from parents to children through genes. Geneticists do genetic testing for FA. They also can provide counseling about how FA is inherited and the types of prenatal (before birth) testing used to diagnose it. An obstetrician may detect birth defects linked to FA before your child is born. An obstetrician is a doctor who specializes in providing care for pregnant women. After your child is born, a pediatrician also can help find out whether your child has FA. A pediatrician is a doctor who specializes in treating children and teens. A hematologist (blood disease specialist) also may help diagnose FA. Family and Medical Histories FA is an inherited disease. Some parents are aware that their family has a medical history of FA, even if they don't have the disease. Other parents, especially if they're FA carriers, may not be aware of a family history of FA. Many parents may not know that FA can be passed from parents to children. Knowing your family medical history can help your doctor diagnose whether you or your child has FA or another condition with similar symptoms. If your doctor thinks that you, your siblings, or your children have FA, he or she may ask you detailed questions about: Any personal or family history of anemia Any surgeries youve had related to the digestive system Any personal or family history of immune disorders Your appetite, eating habits, and any medicines you take If you know your family has a history of FA, or if your answers to your doctor's questions suggest a possible diagnosis of FA, your doctor will recommend further testing. Diagnostic Tests and Procedures The signs and symptoms of FA aren't unique to the disease. They're also linked to many other diseases and conditions, such as aplastic anemia. For this reason, genetic testing is needed to confirm a diagnosis of FA. Genetic tests for FA include the following. Chromosome Breakage Test This is the most common test for FA. It's available only in special laboratories (labs). It shows whether your chromosomes (long chains of genes) break more easily than normal. Skin cells sometimes are used for the test. Usually, though, a small amount of blood is taken from a vein in your arm using a needle. A technician combines some of the blood cells with certain chemicals. If you have FA, the chromosomes in your blood sample break and rearrange when mixed with the test chemicals. This doesn't happen in the cells of people who don't have FA. Cytometric Flow Analysis Cytometric flow analysis, or CFA, is done in a lab. This test examines how chemicals affect your chromosomes as your cells grow and divide. Skin cells are used for this test. A technician mixes the skin cells with chemicals that can cause the chromosomes in the cells to act abnormally. If you have FA, your cells are much more sensitive to these chemicals. The chromosomes in your skin cells will break at a high rate during the test. This doesn't happen in the cells of people who don't have FA. Mutation Screening A mutation is an abnormal change in a gene or genes. Geneticists and other specialists can examine your genes, usually using a sample of your skin cells. With special equipment and lab processes, they can look for gene mutations that are linked to FA. Diagnosing Different Age Groups Before Birth (Prenatal) If your family has a history of FA and you get pregnant, your doctor may want to test you or your fetus for FA. Two tests can be used to diagnose FA in a developing fetus: amniocentesis (AM-ne-o-sen-TE-sis) and chorionic villus (ko-re-ON-ik VIL-us) sampling (CVS). Both tests are done in a doctor's office or hospital. Amniocentesis is done 15 to 18 weeks after a pregnant woman's last period. A doctor uses a needle to remove a small amount of fluid from the sac around the fetus. A technician tests chromosomes (chains of genes) from the fluid sample to see whether they have faulty genes associated with FA. CVS is done 10 to 12 weeks after a pregnant woman's last period. A doctor inserts a thin tube through the vagina and cervix to the placenta (the temporary organ that connects the fetus to the mother). The doctor removes a tissue sample from the placenta using gentle suction. The tissue sample is sent to a lab to be tested for genetic defects associated with FA. At Birth Three out of four people who inherit FA are born with birth defects. If your baby is born with certain birth defects, your doctor may recommend genetic testing to confirm a diagnosis of FA. For more information about these defects, go to What Are the Signs and Symptoms of Fanconi Anemia? Childhood and Later Some people who have FA are not born with birth defects. Doctors may not diagnose them with the disorder until signs of bone marrow failure or cancer occur. This usually happens within the first 10 years of life. Signs of bone marrow failure most often begin between the ages of 3 and 12 years, with 7 to 8 years as the most common ages. However, 10 percent of children who have FA aren't diagnosed until after 16 years of age. If your bone marrow is failing, you may have signs of aplastic anemia. FA is one type of aplastic anemia. In aplastic anemia, your bone marrow stops making or doesn't make enough of all three types of blood cells: red blood cells, white blood cells, and platelets. Aplastic anemia can be inherited or acquired after birth through exposure to chemicals, radiation, or medicines. Doctors diagnose aplastic anemia using: Family and medical histories and a physical exam. A complete blood count (CBC) to check the number, size, and condition of your red blood cells. The CBC also checks numbers of white blood cells and platelets. A reticulocyte (re-TIK-u-lo-site) count. This test counts the number of new red blood cells in your blood to see whether your bone marrow is making red blood cells at the proper rate. Bone marrow tests. For a bone marrow aspiration, a small amount of liquid bone marrow is removed and tested to see whether it's making enough blood cells. For a bone marrow biopsy, a small amount of bone marrow tissue is removed and tested to see whether it's making enough blood cells. If you or your child is diagnosed with aplastic anemia, your doctor will want to find the cause. If your doctor suspects you have FA, he or she may recommend genetic testing. For more information, go to the Health Topics Aplastic Anemia article.
What are the treatments for Fanconi Anemia ?
Doctors decide how to treat Fanconi anemia (FA) based on a person's age and how well the person's bone marrow is making new blood cells. Goals of Treatment Long-term treatments for FA can: Cure the anemia. Damaged bone marrow cells are replaced with healthy ones that can make enough of all three types of blood cells on their own. Or Treat the symptoms without curing the cause. This is done using medicines and other substances that can help your body make more blood cells for a limited time. Screening and Short-Term Treatment Even if you or your child has FA, your bone marrow might still be able to make enough new blood cells. If so, your doctor might suggest frequent blood count checks so he or she can watch your condition. Your doctor will probably want you to have bone marrow tests once a year. He or she also will screen you for any signs of cancer or tumors. If your blood counts begin to drop sharply and stay low, your bone marrow might be failing. Your doctor may prescribe antibiotics to help your body fight infections. In the short term, he or she also may want to give you blood transfusions to increase your blood cell counts to normal levels. However, long-term use of blood transfusions can reduce the chance that other treatments will work. Long-Term Treatment The four main types of long-term treatment for FA are: Blood and marrow stem cell transplant Androgen therapy Synthetic growth factors Gene therapy Blood and Marrow Stem Cell Transplant A blood and marrow stem cell transplant is the current standard treatment for patients who have FA that's causing major bone marrow failure. Healthy stem cells from another person, called a donor, are used to replace the faulty cells in your bone marrow. If you're going to receive stem cells from another person, your doctor will want to find a donor whose stem cells match yours as closely as possible. Stem cell transplants are most successful in younger people who: Have few or no serious health problems Receive stem cells from a brother or sister who is a good donor match Have had few or no previous blood transfusions During the transplant, you'll get donated stem cells in a procedure that's like a blood transfusion. Once the new stem cells are in your body, they travel to your bone marrow and begin making new blood cells. A successful stem cell transplant will allow your body to make enough of all three types of blood cells. Even if you've had a stem cell transplant to treat FA, youre still at risk for some types of blood cancer and cancerous solid tumors. Your doctor will check your health regularly after the procedure. For more information about stem cell transplantsincluding finding a donor, having the procedure, and learning about the risksgo to the Health Topics Blood and Marrow Stem Cell Transplant article. Androgen Therapy Before improvements made stem cell transplants more effective, androgen therapy was the standard treatment for people who had FA. Androgens are man-made male hormones that can help your body make more blood cells for long periods. Androgens increase your red blood cell and platelet counts. They don't work as well at raising your white blood cell count. Unlike a stem cell transplant, androgens don't allow your bone marrow to make enough of all three types of blood cells on its own. You may need ongoing treatment with androgens to control the effects of FA. Also, over time, androgens lose their ability to help your body make more blood cells, which means you'll need other treatments. Androgen therapy can have serious side effects, such as liver disease. This treatment also can't prevent you from developing leukemia (a type of blood cancer). Synthetic Growth Factors Your doctor may choose to treat your FA with growth factors. These are substances found in your body, but they also can be man-made. Growth factors help your body make more red and white blood cells. Growth factors that help your body make more platelets still are being studied. More research is needed on growth factor treatment for FA. Early results suggest that growth factors may have fewer and less serious side effects than androgens. Gene Therapy Researchers are looking for ways to replace faulty FA genes with normal, healthy genes. They hope these genes will make proteins that can repair and protect your bone marrow cells. Early results of this therapy hold promise, but more research is needed. Surgery FA can cause birth defects that affect the arms, thumbs, hips, legs, and other parts of the body. Doctors may recommend surgery to repair some defects. For example, your child might be born with a ventricular septal defecta hole or defect in the wall that separates the lower chambers of the heart. His or her doctor may recommend surgery to close the hole so the heart can work properly. Children who have FA also may need surgery to correct digestive system problems that can harm their nutrition, growth, and survival. One of the most common problems is an FA-related birth defect in which the trachea (windpipe), which carries air to the lungs, is connected to the esophagus, which carries food to the stomach. This can cause serious breathing, swallowing, and eating problems and can lead to lung infections. Surgery is needed to separate the two organs and allow normal eating and breathing.
How to prevent Fanconi Anemia ?
ou can't prevent Fanconi anemia (FA) because it's an inherited disease. If a child gets two copies of the same faulty FA gene, he or she will have the disease. If you're at high risk for FA and are planning to have children, you may want to consider genetic counseling. A counselor can help you understand your risk of having a child who has FA. He or she also can explain the choices that are available to you. If you're already pregnant, genetic testing can show whether your child has FA. For more information on genetic testing, go to "How Is Fanconi Anemia Diagnosed?" In the United States, Ashkenazi Jews (Jews of Eastern European descent) are at higher risk for FA than other ethnic groups. For Ashkenazi Jews, it's recommended that prospective parents get tested for FA-related gene mutations before getting pregnant. Preventing Complications If you or your child has FA, you can prevent some health problems related to the disorder. Pneumonia, hepatitis, and chicken pox can occur more often and more severely in people who have FA compared with those who don't. Ask your doctor about vaccines for these conditions. People who have FA also are at higher risk than other people for some cancers. These cancers include leukemia (a type of blood cancer), myelodysplastic syndrome (abnormal levels of all three types of blood cells), and liver cancer. Screening and early detection can help manage these life-threatening diseases.
What is (are) Bronchopulmonary Dysplasia ?
Bronchopulmonary (BRONG-ko-PUL-mo-NAR-e) dysplasia (dis-PLA-ze-ah), or BPD, is a serious lung condition that affects infants. BPD mostly affects premature infants who need oxygen therapy (oxygen given through nasal prongs, a mask, or a breathing tube). Most infants who develop BPD are born more than 10 weeks before their due dates, weigh less than 2 pounds (about 1,000 grams) at birth, and have breathing problems. Infections that occur before or shortly after birth also can contribute to BPD. Some infants who have BPD may need long-term breathing support from nasal continuous positive airway pressure (NCPAP) machines or ventilators. Overview Many babies who develop BPD are born with serious respiratory distress syndrome (RDS). RDS is a breathing disorder that mostly affects premature newborns. These infants' lungs aren't fully formed or aren't able to make enough surfactant (sur-FAK-tant). Surfactant is a liquid that coats the inside of the lungs. It helps keep them open so an infant can breathe in air once he or she is born. Without surfactant, the lungs collapse, and the infant has to work hard to breathe. He or she might not be able to breathe in enough oxygen to support the body's organs. Without proper treatment, the lack of oxygen may damage the infant's brain and other organs. Babies who have RDS are treated with surfactant replacement therapy. They also may need oxygen therapy. Shortly after birth, some babies who have RDS also are treated with NCPAP or ventilators (machines that support breathing). Often, the symptoms of RDS start to improve slowly after about a week. However, some babies get worse and need more oxygen or breathing support from NCPAP or a ventilator. If premature infants still require oxygen therapy by the time they reach their original due dates, they're diagnosed with BPD. Outlook Advances in care now make it possible for more premature infants to survive. However, these infants are at high risk for BPD. Most babies who have BPD get better in time, but they may need treatment for months or even years. They may continue to have lung problems throughout childhood and even into adulthood. There's some concern about whether people who had BPD as babies can ever have normal lung function. As children who have BPD grow, their parents can help reduce the risk of BPD complications. Parents can encourage healthy eating habits and good nutrition. They also can avoid cigarette smoke and other lung irritants.
What causes Bronchopulmonary Dysplasia ?
Bronchopulmonary dysplasia (BPD) develops as a result of an infant's lungs becoming irritated or inflamed. The lungs of premature infants are fragile and often aren't fully developed. They can easily be irritated or injured within hours or days of birth. Many factors can damage premature infants' lungs. Ventilation Newborns who have breathing problems or can't breathe on their own may need ventilator support. Ventilators are machines that use pressure to blow air into the airways and lungs. Although ventilator support can help premature infants survive, the machine's pressure might irritate and harm the babies' lungs. For this reason, doctors only recommend ventilator support when necessary. High Levels of Oxygen Newborns who have breathing problems might need oxygen therapy (oxygen given through nasal prongs, a mask, or a breathing tube). This treatment helps the infants' organs get enough oxygen to work well. However, high levels of oxygen can inflame the lining of the lungs and injure the airways. Also, high levels of oxygen can slow lung development in premature infants. Infections Infections can inflame the lungs. As a result, the airways narrow, which makes it harder for premature infants to breathe. Lung infections also increase the babies' need for extra oxygen and breathing support. Heredity Studies show that heredity may play a role in causing BPD. More studies are needed to confirm this finding.
Who is at risk for Bronchopulmonary Dysplasia? ?
The more premature an infant is and the lower his or her birth weight, the greater the risk of bronchopulmonary dysplasia (BPD). Most infants who develop BPD are born more than 10 weeks before their due dates, weigh less than 2 pounds (about 1,000 grams) at birth, and have breathing problems. Infections that occur before or shortly after birth also can contribute to BPD. The number of babies who have BPD is higher now than in the past. This is because of advances in care that help more premature infants survive. Many babies who develop BPD are born with serious respiratory distress syndrome (RDS). However, some babies who have mild RDS or don't have RDS also develop BPD. These babies often have very low birth weights and one or more other conditions, such as patent ductus arteriosus (PDA) and sepsis. PDA is a heart problem that occurs soon after birth in some babies. Sepsis is a serious bacterial infection in the bloodstream.
What are the symptoms of Bronchopulmonary Dysplasia ?
Many babies who develop bronchopulmonary dysplasia (BPD) are born with serious respiratory distress syndrome (RDS). The signs and symptoms of RDS at birth are: Rapid, shallow breathing Sharp pulling in of the chest below and between the ribs with each breath Grunting sounds Flaring of the nostrils Babies who have RDS are treated with surfactant replacement therapy. They also may need oxygen therapy (oxygen given through nasal prongs, a mask, or a breathing tube). Shortly after birth, some babies who have RDS also are treated with nasal continuous positive airway pressure (NCPAP) or ventilators (machines that support breathing). Often, the symptoms of RDS start to improve slowly after about a week. However, some babies get worse and need more oxygen or breathing support from NCPAP or a ventilator. A first sign of BPD is when premature infantsusually those born more than 10 weeks earlystill need oxygen therapy by the time they reach their original due dates. These babies are diagnosed with BPD. Infants who have severe BPD may have trouble feeding, which can lead to delayed growth. These babies also may develop: Pulmonary hypertension (PH). PH is increased pressure in the pulmonary arteries. These arteries carry blood from the heart to the lungs to pick up oxygen. Cor pulmonale. Cor pulmonale is failure of the right side of the heart. Ongoing high blood pressure in the pulmonary arteries and the lower right chamber of the heart causes this condition.
How to diagnose Bronchopulmonary Dysplasia ?
Infants who are born earlyusually more than 10 weeks before their due datesand still need oxygen therapy by the time they reach their original due dates are diagnosed with bronchopulmonary dysplasia (BPD). BPD can be mild, moderate, or severe. The diagnosis depends on how much extra oxygen a baby needs at the time of his or her original due date. It also depends on how long the baby needs oxygen therapy. To help confirm a diagnosis of BPD, doctors may recommend tests, such as: Chest x ray. A chest x ray takes pictures of the structures inside the chest, such as the heart and lungs. In severe cases of BPD, this test may show large areas of air and signs of inflammation or infection in the lungs. A chest x ray also can detect problems (such as a collapsed lung) and show whether the lungs aren't developing normally. Blood tests. Blood tests are used to see whether an infant has enough oxygen in his or her blood. Blood tests also can help determine whether an infection is causing an infant's breathing problems. Echocardiography. This test uses sound waves to create a moving picture of the heart. Echocardiography is used to rule out heart defects or pulmonary hypertension as the cause of an infant's breathing problems
What are the treatments for Bronchopulmonary Dysplasia ?
Preventive Measures If your doctor thinks you're going to give birth too early, he or she may give you injections of a corticosteroid medicine. The medicine can speed up surfactant production in your baby. Surfactant is a liquid that coats the inside of the lungs. It helps keep the lungs open so your infant can breathe in air once he or she is born. Corticosteroids also can help your baby's lungs, brain, and kidneys develop more quickly while he or she is in the womb. Premature babies who have very low birth weights also might be given corticosteroids within the first few days of birth. Doctors sometimes prescribe inhaled nitric oxide shortly after birth for babies who have very low birth weights. This treatment can help improve the babies' lung function. These preventive measures may help reduce infants' risk of respiratory distress syndrome (RDS), which can lead to BPD. Treatment for Respiratory Distress Syndrome The goals of treating infants who have RDS include: Reducing further injury to the lungs Providing nutrition and other support to help the lungs grow and recover Preventing lung infections by giving antibiotics Treatment of RDS usually begins as soon as an infant is born, sometimes in the delivery room. Most infants who have signs of RDS are quickly moved to a neonatal intensive care unit (NICU). They receive around-the-clock treatment from health care professionals who specialize in treating premature infants. Treatments for RDS include surfactant replacement therapy, breathing support with nasal continuous positive airway pressure (NCPAP) or a ventilator, oxygen therapy (oxygen given through nasal prongs, a mask, or a breathing tube), and medicines to treat fluid buildup in the lungs. For more information about RDS treatments, go to the Health Topics Respiratory Distress Syndrome article. Treatment for Bronchopulmonary Dysplasia Treatment in the NICU is designed to limit stress on infants and meet their basic needs of warmth, nutrition, and protection. Once doctors diagnose BPD, some or all of the treatments used for RDS will continue in the NICU. Such treatment usually includes: Using radiant warmers or incubators to keep infants warm and reduce the risk of infection. Ongoing monitoring of blood pressure, heart rate, breathing, and temperature through sensors taped to the babies' bodies. Using sensors on fingers or toes to check the amount of oxygen in the infants' blood. Giving fluids and nutrients through needles or tubes inserted into the infants' veins. This helps prevent malnutrition and promotes growth. Nutrition is vital to the growth and development of the lungs. Later, babies may be given breast milk or infant formula through feeding tubes that are passed through their noses or mouths and into their throats. Checking fluid intake to make sure that fluid doesn't build up in the babies' lungs. As BPD improves, babies are slowly weaned off NCPAP or ventilators until they can breathe on their own. These infants will likely need oxygen therapy for some time. If your infant has moderate or severe BPD, echocardiography might be done every few weeks to months to check his or her pulmonary artery pressure. If your child needs long-term ventilator support, he or she will likely get a tracheostomy (TRA-ke-OS-toe-me). A tracheostomy is a surgically made hole. It goes through the front of the neck and into the trachea (TRA-ke-ah), or windpipe. Your child's doctor will put the breathing tube from the ventilator through the hole. Using a tracheostomy instead of an endotracheal (en-do-TRA-ke-al) tube has some advantages. (An endotracheal tube is a breathing tube inserted through the nose or mouth and into the windpipe.) Long-term use of an endotracheal tube can damage the trachea. This damage may need to be corrected with surgery later. A tracheostomy can allow your baby to interact more with you and the NICU staff, start talking, and develop other skills. While your baby is in the NICU, he or she also may need physical therapy. Physical therapy can help strengthen your child's muscles and clear mucus out of his or her lungs. Infants who have BPD may spend several weeks or months in the hospital. This allows them to get the care they need. Before your baby goes home, learn as much as you can about your child's condition and how it's treated. Your baby may continue to have some breathing symptoms after he or she leaves the hospital. Your child will likely continue on all or some of the treatments that were started at the hospital, including: Medicines, such as bronchodilators, steroids, and diuretics. Oxygen therapy or breathing support from NCPAP or a ventilator. Extra nutrition and calories, which may be given through a feeding tube. Preventive treatment with a medicine called palivizumab for severe respiratory syncytial virus (RSV). This common virus leads to mild, cold-like symptoms in adults and older, healthy children. However, in infantsespecially those in high-risk groupsRSV can lead to severe breathing problems. Your child also should have regular checkups with and timely vaccinations from a pediatrician. This is a doctor who specializes in treating children. If your child needs oxygen therapy or a ventilator at home, a pulmonary specialist might be involved in his or her care. Seek out support from family, friends, and hospital staff. Ask the case manager or social worker at the hospital about what you'll need after your baby leaves the hospital. The doctors and nurses can assist with questions about your infant's care. Also, you may want to ask whether your community has a support group for parents of premature infants.
How to prevent Bronchopulmonary Dysplasia ?
Taking steps to ensure a healthy pregnancy might prevent your infant from being born before his or her lungs have fully developed. These steps include: Seeing your doctor regularly during your pregnancy Following a healthy diet Not smoking and avoiding tobacco smoke, alcohol, and illegal drugs Controlling any ongoing medical conditions you have Preventing infection If your doctor thinks that you're going to give birth too early, he or she may give you injections of a corticosteroid medicine. The medicine can speed up surfactant production in your baby. Surfactant is a liquid that coats the inside of the lungs. It helps keep them open so your infant can breathe in air once he or she is born. Usually, within about 24 hours of your taking this medicine, the baby's lungs start making enough surfactant. This will reduce the infant's risk of respiratory distress syndrome (RDS), which can lead to bronchopulmonary dysplasia (BPD). Corticosteroids also can help your baby's lungs, brain, and kidneys develop more quickly while he or she is in the womb. If your baby does develop RDS, it will probably be fairly mild. If the RDS isn't mild, BPD will likely develop.
What is (are) Pericarditis ?
Pericarditis (PER-i-kar-DI-tis) is a condition in which the membrane, or sac, around your heart is inflamed. This sac is called the pericardium (per-i-KAR-de-um). The pericardium holds the heart in place and helps it work properly. The sac is made of two thin layers of tissue that enclose your heart. Between the two layers is a small amount of fluid. This fluid keeps the layers from rubbing against each other and causing friction. Pericardium In pericarditis, the layers of tissue become inflamed and can rub against the heart. This causes chest pain, a common symptom of pericarditis. The chest pain from pericarditis may feel like pain from a heart attack. More often, the pain may be sharp and get worse when you inhale, and improve when you are sitting up and leaning forward. If you have chest pain, you should call 911 right away, as you may be having a heart attack. Overview In many cases, the cause of pericarditis is unknown. Viral infections are likely a common cause of pericarditis, although the virus may never be found. Bacterial, fungal, and other infections also can cause pericarditis. Other possible causes include heart attack or heart surgery, other medical conditions, injuries, and certain medicines. Pericarditis can be acute or chronic. "Acute" means that it occurs suddenly and usually doesn't last long. "Chronic" means that it develops over time and may take longer to treat. Both acute and chronic pericarditis can disrupt your heart's normal rhythm or function and possibly (although rarely) lead to death. However, most cases of pericarditis are mild; they clear up on their own or with rest and simple treatment. Other times, more intense treatments are needed to prevent complications. Treatments may include medicines and, less often, procedures or surgery. Outlook It may take from a few days to weeks or even months to recover from pericarditis. With proper and prompt treatment, such as rest and ongoing care, most people fully recover from pericarditis. Proper treatment also can help reduce the chance of getting the condition again.
What causes Pericarditis ?
In many cases, the cause of pericarditis (both acute and chronic) is unknown. Viral infections are likely a common cause of pericarditis, although the virus may never be found. Pericarditis often occurs after a respiratory infection. Bacterial, fungal, and other infections also can cause pericarditis. Most cases of chronic, or recurring, pericarditis are thought to be the result of autoimmune disorders. Examples of such disorders include lupus, scleroderma, and rheumatoid arthritis. With autoimmune disorders, the body's immune system makes antibodies (proteins) that mistakenly attack the body's tissues or cells. Other possible causes of pericarditis are: Heart attack and heart surgery Kidney failure, HIV/AIDS, cancer, tuberculosis, and other health problems Injuries from accidents or radiation therapy Certain medicines, like phenytoin (an antiseizure medicine), warfarin and heparin (blood-thinning medicines), and procainamide (a medicine to treat irregular heartbeats)
Who is at risk for Pericarditis? ?
Pericarditis occurs in people of all ages. However, men aged 20 to 50 are more likely to develop it than others. People who are treated for acute pericarditis may get it again. This may happen in 15 to 30 percent of people who have the condition. A small number of these people go on to develop chronic pericarditis.
What are the symptoms of Pericarditis ?
The most common sign of acute pericarditis is sharp, stabbing chest pain. The pain usually comes on quickly. It often is felt in the middle or left side of the chest or over the front of the chest. You also may feel pain in one or both shoulders, the neck, back, and abdomen. The pain tends to ease when you sit up and lean forward. Lying down and deep breathing worsens it. For some people, the pain feels like a dull ache or pressure in the chest. The chest pain also may feel like pain from a heart attack. If you have chest pain, you should call 911 right away, as you may be having a heart attack. Some people with acute pericarditis develop a fever. Other symptoms are weakness, palpitations, trouble breathing, and coughing. (Palpitations are feelings that your heart is skipping a beat, fluttering, or beating too hard or too fast.) The most common symptom of chronic pericarditis is chest pain. Chronic pericarditis also often causes tiredness, coughing, and shortness of breath. Severe cases of chronic pericarditis can lead to swelling in the stomach and legs and hypotension (low blood pressure). Complications of Pericarditis Two serious complications of pericarditis are cardiac tamponade (tam-po-NAD) and chronic constrictive pericarditis. Cardiac tamponade occurs if too much fluid collects in the pericardium (the sac around the heart). The extra fluid puts pressure on the heart. This prevents the heart from properly filling with blood. As a result, less blood leaves the heart, which causes a sharp drop in blood pressure. If left untreated, cardiac tamponade can be fatal. Chronic constrictive pericarditis is a rare disease that develops over time. It leads to scar-like tissue forming throughout the pericardium. The sac becomes stiff and can't move properly. In time, the scarred tissue compresses the heart and prevents it from working well.
How to diagnose Pericarditis ?
Your doctor will diagnose pericarditis based on your medical history, a physical exam, and the results from tests. Specialists Involved Primary care doctorssuch as a family doctor, internist, or pediatricianoften diagnose and treat pericarditis. Other types of doctors also may be involved, such as a cardiologist, pediatric cardiologist, and an infectious disease specialist. A cardiologist treats adults who have heart problems. A pediatric cardiologist treats children who have heart problems. An infectious disease specialist treats people who have infections. Medical History Your doctor may ask whether you: Have had a recent respiratory infection or flu-like illness Have had a recent heart attack or injury to your chest Have any other medical conditions Your doctor also may ask about your symptoms. If you have chest pain, he or she will ask you to describe how it feels, where it's located, and whether it's worse when you lie down, breathe, or cough. Physical Exam When the pericardium (the sac around your heart) is inflamed, the amount of fluid between its two layers of tissue increases. As part of the exam, your doctor will look for signs of excess fluid in your chest. A common sign is the pericardial rub. This is the sound of the pericardium rubbing against the outer layer of your heart. Your doctor will place a stethoscope on your chest to listen for this sound. Your doctor may hear other chest sounds that are signs of fluid in the pericardium (pericardial effusion) or the lungs (pleural effusion). These are more severe problems related to pericarditis. Diagnostic Tests Your doctor may recommend one or more tests to diagnose your condition and show how severe it is. The most common tests are: EKG (electrocardiogram). This simple test detects and records your heart's electrical activity. Certain EKG results suggest pericarditis. Chest x ray. A chest x ray creates pictures of the structures inside your chest, such as your heart, lungs, and blood vessels. The pictures can show whether you have an enlarged heart. This is a sign of excess fluid in your pericardium. Echocardiography. This painless test uses sound waves to create pictures of your heart. The pictures show the size and shape of your heart and how well your heart is working. This test can show whether fluid has built up in the pericardium. Cardiac CT (computed tomography (to-MOG-rah-fee)). This is a type of x ray that takes a clear, detailed picture of your heart and pericardium. A cardiac CT helps rule out other causes of chest pain. Cardiac MRI (magnetic resonance imaging). This test uses powerful magnets and radio waves to create detailed pictures of your organs and tissues. A cardiac MRI can show changes in the pericardium. Your doctor also may recommend blood tests. These tests can help your doctor find out whether you've had a heart attack, the cause of your pericarditis, and how inflamed your pericardium is.
What are the treatments for Pericarditis ?
Most cases of pericarditis are mild; they clear up on their own or with rest and simple treatment. Other times, more intense treatment is needed to prevent complications. Treatment may include medicines and, less often, procedures or surgery. The goals of treatment include: Reducing pain and inflammation Treating the underlying cause, if it's known Checking for complications Specific Types of Treatment As a first step in your treatment, your doctor may advise you to rest until you feel better and have no fever. He or she may tell you to take over-the-counter, anti-inflammatory medicines to reduce pain and inflammation. Examples of these medicines include aspirin and ibuprofen. You may need stronger medicine if your pain is severe. If your pain continues to be severe, your doctor may prescribe a medicine called colchicine and, possibly, prednisone (a steroid medicine). If an infection is causing your pericarditis, your doctor will prescribe an antibiotic or other medicine to treat the infection. You may need to stay in the hospital during treatment for pericarditis so your doctor can check you for complications. The symptoms of acute pericarditis can last from a few days to 3 weeks. Chronic pericarditis may last several months. Other Types of Treatment You may need treatment for complications of pericarditis. Two serious complications are cardiac tamponade and chronic constrictive pericarditis. Cardiac tamponade is treated with a procedure called pericardiocentesis (per-ih-KAR-de-o-sen-TE-sis). A needle or tube (called a catheter) is inserted into the chest wall to remove excess fluid in the pericardium. This procedure relieves pressure on the heart. The only cure for chronic constrictive pericarditis is surgery to remove the pericardium. This is known as a pericardiectomy (PER-i-kar-de-EK-to-me). The treatments for these complications require hospital stays.
How to prevent Pericarditis ?
You usually can't prevent acute pericarditis. You can take steps to reduce your chance of having another acute episode, having complications, or getting chronic pericarditis. These steps include getting prompt treatment, following your treatment plan, and having ongoing medical care (as your doctor advises).
What is (are) Immune Thrombocytopenia ?
Immune thrombocytopenia (THROM-bo-si-toe-PE-ne-ah), or ITP, is a bleeding disorder. In ITP, the blood doesn't clot as it should. This is due to a low number of blood cell fragments called platelets (PLATE-lets) or thrombocytes (THROM-bo-sites). Platelets are made in your bone marrow along with other kinds of blood cells. They stick together (clot) to seal small cuts or breaks on blood vessel walls and stop bleeding. Overview Without enough platelets, bleeding can occur inside the body (internal bleeding) or underneath or from the skin (external bleeding). People who have ITP often have purple bruises called purpura (PURR-purr-ah). These bruises appear on the skin or mucous membranes (for example, in the mouth). Bleeding from small blood vessels under the skin causes purpura. People who have ITP also may have bleeding that causes tiny red or purple dots on the skin. These pinpoint-sized dots are called petechiae (peh-TEE-kee-ay). Petechiae may look like a rash. Petechiae and Purpura People who have ITP also may have nosebleeds, bleeding from the gums during dental work, or other bleeding that's hard to stop. Women who have ITP may have menstrual bleeding that's heavier than normal. A lot of bleeding can cause hematomas (he-mah-TO-mas). A hematoma is a collection of clotted or partially clotted blood under the skin. It looks or feels like a lump. Bleeding in the brain as a result of ITP is very rare, but can be life threatening if it occurs. In most cases, an autoimmune response is thought to cause ITP. Normally, your immune system helps your body fight off infections and diseases. But if you have ITP, your immune system attacks and destroys its own platelets. The reason why this happens isn't known. ITP can't be passed from one person to another. Types of Immune Thrombocytopenia The two types of ITP are acute (temporary or short-term) and chronic (long-lasting). Acute ITP generally lasts less than 6 months. It mainly occurs in childrenboth boys and girlsand is the most common type of ITP. Acute ITP often occurs after a viral infection. Chronic ITP lasts 6 months or longer and mostly affects adults. However, some teenagers and children do get this type of ITP. Chronic ITP affects women two to three times more often than men. Treatment depends on the severity of bleeding and the platelet count. In mild cases, treatment may not be needed. Outlook For most children and adults, ITP isn't a serious or life-threatening condition. Acute ITP in children often goes away on its own within a few weeks or months and doesn't return. In 80 percent of children who have ITP, the platelet count returns to normal within 6 to 12 months. Treatment may not be needed. For a small number of children, ITP doesn't go away on its own and may require further medical or surgical treatment. Chronic ITP varies from person to person and can last for many years. Even people who have severe forms of chronic ITP can live for decades. Most people who have chronic ITP can stop treatment at some point and maintain a safe platelet count.
What causes Immune Thrombocytopenia ?
In most cases, an autoimmune response is thought to cause immune thrombocytopenia (ITP). Normally, your immune system helps your body fight off infections and diseases. In ITP, however, your immune system attacks and destroys your body's platelets by mistake. Why this happens isn't known. In some people, ITP may be linked to viral or bacterial infections, such as HIV, hepatitis C, or H. pylori. Children who have acute (short-term) ITP often have had recent viral infections. These infections may "trigger" or set off the immune reaction that leads to ITP.
Who is at risk for Immune Thrombocytopenia? ?
Immune thrombocytopenia (ITP) is a fairly common blood disorder. Both children and adults can develop ITP. Children usually have the acute (short-term) type of ITP. Acute ITP often develops after a viral infection. Adults tend to have the chronic (long-lasting) type of ITP. Women are two to three times more likely than men to develop chronic ITP. The number of cases of ITP is rising because routine blood tests that can detect a low platelet count are being done more often. ITP can't be passed from one person to another.
What are the symptoms of Immune Thrombocytopenia ?
Immune thrombocytopenia (ITP) may not cause any signs or symptoms. However, ITP can cause bleeding inside the body (internal bleeding) or underneath or from the skin (external bleeding). Signs of bleeding may include: Bruising or purplish areas on the skin or mucous membranes (such as in the mouth). These bruises are called purpura. They're caused by bleeding under the skin, and they may occur for no known reason. Pinpoint red spots on the skin called petechiae. These spots often are found in groups and may look like a rash. Bleeding under the skin causes petechiae. A collection of clotted or partially clotted blood under the skin that looks or feels like a lump. This is called a hematoma. Nosebleeds or bleeding from the gums (for example, during dental work). Blood in the urine or stool (bowel movement). Any kind of bleeding that's hard to stop could be a sign of ITP. This includes menstrual bleeding that's heavier than normal. Bleeding in the brain is rare, and its symptoms may vary. A low platelet count doesn't directly cause pain, problems concentrating, or other symptoms. However, a low platelet count might be associated with fatigue (tiredness).
How to diagnose Immune Thrombocytopenia ?
Your doctor will diagnose immune thrombocytopenia (ITP) based on your medical history, a physical exam, and test results. Your doctor will want to make sure that your low platelet count isn't due to another condition (such as an infection) or medicines you're taking (such as chemotherapy medicines or aspirin). Medical History Your doctor may ask about: Your signs and symptoms of bleeding and any other signs or symptoms you're having Whether you have illnesses that could lower your platelet count or cause bleeding Medicines or any over-the-counter supplements or remedies you take that could cause bleeding or lower your platelet count Physical Exam During a physical exam, your doctor will look for signs of bleeding and infection. For example, your doctor may look for purplish areas on the skin or mucous membranes and pinpoint red spots on the skin. These are signs of bleeding under the skin. Diagnostic Tests You'll likely have blood tests to check your platelet count. These tests usually include: A complete blood count. This test checks the number of red blood cells, white blood cells, and platelets in your blood. In ITP, the red and white blood cell counts are normal, but the platelet count is low. A blood smear. For this test, some of your blood is put on a slide. A microscope is used to look at your platelets and other blood cells. You also may have a blood test to check for the antibodies (proteins) that attack platelets. If blood tests show that your platelet count is low, your doctor may recommend more tests to confirm a diagnosis of ITP. For example, bone marrow tests can show whether your bone marrow is making enough platelets. If you're at risk for HIV, hepatitis C, or H. pylori, your doctor may screen you for these infections, which might be linked to ITP. Some people who have mild ITP have few or no signs of bleeding. They may be diagnosed only if a blood test done for another reason shows that they have low platelet counts.
What are the treatments for Immune Thrombocytopenia ?
Treatment for immune thrombocytopenia (ITP) is based on how much and how often you're bleeding and your platelet count. Adults who have mild ITP may not need any treatment, other than watching their symptoms and platelet counts. Adults who have ITP with very low platelet counts or bleeding problems often are treated. The acute (short-term) type of ITP that occurs in children often goes away within a few weeks or months. Children who have bleeding symptoms, other than merely bruising (purpura), usually are treated. Children who have mild ITP may not need treatment other than monitoring and followup to make sure their platelet counts return to normal. Medicines Medicines often are used as the first course of treatment for both children and adults. Corticosteroids (cor-ti-co-STEER-roids), such as prednisone, are commonly used to treat ITP. These medicines, called steroids for short, help increase your platelet count. However, steroids have many side effects. Some people relapse (get worse) when treatment ends. The steroids used to treat ITP are different from the illegal steroids that some athletes take to enhance performance. Corticosteroids aren't habit-forming, even if you take them for many years. Other medicines also are used to raise the platelet count. Some are given through a needle inserted into a vein. These medicines include rituximab, immune globulin, and anti-Rh (D) immunoglobulin. Medicines also may be used with a procedure to remove the spleen called splenectomy (splee-NECK-tuh-mee). If medicines or splenectomy don't help, two newer medicineseltrombopag and romiplostimcan be used to treat ITP. Removal of the Spleen (Splenectomy) If needed, doctors can surgically remove the spleen. This organ is located in the upper left abdomen. The spleen is about the size of a golf ball in children and a baseball in adults. The spleen makes antibodies (proteins) that help fight infections. In ITP, these antibodies destroy platelets by mistake. If ITP hasn't responded to medicines, removing the spleen will reduce the destruction of platelets. However, it also may raise your risk for infections. Before you have the surgery, your doctor may give you vaccines to help prevent infections. If your spleen is removed, your doctor will explain what steps you can take to help avoid infections and what symptoms to watch for. Other Treatments Platelet Transfusions Some people who have ITP with severe bleeding may need to have platelet transfusions and be hospitalized. Some people will need platelet transfusions before having surgery. For a platelet transfusion, donor platelets from a blood bank are injected into the recipient's bloodstream. This increases the platelet count for a short time. For more information about platelet transfusions, go to the Health Topics Blood Transfusion article. Treating Infections Some infections can briefly lower your platelet count. Treating the infection may help increase your platelet count and reduce bleeding problems. Stopping Medicines Some medicines can lower your platelet count or cause bleeding. Stopping the medicine can sometimes help raise your platelet count or prevent bleeding. For example, aspirin and ibuprofen are common medicines that increase the risk of bleeding. If you have ITP, your doctor may suggest that you avoid these medicines.
How to prevent Immune Thrombocytopenia ?
You can't prevent immune thrombocytopenia (ITP), but you can prevent its complications. Talk with your doctor about which medicines are safe for you. Your doctor may advise you to avoid medicines that can affect your platelets and increase your risk of bleeding. Examples of such medicines include aspirin and ibuprofen. Protect yourself from injuries that can cause bruising or bleeding. Seek treatment right away if you develop any infections. Report any symptoms of infection, such as a fever, to your doctor. This is very important for people who have ITP and have had their spleens removed.
What is (are) Hemochromatosis ?
Hemochromatosis (HE-mo-kro-ma-TO-sis) is a disease in which too much iron builds up in your body (iron overload). Iron is a mineral found in many foods. Too much iron is toxic to your body. It can poison your organs and cause organ failure. In hemochromatosis, iron can build up in most of your body's organs, but especially in the liver, heart, and pancreas. Too much iron in the liver can cause an enlarged liver, liver failure, liver cancer, or cirrhosis (sir-RO-sis). Cirrhosis is scarring of the liver, which causes the organ to not work well. Too much iron in the heart can cause irregular heartbeats called arrhythmias (ah-RITH-me-ahs) and heart failure. Too much iron in the pancreas can lead to diabetes. If hemochromatosis isn't treated, it may even cause death. Overview The two types of hemochromatosis are primary and secondary. Primary hemochromatosis is caused by a defect in the genes that control how much iron you absorb from food. Secondary hemochromatosis usually is the result of another disease or condition that causes iron overload. Most people who have primary hemochromatosis inherit it from their parents. If you inherit two hemochromatosis genesone from each parentyou're at risk for iron overload and signs and symptoms of the disease. The two faulty genes cause your body to absorb more iron than usual from the foods you eat. Hemochromatosis is one of the most common genetic disorders in the United States. However, not everyone who has hemochromatosis has signs or symptoms of the disease. Estimates of how many people develop signs and symptoms vary greatly. Some estimates suggest that as many as half of all people who have the disease don't have signs or symptoms. The severity of hemochromatosis also varies. Some people don't have complications, even with high levels of iron in their bodies. Others have severe complications or die from the disease. Certain factors can affect the severity of the disease. For example, a high intake of vitamin C can make hemochromatosis worse. This is because vitamin C helps your body absorb iron from food. Alcohol use can worsen liver damage and cirrhosis caused by hemochromatosis. Conditions such as hepatitis also can further damage or weaken the liver. Outlook The outlook for people who have hemochromatosis largely depends on how much organ damage they have at the time of diagnosis. Early diagnosis and treatment of the disease are important. Treatment may help prevent, delay, or sometimes reverse complications of the disease. Treatment also may lead to better quality of life. For people who are diagnosed and treated early, a normal lifespan is possible. If left untreated, hemochromatosis can lead to severe organ damage and even death.
What causes Hemochromatosis ?
The two types of hemochromatosis are primary and secondary. Each type has a different cause. Primary Hemochromatosis Primary hemochromatosis is caused by a defect in the genes that control how much iron you absorb from food. This form of the disease sometimes is called hereditary or classical hemochromatosis. Primary hemochromatosis is more common than the secondary form of the disease. The genes usually involved in primary hemochromatosis are called HFE genes. Faulty HFE genes cause the body to absorb too much iron. If you inherit two copies of the faulty HFE gene (one from each parent), you're at risk for iron overload and signs and symptoms of hemochromatosis. If you inherit one faulty HFE gene and one normal HFE gene, you're a hemochromatosis "carrier." Carriers usually don't develop the disease. However, they can pass the faulty gene on to their children. Estimates suggest that about 1 in 10 people in the United States are hemochromatosis carriers. If two parents are carriers of the faulty HFE gene, then each of their children has a 1 in 4 chance of inheriting two faulty HFE genes. Although less common, other faulty genes also can cause hemochromatosis. Researchers continue to study what changes to normal genes may cause the disease. Secondary Hemochromatosis Secondary hemochromatosis usually is the result of another disease or condition that causes iron overload. Examples of such diseases and conditions include: Certain types of anemia, such as thalassemias and sideroblastic anemia Atransferrinemia and aceruloplasminemiaboth are rare, inherited diseases Chronic liver diseases, such as chronic hepatitis C infection, alcoholic liver disease, or nonalcoholic steatohepatitis Other factors also can cause secondary hemochromatosis, including: Blood transfusions Oral iron pills or iron injections, with or without very high vitamin C intake (vitamin C helps your body absorb iron) Long-term kidney dialysis
Who is at risk for Hemochromatosis? ?
Hemochromatosis is one of the most common genetic diseases in the United States. It's most common in Caucasians of Northern European descent. The disease is less common in African Americans, Hispanics, Asians, and American Indians. Primary hemochromatosis is more common in men than in women. Also, older people are more likely to develop the disease than younger people. In fact, signs and symptoms usually don't occur in men until they're 40 to 60 years old. In women, signs and symptoms usually don't occur until after the age of 50 (after menopause). Young children rarely develop hemochromatosis. Inheriting two faulty HFE genes (one from each parent) is the major risk factor for hemochromatosis. However, many people who have two copies of the faulty gene don't develop signs or symptoms of the disease. Alcoholism is another risk factor for hemochromatosis. A family history of certain diseases and conditions also puts you at higher risk for hemochromatosis. Examples of such diseases and conditions include heart attack, liver disease, diabetes, arthritis, and erectile dysfunction (impotence).
What are the symptoms of Hemochromatosis ?
Hemochromatosis can affect many parts of the body and cause various signs and symptoms. Many of the signs and symptoms are similar to those of other diseases. Signs and symptoms of hemochromatosis usually don't occur until middle age. Women are more likely to have general symptoms first, such as fatigue (tiredness). In men, complications such as diabetes or cirrhosis (scarring of the liver) often are the first signs of the disease. Signs and symptoms also vary based on the severity of the disease. Common signs and symptoms of hemochromatosis include joint pain, fatigue, general weakness, weight loss, and stomach pain. Not everyone who has hemochromatosis has signs or symptoms of the disease. Estimates of how many people develop signs and symptoms vary greatly. Some estimates suggest that as many as half of all people who have the disease don't have signs or symptoms. Hemochromatosis Complications If hemochromatosis isn't found and treated early, iron builds up in your body and can lead to: Liver disease, including an enlarged liver, liver failure, liver cancer, or cirrhosis (scarring of the liver) Heart problems, including arrhythmias (irregular heartbeats) and heart failure Diabetes, especially in people who have a family history of diabetes Joint damage and pain, including arthritis Reproductive organ failure, such as erectile dysfunction (impotence), shrinkage of the testicles, and loss of sex drive in men, and absence of the menstrual cycle and early menopause in women Changes in skin color that make the skin look gray or bronze Underactive pituitary and thyroid glands Damage to the adrenal glands
How to diagnose Hemochromatosis ?
Your doctor will diagnose hemochromatosis based on your medical and family histories, a physical exam, and the results from tests and procedures. The disease sometimes is detected while checking for other diseases or conditions, such as arthritis, liver disease, diabetes, heart disease, or erectile dysfunction (impotence). Specialists Involved Family doctors and internal medicine specialists may diagnose and treat hemochromatosis. Other doctors also may be involved in diagnosing and treating the disease, including: Hematologists (blood disease specialists) Cardiologists (heart specialists) Endocrinologists (gland system specialists) Hepatologists (liver specialists) Gastroenterologists (digestive tract specialists) Rheumatologists (specialists in diseases of the joints and tissues) Medical and Family Histories To learn about your medical and family histories, your doctor may ask: About your signs and symptoms, including when they started and their severity. Whether you take iron (pills or injections) with or without vitamin C supplements (vitamin C helps your body absorb iron from food). If so, your doctor may ask how much iron you take. This information can help him or her diagnose secondary hemochromatosis. Whether other members of your family have hemochromatosis. Whether other members of your family have a history of medical problems or diseases related to hemochromatosis. Physical Exam Your doctor will do a physical exam to check for signs and symptoms of hemochromatosis. He or she will listen to your heart for irregular heartbeats and check for arthritis, abnormal skin color, and an enlarged liver. Diagnostic Tests and Procedures Your doctor may recommend one or more tests or procedures to diagnose hemochromatosis. Blood Tests In hemochromatosis, the amount of iron in your body may be too high, even though the level of iron in your blood is normal. Certain blood tests can help your doctor find out how much iron is in your body. During these tests, a sample of blood is taken from your body. It's usually drawn from a vein in your arm using a needle. The procedure usually is quick and easy, although it may cause some short-term discomfort. The blood tests you have may include transferrin saturation (TS), serum ferritin level, and liver function tests. Transferrin is a protein that carries iron in the blood. The TS test shows how much iron the transferrin is carrying. This helps your doctor find out how much iron is in your body. Your doctor may test your serum ferritin level if your TS level is high. A serum ferritin level test shows how much iron is stored in your body's organs. A buildup of iron may suggest hemochromatosis. You may have liver function tests to check for damage to your liver. Liver damage may be a sign of hemochromatosis. If you have hemochromatosis, liver function tests may show the severity of the disease. Blood tests alone can't diagnose hemochromatosis. Thus, your doctor may recommend other tests as well. Liver Biopsy During a liver biopsy, your doctor numbs an area near your liver and then removes a small sample of liver tissue using a needle. The tissue is then looked at under a microscope. A liver biopsy can show how much iron is in your liver. This procedure also can help your doctor diagnose liver damage (for example, scarring and cancer). Liver biopsies are less common now than in the past. Magnetic Resonance Imaging Magnetic resonance imaging (MRI) is a safe test that uses radio waves, magnets, and a computer to create pictures of your organs. An MRI may be done to show the amount of iron in your liver. Superconducting Quantum Interference Device A superconducting quantum interference device (SQuID) is a machine that uses very sensitive magnets to measure the amount of iron in your liver. This machine is available at only a few medical centers. Genetic Testing Genetic testing can show whether you have a faulty HFE gene or genes. However, even if you do have two faulty HFE genes, the genetic test can't predict whether you'll develop signs and symptoms of hemochromatosis. Also, genetic testing may not detect other, less common faulty genes that also can cause hemochromatosis. There are two ways to do genetic testing. Cells can be collected from inside your mouth using a cotton swab, or a sample of blood can be drawn from a vein in your arm. People who have hemochromatosis (or a family history of it) and are planning to have children may want to consider genetic testing and counseling. Testing will help show whether one or both parents have faulty HFE genes. A genetic counselor also can help figure out the likelihood of the parents passing the faulty genes on to their children.
What are the treatments for Hemochromatosis ?
Treatments for hemochromatosis include therapeutic phlebotomy (fleh-BOT-o-me), iron chelation (ke-LAY-shun) therapy, dietary changes, and treatment for complications. The goals of treating hemochromatosis include: Reducing the amount of iron in your body to normal levels Preventing or delaying organ damage from iron overload Treating complications of the disease Maintaining a normal amount of iron in your body for the rest of your life Therapeutic Phlebotomy Therapeutic phlebotomy is a procedure that removes blood (and iron) from your body. A needle is inserted into a vein, and your blood flows through an airtight tube into a sterile container or bag. The process is similar to donating blood; it can be done at blood donation centers, hospital donation centers, or a doctor's office. In the first stage of treatment, about 1 pint of blood is removed once or twice a week. After your iron levels return to normal, you may continue phlebotomy treatments. However, you may need them less oftentypically every 24 months. As long as treatment continues, which often is for the rest of your life, you'll need frequent blood tests to check your iron levels. Iron Chelation Therapy Iron chelation therapy uses medicine to remove excess iron from your body. This treatment is a good option for people who can't have routine blood removal. The medicine used in iron chelation therapy is either injected or taken orally (by mouth). Injected iron chelation therapy is done at a doctor's office. Oral iron chelation therapy can be done at home. Dietary Changes Your doctor may suggest that you change your diet if you have hemochromatosis. You may be advised to: Avoid taking iron, including iron pills, iron injections, or multivitamins that contain iron. Limit your intake of vitamin C. Vitamin C helps your body absorb iron from food. Talk with your doctor about how much vitamin C is safe for you. Avoid uncooked fish and shellfish. Some fish and shellfish contain bacteria that can cause infections in people who have chronic diseases, such as hemochromatosis. Limit alcohol intake. Drinking alcohol increases the risk of liver disease. It also can make existing liver disease worse. Treatment for Complications Your doctor may prescribe other treatments as needed for complications such as liver disease, heart problems, or diabetes.
How to prevent Hemochromatosis ?
You can't prevent primary, or inherited, hemochromatosis. However, not everyone who inherits hemochromatosis genes develops symptoms or complications of the disease. In those who do, treatments can keep the disease from getting worse. Treatments include therapeutic phlebotomy, iron chelation therapy, dietary changes, and other treatments. For more information, go to "How Is Hemochromatosis Treated?" People who have hemochromatosis (or a family history of it) and are planning to have children may want to consider genetic testing and counseling. Testing will help show whether one or both parents have faulty HFE genes. A genetic counselor also can help figure out the likelihood of the parents passing the faulty genes on to their children.
What is (are) Thrombotic Thrombocytopenic Purpura ?
Thrombotic thrombocytopenic purpura (TTP) is a rare blood disorder. In TTP, blood clots form in small blood vessels throughout the body. The clots can limit or block the flow of oxygen-rich blood to the body's organs, such as the brain, kidneys, and heart. As a result, serious health problems can develop. The increased clotting that occurs in TTP also uses up platelets (PLATE-lets) in the blood. Platelets are blood cell fragments that help form blood clots. These cell fragments stick together to seal small cuts and breaks on blood vessel walls and stop bleeding. With fewer platelets available in the blood, bleeding problems can occur. People who have TTP may bleed inside their bodies, underneath the skin, or from the surface of the skin. When cut or injured, they also may bleed longer than normal. "Thrombotic" (throm-BOT-ik) refers to the blood clots that form. "Thrombocytopenic" (throm-bo-cy-toe-PEE-nick) means the blood has a lower than normal number of platelets. "Purpura" (PURR-purr-ah) refers to purple bruises caused by bleeding under the skin. Bleeding under the skin also can cause tiny red or purple dots on the skin. These pinpoint-sized dots are called petechiae (peh-TEE-kee-ay). Petechiae may look like a rash. Purpura and Petechiae TTP also can cause red blood cells to break apart faster than the body can replace them. This leads to hemolytic anemia (HEE-moh-lit-ick uh-NEE-me-uh)a rare form of anemia. Anemia is a condition in which the body has a lower than normal number of red blood cells. A lack of activity in the ADAMTS13 enzyme (a type of protein in the blood) causes TTP. The ADAMTS13 gene controls the enzyme, which is involved in blood clotting. The enzyme breaks up a large protein called von Willebrand factor that clumps together with platelets to form blood clots. Types of Thrombotic Thrombocytopenic Purpura The two main types of TTP are inherited and acquired. "Inherited" means the condition is passed from parents to children through genes. This type of TTP mainly affects newborns and children. In inherited TTP, the ADAMTS13 gene is faulty and doesn't prompt the body to make a normal ADAMTS13 enzyme. As a result, enzyme activity is lacking or changed. Acquired TTP is the more common type of the disorder. "Acquired" means you aren't born with the disorder, but you develop it. This type of TTP mostly occurs in adults, but it can affect children. In acquired TTP, the ADAMTS13 gene isn't faulty. Instead, the body makes antibodies (proteins) that block the activity of the ADAMTS13 enzyme. It's not clear what triggers inherited and acquired TTP, but some factors may play a role. These factors may include: Some diseases and conditions, such as pregnancy, cancer, HIV, lupus, and infections Some medical procedures, such as surgery and blood and marrow stem cell transplant Some medicines, such as chemotherapy, ticlopidine, clopidogrel, cyclosporine A, and hormone therapy and estrogens Quinine, which is a substance often found in tonic water and nutritional health products If you have TTP, you may sometimes hear it referred to as TTPHUS. HUS, or hemolytic-uremic syndrome, is a disorder that resembles TTP, but is more common in children. Kidney problems also tend to be worse in HUS. Although some researchers think TTP and HUS are two forms of a single syndrome, recent evidence suggests that each has different causes. Outlook TTP is a rare disorder. It can be fatal or cause lasting damage, such as brain damage or a stroke, if it's not treated right away. TTP usually occurs suddenly and lasts for days or weeks, but it can continue for months. Relapses (or flareups) can occur in up to 60 percent of people who have the acquired type of TTP. Many people who have inherited TTP have frequent flareups that need to be treated. Treatments for TTP include infusions of fresh frozen plasma and plasma exchange, also called plasmapheresis (PLAZ-ma-feh-RE-sis). These treatments have greatly improved the outlook of the disorder.
What causes Thrombotic Thrombocytopenic Purpura ?
A lack of activity in the ADAMTS13 enzyme (a type of protein in the blood) causes thrombotic thrombocytopenic purpura (TTP). The ADAMTS13 gene controls the enzyme, which is involved in blood clotting. Not having enough enzyme activity causes overactive blood clotting. In TTP, blood clots form in small blood vessels throughout the body. These clots can limit or block the flow of oxygen-rich blood to the body's organs, such as the brain, kidneys, and heart. As a result, serious health problems can develop. The increased clotting that occurs in TTP also uses up many of the blood's platelets. With fewer platelets available in the blood, bleeding problems can occur. People who have TTP may bleed inside their bodies, underneath the skin, or from the surface of the skin. When cut or injured, they also may bleed longer than normal. TTP also can cause red blood cells to break apart faster than the body can replace them. This leads to hemolytic anemia. Inherited Thrombotic Thrombocytopenic Purpura In inherited TTP, the ADAMTS13 gene is faulty. It doesn't prompt the body to make a normal ADAMTS13 enzyme. As a result, enzyme activity is lacking or changed. "Inherited" means that the condition is passed from parents to children through genes. A person who inherits TTP is born with two copies of the faulty geneone from each parent. Most often, the parents each have one copy of the faulty gene, but have no signs or symptoms TTP. Acquired Thrombotic Thrombocytopenic Purpura In acquired TTP, the ADAMTS13 gene isn't faulty. Instead, the body makes antibodies (proteins) that block the activity of the ADAMTS13 enzyme. "Acquired" means you aren't born with the condition, but you develop it sometime after birth. Triggers for Thrombotic Thrombocytopenic Purpura It's unclear what triggers inherited and acquired TTP, but some factors may play a role. These factors may include: Some diseases and conditions, such as pregnancy, cancer, HIV, lupus, and infections Some medical procedures, such as surgery and blood and marrow stem cell transplant Some medicines, such as chemotherapy, ticlopidine, clopidogrel, cyclosporine A, and hormone therapy and estrogens Quinine, which is a substance often found in tonic water and nutritional health products
Who is at risk for Thrombotic Thrombocytopenic Purpura? ?
Thrombotic thrombocytopenic purpura (TTP) is a rare disorder. Most cases of TTP are acquired. Acquired TTP mostly occurs in adults, but it can affect children. The condition occurs more often in women and in Black people than in other groups. Inherited TTP mainly affects newborns and children. Most people who have inherited TTP begin to have symptoms soon after birth. Some, however, don't have symptoms until they're adults. It isn't clear what triggers inherited and acquired TTP, but some factors may play a role. These factors may include: Some diseases and conditions, such as pregnancy, cancer, HIV, lupus, and infections Some medical procedures, such as surgery and blood and marrow stem cell transplant Some medicines, such as chemotherapy, ticlopidine, clopidogrel, cyclosporine A, and hormone therapy and estrogens Quinine, which is a substance often found in tonic water and nutritional health products
What are the symptoms of Thrombotic Thrombocytopenic Purpura ?
Blood clots, a low platelet count, and damaged red blood cells cause the signs and symptoms of thrombotic thrombocytopenic purpura (TTP). The signs and symptoms include: Purplish bruises on the skin or mucous membranes (such as in the mouth). These bruises, called purpura, are caused by bleeding under the skin. Pinpoint-sized red or purple dots on the skin. These dots, called petechiae, often are found in groups and may look like a rash. Bleeding under the skin causes petechiae. Paleness or jaundice (a yellowish color of the skin or whites of the eyes). Fatigue (feeling very tired and weak). Fever. A fast heart rate or shortness of breath. Headache, speech changes, confusion, coma, stroke, or seizure. A low amount of urine, or protein or blood in the urine. If you've had TTP and have any of these signs or symptoms, you may be having a relapse (flareup). Ask your doctor when to call him or her or seek emergency care.
How to diagnose Thrombotic Thrombocytopenic Purpura ?
Your doctor will diagnosis thrombotic thrombocytopenic purpura (TTP) based on your medical history, a physical exam, and test results. If TTP is suspected or diagnosed, a hematologist will be involved in your care. A hematologist is a doctor who specializes in diagnosing and treating blood disorders. Medical History Your doctor will ask about factors that may affect TTP. For example, he or she may ask whether you: Have certain diseases or conditions, such as cancer, HIV, lupus, or infections (or whether you're pregnant). Have had previous medical procedures, such as a blood and marrow stem cell transplant. Take certain medicines, such as ticlopidine, clopidogrel, cyclosporine A, or hormone therapy and estrogens, or whether you've had chemotherapy. Have used any products that contain quinine. Quinine is a substance often found in tonic water and nutritional health products. Physical Exam As part of the medical history and physical exam, your doctor will ask about any signs or symptoms you've had. He or she will look for signs such as: Bruising and bleeding under your skin Fever Paleness or jaundice (a yellowish color of the skin or whites of the eyes) A fast heart rate Speech changes or changes in awareness that can range from confusion to passing out Changes in urine Diagnostic Tests Your doctor also may recommend tests to help find out whether you have TTP. Complete Blood Count This test measures the number of red blood cells, white blood cells, and platelets in your blood. For this test, a sample of blood is drawn from a vein, usually in your arm. If you have TTP, you'll have a lower than normal number of platelets and red blood cells (anemia). Blood Smear For this test, a sample of blood is drawn from a vein, usually in your arm. Some of your blood is put on a glass slide. A microscope is then used to look at your red blood cells. In TTP, the red blood cells are torn and broken. Platelet Count This test counts the number of platelets in a blood smear. People who have TTP have a lower than normal number of platelets in their blood. This test is used with the blood smear to help diagnose TTP. Bilirubin Test When red blood cells die, they release a protein called hemoglobin (HEE-muh-glow-bin) into the bloodstream. The body breaks down hemoglobin into a compound called bilirubin. High levels of bilirubin in the bloodstream cause jaundice. For this blood test, a sample of blood is drawn from a vein, usually in your arm. The level of bilirubin in the sample is checked. If you have TTP, your bilirubin level may be high because your body is breaking down red blood cells faster than normal. Kidney Function Tests and Urine Tests These tests show whether your kidneys are working well. If you have TTP, your urine may contain protein or blood cells. Also, your blood creatinine (kre-AT-ih-neen) level may be high. Creatinine is a blood product that's normally removed by the kidneys. Coombs Test This blood test is used to find out whether TTP is the cause of hemolytic anemia. For this test, a sample of blood is drawn from a vein, usually in your arm. In TTP, hemolytic anemia occurs because red blood cells are broken into pieces as they try to squeeze around blood clots. When TTP is the cause of hemolytic anemia, the Coombs test is negative. The test is positive if antibodies (proteins) are destroying your red blood cells. Lactate Dehydrogenase Test This blood test measures a protein called lactate dehydrogenase (LDH). For this test, a sample of blood is drawn from a vein, usually in your arm. Hemolytic anemia causes red blood cells to break down and release LDH into the blood. LDH also is released from tissues that are injured by blood clots as a result of TTP. ADAMTS13 Assay A lack of activity in the ADAMTS13 enzyme causes TTP. For this test, a sample of blood is drawn from a vein, usually in your arm. The blood is sent to a special lab to test for the enzyme's activity.
What are the treatments for Thrombotic Thrombocytopenic Purpura ?
Thrombotic thrombocytopenic purpura (TTP) can be fatal or cause lasting damage, such as brain damage or a stroke, if it's not treated right away. In most cases, TTP occurs suddenly and lasts for days or weeks, but it can go on for months. Relapses (flareups) can occur in up to 60 percent of people who have acquired TTP. Flareups also occur in most people who have inherited TTP. Plasma treatments are the most common way to treat TTP. Other treatments include medicines and surgery. Treatments are done in a hospital. Plasma Therapy Plasma is the liquid part of your blood. It carries blood cells, hormones, enzymes, and nutrients to your body. TTP is treated with plasma therapy. This includes: Fresh frozen plasma for people who have inherited TTP Plasma exchange for people who have acquired TTP Plasma therapy is started in the hospital as soon as TTP is diagnosed or suspected. For inherited TTP, fresh frozen plasma is given through an intravenous (IV) line inserted into a vein. This is done to replace the missing or changed ADAMTS13 enzyme. Plasma exchange (also called plasmapheresis) is used to treat acquired TTP. This is a lifesaving procedure. It removes antibodies (proteins) from the blood that damage your ADAMTS13 enzyme. Plasma exchange also replaces the ADAMTS13 enzyme. If plasma exchange isn't available, you may be given fresh frozen plasma until it is available. During plasma exchange, an IV needle or tube is placed in a vein in your arm to remove blood. The blood goes through a cell separator, which removes plasma from the blood. The nonplasma part of the blood is saved, and donated plasma is added to it. Then, the blood is put back into you through an IV line inserted into one of your blood vessels. The time required to complete the procedure varies, but it often takes about 2hours. Treatments of fresh frozen plasma or plasma exchange usually continue until your blood tests results and signs and symptoms improve. This can take days or weeks, depending on your condition. You'll stay in the hospital while you recover. Some people who recover from TTP have flareups. This can happen in the hospital or after you go home. If you have a flareup, your doctor will restart plasma therapy. Other Treatments Other treatments are used if plasma therapy doesn't work well or if flareups occur often. For acquired TTP, medicines can slow or stop antibodies to the ADAMTS13 enzyme from forming. Medicines used to treat TTP include glucocorticoids, vincristine, rituximab, and cyclosporine A. Sometimes surgery to remove the spleen (an organ in the abdomen) is needed. This is because cells in the spleen make the antibodies that block ADAMTS13 enzyme activity.
How to prevent Thrombotic Thrombocytopenic Purpura ?
Both inherited and acquired thrombotic thrombocytopenic purpura (TTP) occur suddenly with no clear cause. You can't prevent either type. If you've had TTP, watch for signs and symptoms of a relapse (flareup). (For more information, go to "Living With Thrombotic Thrombocytopenic Purpura.") Ask your doctor about factors that may trigger TTP or a flareup, including: Some diseases or conditions, such as pregnancy, cancer, HIV, lupus, or infections. Some medical procedures, such as surgery and blood and marrow stem cell transplant. Some medicines, such as ticlopidine, clopidogrel, cyclosporine A, chemotherapy, and hormone therapy and estrogens. If you take any of these medicines, your doctor may prescribe a different medicine. Quinine, which is a substance often found in tonic water and nutritional health products.
What is (are) Pulmonary Embolism ?
Pulmonary embolism (PULL-mun-ary EM-bo-lizm), or PE, is a sudden blockage in a lung artery. The blockage usually is caused by a blood clot that travels to the lung from a vein in the leg. A clot that forms in one part of the body and travels in the bloodstream to another part of the body is called an embolus (EM-bo-lus). PE is a serious condition that can: Damage part of your lung because of a lack of blood flow to your lung tissue. This damage may lead to pulmonary hypertension (increased pressure in the pulmonary arteries). Cause low oxygen levels in your blood. Damage other organs in your body because of a lack of oxygen. If a blood clot is large, or if there are many clots, PE can cause death. Overview PE most often is a complication of a condition called deep vein thrombosis (DVT). In DVT, blood clots form in the deep veins of the bodymost often in the legs. These clots can break free, travel through the bloodstream to the lungs, and block an artery. Deep vein clots are not like clots in veins close to the skin's surface. Those clots remain in place and do not cause PE. Outlook The exact number of people affected by DVT and PE isn't known. Estimates suggest these conditions affect 300,000 to 600,000 people in the United States each year. If left untreated, about 30 percent of patients who have PE will die. Most of those who die do so within the first few hours of the event. The good news is that a prompt diagnosis and proper treatment can save lives and help prevent the complications of PE.
What causes Pulmonary Embolism ?
Major Causes Pulmonary embolism (PE) usually begins as a blood clot in a deep vein of the leg. This condition is called deep vein thrombosis. The clot can break free, travel through the bloodstream to the lungs, and block an artery. The animation below shows how a blood clot from a deep vein in the leg can travel to the lungs, causing pulmonary embolism. Click the "start" button to play the animation. Written and spoken explanations are provided with each frame. Use the buttons in the lower right corner to pause, restart, or replay the animation, or use the scroll bar below the buttons to move through the frames. Blood clots can form in the deep veins of the legs if blood flow is restricted and slows down. This can happen if you don't move around for long periods, such as: After some types of surgery During a long trip in a car or airplane If you must stay in bed for an extended time Blood clots are more likely to develop in veins damaged from surgery or injured in other ways. Other Causes Rarely, an air bubble, part of a tumor, or other tissue travels to the lungs and causes PE. Also, if a large bone in the body (such as the thigh bone) breaks, fat from the bone marrow can travel through the blood. If the fat reaches the lungs, it can cause PE
Who is at risk for Pulmonary Embolism? ?
Pulmonary embolism (PE) occurs equally in men and women. The risk increases with age. For every 10 years after age 60, the risk of having PE doubles. Certain inherited conditions, such as factor V Leiden, increase the risk of blood clotting and PE. Major Risk Factors Your risk for PE is high if you have deep vein thrombosis (DVT) or a history of DVT. In DVT, blood clots form in the deep veins of the bodymost often in the legs. These clots can break free, travel through the bloodstream to the lungs, and block an artery. Your risk for PE also is high if you've had the condition before. Other Risk Factors Other factors also can increase the risk for PE, such as: Being bedridden or unable to move around much Having surgery or breaking a bone (the risk goes up in the weeks following the surgery or injury) Having certain diseases or conditions, such as a stroke, paralysis (an inability to move), chronic heart disease, or high blood pressure Smoking People who have recently been treated for cancer or who have a central venous catheter are more likely to develop DVT, which increases their risk for PE. A central venous catheter is a tube placed in a vein to allow easy access to the bloodstream for medical treatment. Other risk factors for DVT include sitting for long periods (such as during long car or airplane rides), pregnancy and the 6-week period after pregnancy, and being overweight or obese. Women who take hormone therapy pills or birth control pills also are at increased risk for DVT. The risk of developing blood clots increases as your number of risk factors increases.
What are the symptoms of Pulmonary Embolism ?
Major Signs and Symptoms Signs and symptoms of pulmonary embolism (PE) include unexplained shortness of breath, problems breathing, chest pain, coughing, or coughing up blood. An arrhythmia (irregular heartbeat) also may suggest that you have PE. Sometimes the only signs and symptoms are related to deep vein thrombosis (DVT). These include swelling of the leg or along a vein in the leg, pain or tenderness in the leg, a feeling of increased warmth in the area of the leg that's swollen or tender, and red or discolored skin on the affected leg. See your doctor right away if you have any signs or symptoms of PE or DVT. It's also possible to have PE and not have any signs or symptoms. Other Signs and Symptoms Some people who have PE have feelings of anxiety or dread, light-headedness or fainting, rapid breathing, sweating, or an increased heart rate.
How to diagnose Pulmonary Embolism ?
Pulmonary embolism (PE) is diagnosed based on your medical history, a physical exam, and test results. Doctors who treat patients in the emergency room often are the ones to diagnose PE with the help of a radiologist. A radiologist is a doctor who deals with x rays and other similar tests. Medical History and Physical Exam To diagnose PE, the doctor will ask about your medical history. He or she will want to: Find out your deep vein thrombosis (DVT) and PE risk factors See how likely it is that you could have PE Rule out other possible causes for your symptoms Your doctor also will do a physical exam. During the exam, he or she will check your legs for signs of DVT. He or she also will check your blood pressure and your heart and lungs. Diagnostic Tests Many tests can help diagnose PE. Which tests you have will depend on how you feel when you get to the hospital, your risk factors, available testing options, and other conditions you could possibly have. You may have one or more of the following tests. Ultrasound Doctors can use ultrasound to look for blood clots in your legs. Ultrasound uses sound waves to check blood flow in your veins. For this test, gel is put on the skin of your legs. A hand-held device called a transducer is moved back and forth over the affected areas. The transducer gives off ultrasound waves and detects their echoes as they bounce off the vein walls and blood cells. A computer turns the echoes into a picture on a computer screen, allowing the doctor to see blood flow in your legs. If the doctor finds blood clots in the deep veins of your legs, he or she will recommend treatment. DVT and PE both are treated with the same medicines. Computed Tomography Scans Doctors can use computed tomography (to-MOG-rah-fee) scans, or CT scans, to look for blood clots in the lungs and legs. For this test, dye is injected into a vein in your arm. The dye makes the blood vessels in your lungs and legs show up on x-ray images. You'll lie on a table, and an x-ray tube will rotate around you. The tube will take pictures from many angles. This test allows doctors to detect most cases of PE. The test only takes a few minutes. Results are available shortly after the scan is done. Lung Ventilation/Perfusion Scan A lung ventilation/perfusion scan, or VQ scan, uses a radioactive substance to show how well oxygen and blood are flowing to all areas of your lungs. This test can help detect PE. Pulmonary Angiography Pulmonary angiography (an-jee-OG-rah-fee) is another test used to diagnose PE. This test isn't available at all hospitals, and a trained specialist must do the test. For this test, a flexible tube called a catheter is threaded through the groin (upper thigh) or arm to the blood vessels in the lungs. Dye is injected into the blood vessels through the catheter. X-ray pictures are taken to show blood flowing through the blood vessels in the lungs. If a blood clot is found, your doctor may use the catheter to remove it or deliver medicine to dissolve it. Blood Tests Certain blood tests may help your doctor find out whether you're likely to have PE. A D-dimer test measures a substance in the blood that's released when a blood clot breaks down. High levels of the substance may mean a clot is present. If your test is normal and you have few risk factors, PE isn't likely. Other blood tests check for inherited disorders that cause blood clots. Blood tests also can measure the amount of oxygen and carbon dioxide in your blood. A clot in a blood vessel in your lungs may lower the level of oxygen in your blood. Other Tests To rule out other possible causes of your symptoms, your doctor may use one or more of the following tests. Echocardiography (echo). This test uses sound waves to create a moving picture of your heart. Doctors use echo to check heart function and detect blood clots inside the heart. EKG (electrocardiogram). An EKG is a simple, painless test that detects and records the heart's electrical activity. Chest x ray. This test creates pictures of your lungs, heart, large arteries, ribs, and diaphragm (the muscle below your lungs). Chest MRI (magnetic resonance imaging). This test uses radio waves and magnetic fields to create pictures of organs and structures inside the body. MRI often can provide more information than an x ray.
What are the treatments for Pulmonary Embolism ?
Pulmonary embolism (PE) is treated with medicines, procedures, and other therapies. The main goals of treating PE are to stop the blood clot from getting bigger and keep new clots from forming. Treatment may include medicines to thin the blood and slow its ability to clot. If your symptoms are life threatening, your doctor may give you medicine to quickly dissolve the clot. Rarely, your doctor may use surgery or another procedure to remove the clot. Medicines Anticoagulants (AN-te-ko-AG-u-lants), or blood thinners, decrease your blood's ability to clot. They're used to stop blood clots from getting larger and prevent clots from forming. Blood thinners don't break up blood clots that have already formed. (The body dissolves most clots with time.) You can take blood thinners as either a pill, an injection, or through a needle or tube inserted into a vein (called intravenous, or IV, injection). Warfarin is given as a pill. (Coumadin is a common brand name for warfarin.) Heparin is given as an injection or through an IV tube. Your doctor may treat you with both heparin and warfarin at the same time. Heparin acts quickly. Warfarin takes 2 to 3 days before it starts to work. Once warfarin starts to work, heparin usually is stopped. Pregnant women usually are treated with heparin only, because warfarin is dangerous for the pregnancy. If you have deep vein thrombosis, treatment with blood thinners usually lasts for 3 to 6months. If you've had blood clots before, you may need a longer period of treatment. If you're being treated for another illness, such as cancer, you may need to take blood thinners as long as PE risk factors are present. The most common side effect of blood thinners is bleeding. This can happen if the medicine thins your blood too much. This side effect can be life threatening. Sometimes the bleeding is internal, which is why people treated with blood thinners usually have routine blood tests. These tests, called PT and PTT tests, measure the blood's ability to clot. These tests also help your doctor make sure you're taking the right amount of medicine. Call your doctor right away if you're bruising or bleeding easily. Thrombin inhibitors are a newer type of blood-thinning medicine. They're used to treat some types of blood clots in people who can't take heparin. Emergency Treatment When PE is life threatening, a doctor may use treatments that remove or break up the blood clot. These treatments are given in an emergency room or hospital. Thrombolytics (THROM-bo-LIT-iks) are medicines that can quickly dissolve a blood clot. They're used to treat large clots that cause severe symptoms. Because thrombolytics can cause sudden bleeding, they're used only in life-threatening situations. Sometimes a doctor may use a catheter (a flexible tube) to reach the blood clot. The catheter is inserted into a vein in the groin (upper thigh) or arm and threaded to the clot in the lung. The doctor may use the catheter to remove the clot or deliver medicine to dissolve it. Rarely, surgery may be needed to remove the blood clot. Other Types of Treatment If you can't take medicines to thin your blood, or if the medicines don't work, your doctor may suggest a vena cava filter. This device keeps blood clots from traveling to your lungs. The filter is inserted inside a large vein called the inferior vena cava. (This vein carries blood from the body back to the heart). The filter catches clots before they travel to the lungs. This type of treatment can prevent PE, but it won't stop other blood clots from forming. Graduated compression stockings can reduce the chronic (ongoing) swelling that a blood clot in the leg may cause. Graduated compression stockings are worn on the legs from the arch of the foot to just above or below the knee. These stockings are tight at the ankle and become looser as they go up the leg. This causes gentle compression (pressure) up the leg. The pressure keeps blood from pooling and clotting.
How to prevent Pulmonary Embolism ?
Preventing pulmonary embolism (PE) begins with preventing deep vein thrombosis (DVT). Knowing whether you're at risk for DVT and taking steps to lower your risk are important. Exercise your lower leg muscles if you're sitting for a long time while traveling. Get out of bed and move around as soon as you're able after having surgery or being ill. The sooner you move around, the better your chance is of avoiding a blood clot. Take medicines to prevent clots after some types of surgery (as your doctor prescribes). Follow up with your doctor. If you've already had DVT or PE, you can take more steps to prevent new blood clots from forming. Visit your doctor for regular checkups. Also, use compression stockings to prevent chronic (ongoing) swelling in your legs from DVT (as your doctor advises). Contact your doctor right away if you have any signs or symptoms of DVT or PE.
What is (are) Heart Block ?
Heart block is a problem that occurs with the heart's electrical system. This system controls the rate and rhythm of heartbeats. ("Rate" refers to the number of times your heart beats per minute. "Rhythm" refers to the pattern of regular or irregular pulses produced as the heart beats.) With each heartbeat, an electrical signal spreads across the heart from the upper to the lower chambers. As it travels, the signal causes the heart to contract and pump blood. Heart block occurs if the electrical signal is slowed or disrupted as it moves through the heart. Overview Heart block is a type of arrhythmia (ah-RITH-me-ah). An arrhythmia is any problem with the rate or rhythm of the heartbeat. Some people are born with heart block, while others develop it during their lifetimes. If you're born with the condition, it's called congenital (kon-JEN-ih-tal) heart block. If the condition develops after birth, it's called acquired heart block. Doctors might detect congenital heart block before or after a baby is born. Certain diseases that may occur during pregnancy can cause heart block in a baby. Some congenital heart defects also can cause heart block. Congenital heart defects are problems with the heart's structure that are present at birth. Often, doctors don't know what causes these defects. Acquired heart block is more common than congenital heart block. Damage to the heart muscle or its electrical system causes acquired heart block. Diseases, surgery, or medicines can cause this damage. The three types of heart block are first degree, second degree, and third degree. First degree is the least severe, and third degree is the most severe. This is true for both congenital and acquired heart block. Doctors use a test called an EKG (electrocardiogram) to help diagnose heart block. This test detects and records the heart's electrical activity. It maps the data on a graph for the doctor to review. Outlook The symptoms and severity of heart block depend on which type you have. First-degree heart block may not cause any severe symptoms. Second-degree heart block may result in the heart skipping a beat or beats. This type of heart block also can make you feel dizzy or faint. Third-degree heart block limits the heart's ability to pump blood to the rest of the body. This type of heart block may cause fatigue (tiredness), dizziness, and fainting. Third-degree heart block requires prompt treatment because it can be fatal. A medical device called a pacemaker is used to treat third-degree heart block and some cases of second-degree heart block. This device uses electrical pulses to prompt the heart to beat at a normal rate. Pacemakers typically are not used to treat first-degree heart block. All types of heart block may increase your risk for other arrhythmias, such as atrial fibrillation (A-tre-al fih-brih-LA-shun). Talk with your doctor to learn more about the signs and symptoms of arrhythmias.
What causes Heart Block ?
Heart block has many causes. Some people are born with the disorder (congenital), while others develop it during their lifetimes (acquired). Congenital Heart Block One form of congenital heart block occurs in babies whose mothers have autoimmune diseases, such as lupus. People who have these diseases make proteins called antibodies that attack and damage the body's tissues or cells. In pregnant women, antibodies can cross the placenta. (The placenta is the organ that attaches the umbilical cord to the mother's womb.) These proteins can damage the baby's heart and lead to congenital heart block. Congenital heart defects also may cause congenital heart block. These defects are problems with the heart's structure that are present at birth. Often, doctors don't know what causes these defects. Acquired Heart Block Many factors can cause acquired heart block. Examples include: Damage to the heart from a heart attack. This is the most common cause of acquired heart block. Coronary heart disease, also called coronary artery disease. Myocarditis (MI-o-kar-DI-tis), or inflammation of the heart muscle. Heart failure. Rheumatic (roo-MAT-ik) fever. Cardiomyopathy (KAR-de-o-mi-OP-a-the), or heart muscle diseases. Other diseases may increase the risk of heart block. Examples include sarcoidosis (sar-koy-DOE-sis) and the degenerative muscle disorders Lev's disease and Lenegre's disease. Certain types of surgery also may damage the heart's electrical system and lead to heart block. Exposure to toxic substances and taking certain medicinesincluding digitalis, beta blockers, and calcium channel blockersalso may cause heart block. Doctors closely watch people who are taking these medicines for signs of problems. Some types of heart block have been linked to genetic mutations (changes in the genes). An overly active vagus nerve also can cause heart block. You have one vagus nerve on each side of your body. These nerves run from your brain stem all the way to your abdomen. Activity in the vagus nerve slows the heart rate. In some cases, acquired heart block may go away if the factor causing it is treated or resolved. For example, heart block that occurs after a heart attack or surgery may go away during recovery. Also, if a medicine is causing heart block, the disorder may go away if the medicine is stopped or the dosage is lowered. Always talk with your doctor before you change the way you take your medicines.
Who is at risk for Heart Block? ?
The risk factors for congenital and acquired heart block are different. Congenital Heart Block If a pregnant woman has an autoimmune disease, such as lupus, her fetus is at risk for heart block. Autoimmune diseases can cause the body to make proteins called antibodies that can cross the placenta. (The placenta is the organ that attaches the umbilical cord to the mother's womb.) These antibodies may damage the baby's heart and lead to congenital heart block. Congenital heart defects also can cause heart block. These defects are problems with the heart's structure that are present at birth. Most of the time, doctors don't know what causes congenital heart defects. Heredity may play a role in certain heart defects. For example, a parent who has a congenital heart defect might be more likely than other people to have a child with the condition. Acquired Heart Block Acquired heart block can occur in people of any age. However, most types of the condition are more common in older people. This is because many of the risk factors are more common in older people. People who have a history of heart disease or heart attacks are at increased risk for heart block. Examples of heart disease that can lead to heart block include heart failure, coronary heart disease, and cardiomyopathy (heart muscle diseases). Other diseases also may raise the risk of heart block, such as sarcoidosis and the degenerative muscle disorders Lev's disease and Lenegre's disease. Exposure to toxic substances or taking certain medicines, such as digitalis, also can raise your risk for heart block. Well-trained athletes and young people are at higher risk for first-degree heart block caused by an overly active vagus nerve. You have one vagus nerve on each side of your body. These nerves run from your brain stem all the way to your abdomen. Activity in the vagus nerve slows the heart rate.
What are the symptoms of Heart Block ?
Signs and symptoms depend on the type of heart block you have. First-degree heart block may not cause any symptoms. Signs and symptoms of second- and third-degree heart block include: Fainting Dizziness or light-headedness Fatigue (tiredness) Shortness of breath Chest pain These symptoms may suggest other health problems as well. If these symptoms are new or severe, call 911 or have someone drive you to the hospital emergency room. If you have milder symptoms, talk with your doctor right away to find out whether you need prompt treatment.
How to diagnose Heart Block ?
Heart block might be diagnosed as part of a routine doctor's visit or during an emergency situation. (Third-degree heart block often is an emergency.) Your doctor will diagnose heart block based on your family and medical histories, a physical exam, and test results. Specialists Involved Your primary care doctor might be involved in diagnosing heart block. However, if you have the condition, you might need to see a heart specialist. Heart specialists include: Cardiologists (doctors who diagnose and treat adults who have heart problems) Pediatric cardiologists (doctors who diagnose and treat babies and children who have heart problems) Electrophysiologists (cardiologists or pediatric cardiologists who specialize in the heart's electrical system) Family and Medical Histories Your doctor may ask whether: You have any signs or symptoms of heart block You have any health problems, such as heart disease Any of your family members have been diagnosed with heart block or other health problems You're taking any medicines, including herbal products and prescription and over-the-counter medicines You smoke or use alcohol or drugs Your doctor also may ask about other health habits, such as how physically active you are. Physical Exam During the physical exam, your doctor will listen to your heart. He or she will listen carefully for abnormal rhythms or heart murmurs (extra or unusual sounds heard during heartbeats). Your doctor also may: Check your pulse to find out how fast your heart is beating Check for swelling in your legs or feet, which could be a sign of an enlarged heart or heart failure Look for signs of other diseases that could be causing heart rate or rhythm problems (such as coronary heart disease) Diagnostic Tests and Procedures EKG (Electrocardiogram) Doctors usually use an EKG (electrocardiogram) to help diagnose heart block. This simple test detects and records the heart's electrical activity. An EKG shows how fast the heart is beating and its rhythm (steady or irregular). The test also records the strength and timing of electrical signals as they pass through the heart. The data are recorded on a graph. Different types of heart block have different patterns on the graph. (For more information, go to "Types of Heart Block.") A standard EKG only records the heart's activity for a few seconds. To diagnose heart rhythm problems that come and go, your doctor may have you wear a portable EKG monitor. The most common types of portable EKGs are Holter and event monitors. Your doctor may have you use one of these monitors to diagnose first- or second-degree heart block. Holter and Event Monitors A Holter monitor records the heart's electrical signals for a full 24- or 48-hour period. You wear one while you do your normal daily activities. This allows the monitor to record your heart for a longer time than a standard EKG. An event monitor is similar to a Holter monitor. You wear an event monitor while doing your normal activities. However, an event monitor only records your heart's electrical activity at certain times while you're wearing it. You may wear an event monitor for 1 to 2 months, or as long as it takes to get a recording of your heart during symptoms. Electrophysiology Study For some cases of heart block, doctors may do electrophysiology studies (EPS). During this test, a thin, flexible wire is passed through a vein in your groin (upper thigh) or arm to your heart. The wire records your heart's electrical signals. Other Tests To diagnose heart block, your doctor may recommend tests to rule out other types of arrhythmias (irregular heartbeats). For more information, go to "How Are Arrhythmias Diagnosed?"
What are the treatments for Heart Block ?
Treatment depends on the type of heart block you have. If you have first-degree heart block, you may not need treatment. If you have second-degree heart block, you may need a pacemaker. A pacemaker is a small device that's placed under the skin of your chest or abdomen. This device uses electrical pulses to prompt the heart to beat at a normal rate. If you have third-degree heart block, you will need a pacemaker. In an emergency, a temporary pacemaker might be used until you can get a long-term device. Most people who have third-degree heart block need pacemakers for the rest of their lives. Some people who have third-degree congenital heart block don't need pacemakers for many years. Others may need pacemakers at a young age or during infancy. If a pregnant woman has an autoimmune disease, such as lupus, her fetus is at risk for heart block. If heart block is detected in a fetus, the mother might be given medicine to reduce the fetus' risk of developing serious heart block. Sometimes acquired heart block goes away if the factor causing it is treated or resolved. For example, heart block that occurs after a heart attack or surgery may go away during recovery. Also, if a medicine is causing heart block, the condition may go away if the medicine is stopped or the dosage is lowered. (Always talk with your doctor before you change the way you take your medicines.)
What is (are) Angina ?
Espaol Angina (an-JI-nuh or AN-juh-nuh) is chest pain or discomfort that occurs if an area of your heart muscle doesn't get enough oxygen-rich blood. Angina may feel like pressure or squeezing in your chest. The pain also can occur in your shoulders, arms, neck, jaw, or back. Angina pain may even feel like indigestion. Angina isn't a disease; it's a symptom of an underlying heart problem. Angina usually is a symptom of coronary heart disease (CHD). CHD is the most common type of heart disease in adults. It occurs if a waxy substance called plaque (plak) builds up on the inner walls of your coronary arteries. These arteries carry oxygen-rich blood to your heart. Plaque Buildup in an Artery Plaque narrows and stiffens the coronary arteries. This reduces the flow of oxygen-rich blood to the heart muscle, causing chest pain. Plaque buildup also makes it more likely that blood clots will form in your arteries. Blood clots can partially or completely block blood flow, which can cause a heart attack. Angina also can be a symptom of coronary microvascular disease (MVD). This is heart disease that affects the hearts smallest coronary arteries. In coronary MVD, plaque doesn't create blockages in the arteries like it does in CHD. Studies have shown that coronary MVD is more likely to affect women than men. Coronary MVD also is called cardiac syndrome X and nonobstructive CHD. Types of Angina The major types of angina are stable, unstable, variant (Prinzmetal's), and microvascular. Knowing how the types differ is important. This is because they have different symptoms and require different treatments. Stable Angina Stable angina is the most common type of angina. It occurs when the heart is working harder than usual. Stable angina has a regular pattern. (Pattern refers to how often the angina occurs, how severe it is, and what factors trigger it.) If you have stable angina, you can learn its pattern and predict when the pain will occur. The pain usually goes away a few minutes after you rest or take your angina medicine. Stable angina isn't a heart attack, but it suggests that a heart attack is more likely to happen in the future. Unstable Angina Unstable angina doesn't follow a pattern. It may occur more often and be more severe than stable angina. Unstable angina also can occur with or without physical exertion, and rest or medicine may not relieve the pain. Unstable angina is very dangerous and requires emergency treatment. This type of angina is a sign that a heart attack may happen soon. Variant (Prinzmetal's) Angina Variant angina is rare. A spasm in a coronary artery causes this type of angina. Variant angina usually occurs while you're at rest, and the pain can be severe. It usually happens between midnight and early morning. Medicine can relieve this type of angina. Microvascular Angina Microvascular angina can be more severe and last longer than other types of angina. Medicine may not relieve this type of angina. Overview Experts believe that nearly 7 million people in the United States suffer from angina. The condition occurs equally among men and women. Angina can be a sign of CHD, even if initial tests don't point to the disease. However, not all chest pain or discomfort is a sign of CHD. Other conditions also can cause chest pain, such as: Pulmonary embolism (a blockage in a lung artery) A lung infection Aortic dissection (tearing of a major artery) Aortic stenosis (narrowing of the hearts aortic valve) Hypertrophic cardiomyopathy (KAR-de-o-mi-OP-ah-thee; heart muscle disease) Pericarditis (inflammation in the tissues that surround the heart) A panic attack All chest pain should be checked by a doctor.
What causes Angina ?
Underlying Causes Angina usually is a symptom of coronary heart disease (CHD). This means that the underlying causes of angina generally are the same as the underlying causes of CHD. Research suggests that CHD starts when certain factors damage the inner layers of the coronary arteries. These factors include: Smoking High amounts of certain fats and cholesterol in the blood High blood pressure High amounts of sugar in the blood due to insulin resistance or diabetes Plaque may begin to build up where the arteries are damaged. When plaque builds up in the arteries, the condition is called atherosclerosis (ath-er-o-skler-O-sis). Plaque narrows or blocks the arteries, reducing blood flow to the heart muscle. Some plaque is hard and stable and causes the arteries to become narrow and stiff. This can greatly reduce blood flow to the heart and cause angina. Other plaque is soft and more likely to rupture (break open) and cause blood clots. Blood clots can partially or totally block the coronary arteries and cause angina or a heart attack. Immediate Causes Many factors can trigger angina pain, depending on the type of angina you have. Stable Angina Physical exertion is the most common trigger of stable angina. Severely narrowed arteries may allow enough blood to reach the heart when the demand for oxygen is low, such as when you're sitting. However, with physical exertionlike walking up a hill or climbing stairsthe heart works harder and needs more oxygen. Other triggers of stable angina include: Emotional stress Exposure to very hot or cold temperatures Heavy meals Smoking Unstable Angina Blood clots that partially or totally block an artery cause unstable angina. If plaque in an artery ruptures, blood clots may form. This creates a blockage. A clot may grow large enough to completely block the artery and cause a heart attack. For more information, go to the animation in "What Causes a Heart Attack?" Blood clots may form, partially dissolve, and later form again. Angina can occur each time a clot blocks an artery. Variant Angina A spasm in a coronary artery causes variant angina. The spasm causes the walls of the artery to tighten and narrow. Blood flow to the heart slows or stops. Variant angina can occur in people who have CHD and in those who dont. The coronary arteries can spasm as a result of: Exposure to cold Emotional stress Medicines that tighten or narrow blood vessels Smoking Cocaine use Microvascular Angina This type of angina may be a symptom of coronary microvascular disease (MVD). Coronary MVD is heart disease that affects the hearts smallest coronary arteries. Reduced blood flow in the small coronary arteries may cause microvascular angina. Plaque in the arteries, artery spasms, or damaged or diseased artery walls can reduce blood flow through the small coronary arteries.
Who is at risk for Angina? ?
Angina is a symptom of an underlying heart problem. Its usually a symptom of coronary heart disease (CHD), but it also can be a symptom of coronary microvascular disease (MVD). So, if youre at risk for CHD or coronary MVD, youre also at risk for angina. The major risk factors for CHD and coronary MVD include: Unhealthy cholesterol levels. High blood pressure. Smoking. Insulin resistance or diabetes. Overweight or obesity. Metabolic syndrome. Lack of physical activity. Unhealthy diet. Older age. (The risk increases for men after 45 years of age and for women after 55 years of age.) Family history of early heart disease. For more detailed information about CHD and coronary MVD risk factors, visit the Diseases and Conditions Index Coronary Heart Disease, Coronary Heart Disease Risk Factors, and Coronary Microvascular Disease articles. People sometimes think that because men have more heart attacks than women, men also suffer from angina more often. In fact, overall, angina occurs equally among men and women. Microvascular angina, however, occurs more often in women. About 70 percent of the cases of microvascular angina occur in women around the time of menopause. Unstable angina occurs more often in older adults. Variant angina is rare; it accounts for only about 2 out of 100 cases of angina. People who have variant angina often are younger than those who have other forms of angina.
What are the symptoms of Angina ?
Pain and discomfort are the main symptoms of angina. Angina often is described as pressure, squeezing, burning, or tightness in the chest. The pain or discomfort usually starts behind the breastbone. Pain from angina also can occur in the arms, shoulders, neck, jaw, throat, or back. The pain may feel like indigestion. Some people say that angina pain is hard to describe or that they can't tell exactly where the pain is coming from. Signs and symptoms such as nausea (feeling sick to your stomach), fatigue (tiredness), shortness of breath, sweating, light-headedness, and weakness also may occur. Women are more likely to feel discomfort in the neck, jaw, throat, abdomen, or back. Shortness of breath is more common in older people and those who have diabetes. Weakness, dizziness, and confusion can mask the signs and symptoms of angina in elderly people. Symptoms also vary based on the type of angina you have. Because angina has so many possible symptoms and causes, all chest pain should be checked by a doctor. Chest pain that lasts longer than a few minutes and isn't relieved by rest or angina medicine may be a sign of a heart attack. Call 911 right away. Stable Angina The pain or discomfort: Occurs when the heart must work harder, usually during physical exertion Doesn't come as a surprise, and episodes of pain tend to be alike Usually lasts a short time (5 minutes or less) Is relieved by rest or medicine May feel like gas or indigestion May feel like chest pain that spreads to the arms, back, or other areas Unstable Angina The pain or discomfort: Often occurs at rest, while sleeping at night, or with little physical exertion Comes as a surprise Is more severe and lasts longer than stable angina (as long as 30 minutes) Usually isnt relieved by rest or medicine May get worse over time May mean that a heart attack will happen soon Variant Angina The pain or discomfort: Usually occurs at rest and during the night or early morning hours Tends to be severe Is relieved by medicine Microvascular Angina The pain or discomfort: May be more severe and last longer than other types of angina pain May occur with shortness of breath, sleep problems, fatigue, and lack of energy Often is first noticed during routine daily activities and times of mental stress
How to diagnose Angina ?
The most important issues to address when you go to the doctor with chest pain are: What's causing the chest pain Whether you're having or are about to have a heart attack Angina is a symptom of an underlying heart problem, usually coronary heart disease (CHD). The type of angina pain you have can be a sign of how severe the CHD is and whether it's likely to cause a heart attack. If you have chest pain, your doctor will want to find out whether it's angina. He or she also will want to know whether the angina is stable or unstable. If it's unstable, you may need emergency medical treatment to try to prevent a heart attack. To diagnose chest pain as stable or unstable angina, your doctor will do a physical exam, ask about your symptoms, and ask about your risk factors for and your family history of CHD or other heart diseases. Your doctor also may ask questions about your symptoms, such as: What brings on the pain or discomfort and what relieves it? What does the pain or discomfort feel like (for example, heaviness or tightness)? How often does the pain occur? Where do you feel the pain or discomfort? How severe is the pain or discomfort? How long does the pain or discomfort last? Diagnostic Tests and Procedures If your doctor thinks that you have unstable angina or that your angina is related to a serious heart condition, he or she may recommend one or more tests. EKG (Electrocardiogram) An EKG is a simple, painless test that detects and records the hearts electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through the heart. An EKG can show signs of heart damage due to CHD and signs of a previous or current heart attack. However, some people who have angina have normal EKGs. Stress Testing During stress testing, you exercise to make your heart work hard and beat fast while heart tests are done. If you cant exercise, you may be given medicine to make your heart work hard and beat fast. When your heart is working hard and beating fast, it needs more blood and oxygen. Plaque-narrowed arteries can't supply enough oxygen-rich blood to meet your heart's needs. A stress test can show possible signs and symptoms of CHD, such as: Abnormal changes in your heart rate or blood pressure Shortness of breath or chest pain Abnormal changes in your heart rhythm or your heart's electrical activity As part of some stress tests, pictures are taken of your heart while you exercise and while you rest. These imaging stress tests can show how well blood is flowing in various parts of your heart. They also can show how well your heart pumps blood when it beats. Chest X Ray A chest x ray takes pictures of the organs and structures inside your chest, such as your heart, lungs, and blood vessels. A chest x ray can reveal signs of heart failure. It also can show signs of lung disorders and other causes of symptoms not related to CHD. However, a chest x ray alone is not enough to diagnose angina or CHD. Coronary Angiography and Cardiac Catheterization Your doctor may recommend coronary angiography (an-jee-OG-ra-fee) if he or she suspects you have CHD. This test uses dye and special x rays to show the inside of your coronary arteries. To get the dye into your coronary arteries, your doctor will use a procedure called cardiac catheterization (KATH-e-ter-ih-ZA-shun). A thin, flexible tube called a catheter is put into a blood vessel in your arm, groin (upper thigh), or neck. The tube is threaded into your coronary arteries, and the dye is released into your bloodstream. Special x rays are taken while the dye is flowing through your coronary arteries. The dye lets your doctor study the flow of blood through your heart and blood vessels. Cardiac catheterization usually is done in a hospital. You're awake during the procedure. It usually causes little or no pain, although you may feel some soreness in the blood vessel where your doctor inserts the catheter. Computed Tomography Angiography Computed tomography (to-MOG-rah-fee) angiography (CTA) uses dye and special x rays to show blood flow through the coronary arteries. This test is less invasive than coronary angiography with cardiac catheterization. For CTA, a needle connected to an intravenous (IV) line is put into a vein in your hand or arm. Dye is injected through the IV line during the scan. You may have a warm feeling when this happens. The dye highlights your blood vessels on the CT scan pictures. Sticky patches called electrodes are put on your chest. The patches are attached to an EKG machine to record your heart's electrical activity during the scan. The CT scanner is a large machine that has a hollow, circular tube in the middle. You lie on your back on a sliding table. The table slowly slides into the opening of the machine. Inside the scanner, an x-ray tube moves around your body to take pictures of different parts of your heart. A computer puts the pictures together to make a three-dimensional (3D) picture of the whole heart. Blood Tests Blood tests check the levels of certain fats, cholesterol, sugar, and proteins in your blood. Abnormal levels may show that you have risk factors for CHD. Your doctor may recommend a blood test to check the level of a protein called C-reactive protein (CRP) in your blood. Some studies suggest that high levels of CRP in the blood may increase the risk for CHD and heart attack. Your doctor also may recommend a blood test to check for low levels of hemoglobin (HEE-muh-glow-bin) in your blood. Hemoglobin is an iron-rich protein in red blood cells. It helps the blood cells carry oxygen from the lungs to all parts of your body. If your hemoglobin level is low, you may have a condition called anemia (uh-NEE-me-uh).
What are the treatments for Angina ?
Treatments for angina include lifestyle changes, medicines, medical procedures, cardiac rehabilitation (rehab), and other therapies. The main goals of treatment are to: Reduce pain and discomfort and how often it occurs Prevent or lower your risk for heart attack and death by treating your underlying heart condition Lifestyle changes and medicines may be the only treatments needed if your symptoms are mild and aren't getting worse. If lifestyle changes and medicines don't control angina, you may need medical procedures or cardiac rehab. Unstable angina is an emergency condition that requires treatment in a hospital. Lifestyle Changes Making lifestyle changes can help prevent episodes of angina. You can: Slow down or take rest breaks if physical exertion triggers angina. Avoid large meals and rich foods that leave you feeling stuffed if heavy meals trigger angina. Try to avoid situations that make you upset or stressed if emotional stress triggers angina. Learn ways to handle stress that can't be avoided. You also can make lifestyle changes that help lower your risk for coronary heart disease. One of the most important changes is to quit smoking. Smoking can damage and tighten blood vessels and raise your risk for CHD. Talk with your doctor about programs and products that can help you quit. Also, try to avoid secondhand smoke. If you have trouble quitting smoking on your own, consider joining a support group. Many hospitals, workplaces, and community groups offer classes to help people quit smoking. For more information about how to quit smoking, go to the Diseases and Conditions Index (DCI) Smoking and Your Heart article and the National Heart, Lung, and Blood Institutes (NHLBIs) "Your Guide to a Healthy Heart." Following a healthy diet is another important lifestyle change. A healthy diet can prevent or reduce high blood pressure and high blood cholesterol and help you maintain a healthy weight. A healthy diet includes a variety of fruits and vegetables (including beans and peas). It also includes whole grains, lean meats, poultry without skin, seafood, and fat-free or low-fat milk and dairy products. A healthy diet also is low in sodium (salt), added sugars, solid fats, and refined grains. For more information about following a healthy diet, go to the NHLBIs Your Guide to Lowering Your Blood Pressure With DASH and the U.S. Department of Agricultures ChooseMyPlate.gov Web site. Both resources provide general information about healthy eating. Other important lifestyle changes include: Being physically active. Check with your doctor to find out how much and what kinds of activity are safe for you. For more information, go to the DCI Physical Activity and Your Heart article. Maintaining a healthy weight. If youre overweight or obese, work with your doctor to create a reasonable weight-loss plan. Controlling your weight helps you control CHD risk factors. Taking all medicines as your doctor prescribes, especially if you have diabetes. Medicines Nitrates are the medicines most commonly used to treat angina. They relax and widen blood vessels. This allows more blood to flow to the heart, while reducing the hearts workload. Nitroglycerin (NI-tro-GLIS-er-in) is the most commonly used nitrate for angina. Nitroglycerin that dissolves under your tongue or between your cheek and gum is used to relieve angina episodes. Nitroglycerin pills and skin patches are used to prevent angina episodes. However, pills and skin patches act too slowly to relieve pain during an angina attack. Other medicines also are used to treat angina, such as beta blockers, calcium channel blockers, ACE inhibitors, oral antiplatelet medicines, or anticoagulants (blood thinners). These medicines can help: Lower blood pressure and cholesterol levels Slow the heart rate Relax blood vessels Reduce strain on the heart Prevent blood clots from forming People who have stable angina may be advised to get annual flu shots. Medical Procedures If lifestyle changes and medicines don't control angina, you may need a medical procedure to treat the underlying heart disease. Both angioplasty (AN-jee-oh-plas-tee) and coronary artery bypass grafting (CABG) are commonly used to treat heart disease. Angioplasty opens blocked or narrowed coronary arteries. During angioplasty, a thin tube with a balloon or other device on the end is threaded through a blood vessel to the narrowed or blocked coronary artery. Once in place, the balloon is inflated to push the plaque outward against the wall of the artery. This widens the artery and restores blood flow. Angioplasty can improve blood flow to your heart and relieve chest pain. A small mesh tube called a stent usually is placed in the artery to help keep it open after the procedure. During CABG, healthy arteries or veins taken from other areas in your body are used to bypass (that is, go around) your narrowed coronary arteries. Bypass surgery can improve blood flow to your heart, relieve chest pain, and possibly prevent a heart attack. You will work with your doctor to decide which treatment is better for you. Cardiac Rehabilitation Your doctor may recommend cardiac rehab for angina or after angioplasty, CABG, or a heart attack. Cardiac rehab is a medically supervised program that can help improve the health and well-being of people who have heart problems. The cardiac rehab team may include doctors, nurses, exercise specialists, physical and occupational therapists, dietitians or nutritionists, and psychologists or other mental health specialists. Rehab has two parts: Exercise training. This part helps you learn how to exercise safely, strengthen your muscles, and improve your stamina. Your exercise plan will be based on your personal abilities, needs, and interests. Education, counseling, and training. This part of rehab helps you understand your heart condition and find ways to reduce your risk for future heart problems. The rehab team will help you learn how to adjust to a new lifestyle and deal with your fears about the future. For more information about cardiac rehab, go to the DCI Cardiac Rehabilitation article. Enhanced External Counterpulsation Therapy Enhanced external counterpulsation (EECP) therapy is helpful for some people who have angina. Large cuffs, similar to blood pressure cuffs, are put on your legs. The cuffs are inflated and deflated in sync with your heartbeat. EECP therapy improves the flow of oxygen-rich blood to your heart muscle and helps relieve angina. You typically get 35 1-hour treatments over 7 weeks.
How to prevent Angina ?
You can prevent or lower your risk for angina and heart disease by making lifestyle changes and treating related conditions. Making Lifestyle Changes Healthy lifestyle choices can help prevent or delay angina and heart disease. To adopt a healthy lifestyle, you can: Quit smoking and avoid secondhand smoke Avoid angina triggers Follow a healthy diet Be physically active Maintain a healthy weight Learn ways to handle stress and relax Take your medicines as your doctor prescribes For more information about these lifestyle changes, go to How Is Angina Treated? For more information about preventing and controlling heart disease risk factors, visit the Diseases and Conditions Index Coronary Heart Disease, Coronary Heart Disease Risk Factors, and Coronary Microvascular Disease articles. Treating Related Conditions You also can help prevent or delay angina and heart disease by treating related conditions, such as high blood cholesterol, high blood pressure, diabetes, and overweight or obesity. If you have one or more of these conditions, talk with your doctor about how to control them. Follow your treatment plan and take all of your medicines as your doctor prescribes.
What is (are) High Blood Pressure ?
Espaol High blood pressure is a common disease in which blood flows through blood vessels (arteries) at higher than normal pressures. Measuring Blood Pressure Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps blood. High blood pressure, sometimes called hypertension, happens when this force is too high. Health care workers check blood pressure readings the same way for children, teens, and adults. They use a gauge, stethoscope or electronic sensor, and a blood pressure cuff. With this equipment, they measure: Systolic Pressure: blood pressure when the heart beats while pumping blood Diastolic Pressure: blood pressure when the heart is at rest between beats Health care workers write blood pressure numbers with the systolic number above the diastolic number. For example: 118/76 mmHg People read "118 over 76" millimeters of mercury. Normal Blood Pressure Normal blood pressure for adults is defined as a systolic pressure below 120 mmHg and a diastolic pressure below 80 mmHg. It is normal for blood pressures to change when you sleep, wake up, or are excited or nervous. When you are active, it is normal for your blood pressure to increase. However, once the activity stops, your blood pressure returns to your normal baseline range. Blood pressure normally rises with age and body size. Newborn babies often have very low blood pressure numbers that are considered normal for babies, while older teens have numbers similar to adults. Abnormal Blood Pressure Abnormal increases in blood pressure are defined as having blood pressures higher than 120/80 mmHg. The following table outlines and defines high blood pressure severity levels. Stages of High Blood Pressure in Adults The ranges in the table are blood pressure guides for adults who do not have any short-term serious illnesses. People with diabetes or chronic kidney disease should keep their blood pressure below 130/80 mmHg. Although blood pressure increases seen in prehypertension are less than those used to diagnose high blood pressure, prehypertension can progress to high blood pressure and should be taken seriously. Over time, consistently high blood pressure weakens and damages your blood vessels, which can lead to complications. Types of High Blood Pressure There are two main types of high blood pressure: primary and secondary high blood pressure. Primary High Blood Pressure Primary, or essential, high blood pressure is the most common type of high blood pressure. This type of high blood pressure tends to develop over years as a person ages. Secondary High Blood Pressure Secondary high blood pressure is caused by another medical condition or use of certain medicines. This type usually resolves after the cause is treated or removed.
What causes High Blood Pressure ?
Changes, either fromgenesor the environment, in the bodys normal functions may cause high blood pressure, including changes to kidney fluid and salt balances, therenin-angiotensin-aldosterone system,sympathetic nervous systemactivity, and blood vessel structure and function. Biology and High Blood Pressure Researchers continue to study how various changes in normal body functions cause high blood pressure. The key functions affected in high blood pressure include: Kidney fluid and salt balances Renin-angiotensin-aldosterone system Sympathetic nervous system activity Blood vessel structure and function Kidney Fluid and Salt Balances The kidneys normally regulate the bodys salt balance by retaining sodium and water and excreting potassium. Imbalances in this kidney function can expand blood volumes, which can cause high blood pressure. Renin-Angiotensin-Aldosterone System The renin-angiotensin-aldosterone system makes angiotensin and aldosterone hormones. Angiotensin narrows or constricts blood vessels, which can lead to an increase in blood pressure. Aldosterone controls how the kidneys balance fluid and salt levels. Increased aldosterone levels or activity may change this kidney function, leading to increased blood volumes and high blood pressure. Sympathetic Nervous System Activity The sympathetic nervous system has important functions in blood pressure regulation, including heart rate, blood pressure, and breathing rate. Researchers are investigating whether imbalances in this system cause high blood pressure. Blood Vessel Structure and Function Changes in the structure and function of small and large arteries may contribute to high blood pressure. The angiotensin pathway and the immune system may stiffen small and large arteries, which can affect blood pressure. Genetic Causes of High Blood Pressure Much of the understanding of the body systems involved in high blood pressure has come from genetic studies. High blood pressure often runs in families. Years of research have identified many genes and other mutations associated with high blood pressure, some in the renal salt regulatory and renin-angiotensin-aldosterone pathways. However, these known genetic factors only account for 2 to 3percent of all cases. Emerging research suggests that certain DNA changes during fetal development also may cause the development of high blood pressure later in life. Environmental Causes of High Blood Pressure Environmental causes of high blood pressure include unhealthy lifestyle habits, being overweight or obese, and medicines. Unhealthy Lifestyle Habits Unhealthy lifestyle habits can cause high blood pressure, including: High dietary sodium intake and sodium sensitivity Drinking excess amounts of alcohol Lack of physical activity Overweight and Obesity Research studies show that being overweight or obese can increase the resistance in the blood vessels, causing the heart to work harder and leading to high blood pressure. Medicines Prescription medicines such as asthma or hormone therapies, including birth control pills and estrogen, and over-the-counter medicines such as cold relief medicines may cause this form of high blood pressure. This happens because medicines can change the way your body controls fluid and salt balances, cause your blood vessels to constrict, or impact the renin-angiotensin-aldosterone system leading to high blood pressure. Other Medical Causes of High Blood Pressure Other medical causes of high blood pressure include other medical conditions such as chronic kidney disease, sleep apnea, thyroid problems, or certain tumors. This happens because these other conditions change the way your body controls fluids, sodium, and hormones in your blood, which leads to secondary high blood pressure.
Who is at risk for High Blood Pressure? ?
Anyone can develop high blood pressure; however, age, race or ethnicity, being overweight, gender, lifestyle habits, and a family history of high blood pressure can increase your risk for developing high blood pressure. Age Blood pressure tends to rise with age. About 65 percent of Americans age 60 or older have high blood pressure. However, the risk for prehypertension and high blood pressure is increasing for children and teens, possibly due to the rise in the number of overweight children and teens. Race/Ethnicity High blood pressure is more common in African American adults than in Caucasian or Hispanic American adults. Compared with these ethnic groups, African Americans: Tend to get high blood pressure earlier in life. Often, on average, have higher blood pressure numbers. Are less likely to achieve target blood pressure goals with treatment. Overweight You are more likely to develop prehypertension or high blood pressure if youre overweight or obese. The terms overweight and obese refer to body weight thats greater than what is considered healthy for a certain height. Gender Before age 55, men are more likely than women to develop high blood pressure. After age 55, women are more likely than men to develop high blood pressure. Lifestyle Habits Unhealthy lifestyle habits can raise your risk for high blood pressure, and they include: Eating too much sodium or too little potassium Lack of physical activity Drinking too much alcohol Stress Family History A family history of high blood pressure raises the risk of developing prehypertension or high blood pressure. Some people have a high sensitivity to sodium and salt, which may increase their risk for high blood pressure and may run in families. Genetic causes of this condition are why family history is a risk factor for this condition.
What are the symptoms of High Blood Pressure ?
Because diagnosis is based on blood pressure readings, this condition can go undetected for years, as symptoms do not usually appear until the body is damaged from chronic high blood pressure. Complications of High Blood Pressure When blood pressure stays high over time, it can damage the body and cause complications. Some common complications and their signs and symptoms include: Aneurysms:When an abnormal bulge forms in the wall of an artery. Aneurysms develop and grow for years without causing signs or symptoms until they rupture, grow large enough to press on nearby body parts, or block blood flow. The signs and symptoms that develop depend on the location of the aneurysm. Chronic Kidney Disease: When blood vessels narrow in the kidneys, possibly causing kidney failure. Cognitive Changes: Research shows that over time, higher blood pressure numbers can lead to cognitive changes. Signs and symptoms include memory loss, difficulty finding words, and losing focus during conversations. Eye Damage: When blood vessels in the eyes burst or bleed. Signs and symptoms include vision changes or blindness. Heart Attack: When the flow of oxygen-rich blood to a section of heart muscle suddenly becomes blocked and the heart doesnt get oxygen. The most common warning symptoms of a heart attack are chest pain or discomfort, upper body discomfort, and shortness of breath. Heart Failure: When the heart cant pump enough blood to meet the bodys needs. Common signs and symptoms of heart failure include shortness of breath or trouble breathing; feeling tired; and swelling in the ankles, feet, legs, abdomen, and veins in the neck. Peripheral Artery Disease: A disease in which plaque builds up in leg arteries and affects blood flow in the legs. When people have symptoms, the most common are pain, cramping, numbness, aching, or heaviness in the legs, feet, and buttocks after walking or climbing stairs. Stroke: When the flow of oxygen-rich blood to a portion of the brain is blocked. The symptoms of a stroke include sudden onset of weakness; paralysis or numbness of the face, arms, or legs; trouble speaking or understanding speech; and trouble seeing.
How to diagnose High Blood Pressure ?
For most patients, health care providers diagnose high blood pressure when blood pressure readings areconsistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless and can be done in a health care providers office or clinic. To prepare for the test: Dont drink coffee or smoke cigarettes for 30 minutes prior to the test. Go to the bathroom before the test. Sit for 5 minutes before the test. To track blood pressure readings over a period of time, the health care provider may ask you to come into the office on different days and at different times to take your blood pressure. The health care provider also may ask you to check readings at home or at other locations that have blood pressure equipment and to keep a written log of all your results. Whenever you have an appointment with the health care provider, be sure to bring your log of blood pressure readings. Every time you visit the health care provider, he or she should tell you what your blood pressure numbers are; if he or she does not, you should ask for your readings. Blood Pressure Severity and Type Your health care provider usually takes 23 readings at several medical appointments to diagnose high blood pressure. Using the results of your blood pressure test, your health care provider will diagnose prehypertension or high blood pressure if: Your systolic or diastolic readings are consistently higher than 120/80 mmHg. Your childs blood pressure numbers are outside average numbers for children of the same age, gender, and height. Once your health care provider determines the severity of your blood pressure, he or she can order additional tests to determine if your blood pressure is due to other conditions or medicines or if you have primary high blood pressure. Health care providers can use this information to develop your treatment plan. Some people have white coat hypertension. This happens when blood pressure readings are only high when taken in a health care providers office compared with readings taken in any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in the office and readings taken anywhere else. Researchers believe stress, which can occur during the medical appointment, causes white coat hypertension.
What are the treatments for High Blood Pressure ?
Based on your diagnosis, health care providers develop treatment plans for high blood pressure that include lifelong lifestyle changes and medicines to control high blood pressure; lifestyle changes such as weight loss can be highly effective in treating high blood pressure. Treatment Plans Health care providers work with you to develop a treatment plan based on whether you were diagnosed with primary or secondary high blood pressure and if there is a suspected or known cause. Treatment plans may evolve until blood pressure control is achieved. If your health care provider diagnoses you with secondary high blood pressure, he or she will work to treat the other condition or change the medicine suspected of causing your high blood pressure. If high blood pressure persists or is first diagnosed as primary high blood pressure, your treatment plan will include lifestyle changes. When lifestyle changes alone do not control or lower blood pressure, your health care provider may change or update your treatment plan by prescribing medicines to treat the disease. Health care providers prescribe children and teens medicines at special doses that are safe and effective in children. If your health care provider prescribes medicines as a part of your treatment plan, keep up your healthy lifestyle habits. The combination of the medicines and the healthy lifestyle habits helps control and lower your high blood pressure. Some people develop resistant or uncontrolled high blood pressure. This can happen when the medications they are taking do not work well for them or another medical condition is leading to uncontrolled blood pressure. Health care providers treat resistant or uncontrolled high blood pressure with an intensive treatment plan that can include a different set of blood pressure medications or other special treatments. To achieve the best control of your blood pressure, follow your treatment plan and take all medications as prescribed. Following your prescribed treatment plan is important because it can prevent or delay complications that high blood pressure can cause and can lower your risk for other related problems. Healthy Lifestyle Changes Healthy lifestyle habits can help you control high blood pressure. These habits include: Healthy eating Being physically active Maintaining a healthy weight Limiting alcohol intake Managing and coping with stress To help make lifelong lifestyle changes, try making one healthy lifestyle change at a time and add another change when you feel that you have successfully adopted the earlier changes. When you practice several healthy lifestyle habits, you are more likely to lower your blood pressure and maintain normal blood pressure readings. Healthy Eating To help treat high blood pressure, health care providers recommend that you limit sodium and salt intake, increase potassium, and eat foods that are heart healthy. Limiting Sodium and Salt A low-sodium diet can help you manage your blood pressure. You should try to limit the amount of sodium that you eat. This means choosing and preparing foods that are lower in salt and sodium. Try to use low-sodium and no added salt foods and seasonings at the table or while cooking. Food labels tell you what you need to know about choosing foods that are lower in sodium. Try to eat no more than 2,300 mg sodium a day. If you have high blood pressure, you may need to restrict your sodium intake even more. Your health care provider may recommend the Dietary Approaches to Stop Hypertension (DASH) eating plan if you have high blood pressure. The DASH eating plan focuses on fruits, vegetables, whole grains, and other foods that are heart healthy and low in fat, cholesterol, and salt. The DASH eating plan is a good heart-healthy eating plan, even for those who dont have high blood pressure. Read more about the DASH eating plan. Heart-Healthy Eating Your health care provider also may recommend heart-healthy eating, which should include: Whole grains Fruits, such as apples, bananas, oranges, pears, and prunes Vegetables, such as broccoli, cabbage, and carrots Legumes, such as kidney beans, lentils, chick peas, black-eyed peas, and lima beans Fat-free or low-fat dairy products, such as skim milk Fish high in omega-3 fatty acids, such as salmon, tuna, and trout, about twice a week When following a heart-healthy diet, you should avoid eating: A lot of red meat Palm and coconut oils Sugary foods and beverages In the National Heart, Lung, and Blood Institute (NHLBI)-sponsored Hispanic Community Health Study/Study of Latinos, which studied Hispanics living in the United States, Cubans ate more sodium and Mexicans ate less sodium than other Hispanic groups in the study. All Hispanic Americans should follow these healthy eating recommendations even when cooking traditional Latino dishes. Try some of these popular Hispanic American heart-healthy recipes. Being Physically Active Routine physical activity can lower high blood pressure and reduce your risk for other health problems. Talk with your health care provider before you start a new exercise plan. Ask him or her how much and what kinds of physical activity are safe for you. Everyone should try to participate in moderate-intensity aerobic exercise at least 2 hours and 30minutes per week, or vigorous-intensity aerobic exercise for 1 hour and 15 minutes per week. Aerobic exercise, such as brisk walking, is any exercise in which your heart beats harder and you use more oxygen than usual. The more active you are, the more you will benefit. Participate in aerobic exercise for at least 10 minutes at a time, spread throughout the week. Read more about physical activity: Physical Activity and Your Heart U.S. Department of Health and Human Services'2008 Physical Activity Guidelines for Americans Maintaining a Healthy Weight Maintaining a healthy weight can help you control high blood pressure and reduce your risk for other health problems. If youre overweight or obese, try to lose weight. A loss of just 3 to 5 percent can lower your risk for health problems. Greater amounts of weight loss can improve blood pressure readings, lowerLDL cholesterol, and increase HDL cholesterol. However, research shows that no matter your weight, it is important to control high blood pressure to maintain good health. A useful measure of overweight and obesity is body mass index (BMI). BMI measures your weight in relation to your height. To figure out your BMI, check out NHLBIs online BMI calculator or talk to yourhealth care provider. A BMI: Below 18.5 is a sign that you are underweight. Between 18.5 and 24.9 is in the healthy range. Between 25 and 29.9 is considered overweight. Of 30 or more is considered obese. A general goal to aim for is a BMI below 25. Your health care provider can help you set an appropriate BMI goal. Measuring waist circumference helps screen for possible health risks. If most of your fat is around your waist rather than at your hips, youre at a higher risk for heart disease and type 2 diabetes. This risk may be high with a waist size that is greater than 35 inches for women or greater than 40 inches for men. To learn how to measure your waist, visit Assessing Your Weight and Health Risk. For more information about losing weight or maintaining your weight, go to Aim for a Healthy Weight. Limiting Alcohol Intake Limit alcohol intake. Too much alcohol will raise your blood pressure and triglyceride levels, a type of fat found in the blood. Alcohol also adds extra calories, which may cause weight gain. Men should have no more than two drinks containing alcohol a day. Women should have no more than one drink containing alcohol a day. One drink is: 12 ounces of beer 5 ounces of wine 1 ounces of liquor Managing and Coping With Stress Learning how to manage stress, relax, and cope with problems can improve your emotional and physical health and can lower high blood pressure. Stress management techniques include: Being physically active Listening to music or focusing on something calm or peaceful Performing yoga or tai chi Meditating Medicines Blood pressure medicines work in different ways to stop or slow some of the bodys functions that cause high blood pressure. Medicines to lower blood pressure include: Diuretics (Water or Fluid Pills): Flush excess sodium from your body, which reduces the amount of fluid in your blood and helps to lower your blood pressure. Diuretics are often used with other high blood pressure medicines, sometimes in one combined pill. Beta Blockers: Help your heart beat slower and with less force. As a result, your heart pumps less blood through your blood vessels, which can help to lower your blood pressure. Angiotensin-Converting Enzyme (ACE) Inhibitors: Angiotensin-II is a hormone that narrows blood vessels, increasing blood pressure. ACE converts Angiotensin I to Angiotensin II. ACE inhibitors block this process, which stops the production of Angiotensin II, lowering blood pressure. Angiotensin II Receptor Blockers (ARBs): Block angiotensin II hormone from binding with receptors in the blood vessels. When angiotensin II is blocked, the blood vessels do not constrict or narrow, which can lower your blood pressure. Calcium Channel Blockers: Keep calcium from entering the muscle cells of your heart and blood vessels. This allows blood vessels to relax, which can lower your blood pressure. Alpha Blockers: Reduce nerve impulses that tighten blood vessels. This allows blood to flow more freely, causing blood pressure to go down. Alpha-Beta Blockers: Reduce nerve impulses the same way alpha blockers do. However, like beta blockers, they also slow the heartbeat. As a result, blood pressure goes down. Central Acting Agents: Act in the brain to decrease nerve signals that narrow blood vessels, which can lower blood pressure. Vasodilators: Relax the muscles in blood vessel walls, which can lower blood pressure. To lower and control blood pressure, many people take two or more medicines. If you have side effects from your medicines, dont stop taking your medicines. Instead, talk with your health care provider about the side effects to see if the dose can be changed or a new medicine prescribed. Future Treatments Scientists, doctors, and researchers continue to study the changes that cause high blood pressure, to develop new medicines and treatments to control high blood pressure. Possible future treatments under investigation include new combination medicines, vaccines, and interventions aimed at the sympathetic nervous system, such as kidney nerve ablation.
How to prevent High Blood Pressure ?
Healthy lifestyle habits, proper use of medicines, and regular medical care can prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high blood pressure from developing. It is important to check your blood pressure regularly. Children should have their blood pressure checked starting at 3 years of age. If prehypertension is detected, it should be taken seriously to avoid progressing to high blood pressure. Preventing Worsening High Blood Pressure or Complications If you have been diagnosed with high blood pressure, it is important to obtain regular medical care and to follow your prescribed treatment plan, which will include healthy lifestyle habit recommendations and possibly medicines. Not only can healthy lifestyle habits prevent high blood pressure from occurring, but they can reverse prehypertension and help control existing high blood pressure or prevent complications and long-term problems associated with this condition, such as coronary heart disease, stroke, or kidney disease.
What is (are) Idiopathic Pulmonary Fibrosis ?
Pulmonary fibrosis (PULL-mun-ary fi-BRO-sis) is a disease in which tissue deep in your lungs becomes thick and stiff, or scarred, over time. The formation of scar tissue is called fibrosis. As the lung tissue thickens, your lungs can't properly move oxygen into your bloodstream. As a result, your brain and other organs don't get the oxygen they need. (For more information, go to the "How the Lungs Work" section of this article.) Sometimes doctors can find out what's causing fibrosis. But in most cases, they can't find a cause. They call these cases idiopathic (id-ee-o-PATH-ick) pulmonary fibrosis (IPF). IPF is a serious disease that usually affects middle-aged and older adults. IPF varies from person to person. In some people, fibrosis happens quickly. In others, the process is much slower. In some people, the disease stays the same for years. IPF has no cure yet. Many people live only about 3 to 5 years after diagnosis. The most common cause of death related to IPF is respiratory failure. Other causes of death include pulmonary hypertension (HI-per-TEN-shun), heart failure, pulmonary embolism (EM-bo-lizm), pneumonia (nu-MO-ne-ah), and lung cancer. Genetics may play a role in causing IPF. If more than one member of your family has IPF, the disease is called familial IPF. Research has helped doctors learn more about IPF. As a result, they can more quickly diagnose the disease now than in the past. Also, researchers are studying several medicines that may slow the progress of IPF. These efforts may improve the lifespan and quality of life for people who have the disease.
What causes Idiopathic Pulmonary Fibrosis ?
Sometimes doctors can find out what is causing pulmonary fibrosis (lung scarring). For example, exposure to environmental pollutants and certain medicines can cause the disease. Environmental pollutants include inorganic dust (silica and hard metal dusts) and organic dust (bacteria and animal proteins). Medicines that are known to cause pulmonary fibrosis in some people include nitrofurantoin (an antibiotic), amiodarone (a heart medicine), methotrexate and bleomycin (both chemotherapy medicines), and many other medicines. In most cases, however, the cause of lung scarring isnt known. These cases are called idiopathic pulmonary fibrosis (IPF). With IPF, doctors think that something inside or outside of the lungs attacks them again and again over time. These attacks injure the lungs and scar the tissue inside and between the air sacs. This makes it harder for oxygen to pass through the air sac walls into the bloodstream. The following factors may increase your risk of IPF: Cigarette smoking Viral infections, including Epstein-Barr virus (which causes mononucleosis), influenza A virus, hepatitis C virus, HIV, and herpes virus 6 Genetics also may play a role in causing IPF. Some families have at least two members who have IPF. Researchers have found that 9 out of 10 people who have IPF also have gastroesophageal reflux disease (GERD). GERD is a condition in which acid from your stomach backs up into your throat. Some people who have GERD may regularly breathe in tiny drops of acid from their stomachs. The acid can injure their lungs and lead to IPF. More research is needed to confirm this theory.
What are the symptoms of Idiopathic Pulmonary Fibrosis ?
The signs and symptoms of idiopathic pulmonary fibrosis (IPF) develop over time. They may not even begin to appear until the disease has done serious damage to your lungs. Once they occur, they're likely to get worse over time. The most common signs and symptoms are: Shortness of breath. This usually is the main symptom of IPF. At first, you may be short of breath only during exercise. Over time, you'll likely feel breathless even at rest. A dry, hacking cough that doesn't get better. Over time, you may have repeated bouts of coughing that you can't control. Other signs and symptoms that you may develop over time include: Rapid, shallow breathing Gradual, unintended weight loss Fatigue (tiredness) or malaise (a general feeling of being unwell) Aching muscles and joints Clubbing, which is the widening and rounding of the tips of the fingers or toes Clubbing IPF may lead to other medical problems, including a collapsed lung, lung infections, blood clots in the lungs, and lung cancer. As the disease worsens, you may develop other potentially life-threatening conditions, including respiratory failure, pulmonary hypertension, and heart failure.
How to diagnose Idiopathic Pulmonary Fibrosis ?
Idiopathic pulmonary fibrosis (IPF) causes the same kind of scarring and symptoms as some other lung diseases. This makes it hard to diagnose. Seeking medical help as soon as you have symptoms is important. If possible, seek care from a pulmonologist. This is a doctor who specializes in diagnosing and treating lung problems. Your doctor will diagnose IPF based on your medical history, a physical exam, and test results. Tests can help rule out other causes of your symptoms and show how badly your lungs are damaged. Medical History Your doctor may ask about: Your age Your history of smoking Things in the air at your job or elsewhere that could irritate your lungs Your hobbies Your history of legal and illegal drug use Other medical conditions that you have Your family's medical history How long you've had symptoms Diagnostic Tests No single test can diagnose IPF. Your doctor may recommend several of the following tests. Chest X Ray A chest x ray is a painless test that creates a picture of the structures in your chest, such as your heart and lungs. This test can show shadows that suggest scar tissue. However, many people who have IPF have normal chest x rays at the time they're diagnosed. High-Resolution Computed Tomography A high-resolution computed tomography scan, or HRCT scan, is an x ray that provides sharper and more detailed pictures than a standard chest x ray. HRCT can show scar tissue and how much lung damage you have. This test can help your doctor spot IPF at an early stage or rule it out. HRCT also can help your doctor decide how likely you are to respond to treatment. Lung Function Tests Your doctor may suggest a breathing test called spirometry(spi-ROM-eh-tree) to find out how much lung damage you have. This test measures how much air you can blow out of your lungs after taking a deep breath. Spirometry also measures how fast you can breathe the air out. If you have a lot of lung scarring, you won't be able to breathe out a normal amount of air. Pulse Oximetry For this test, your doctor attaches a small sensor to your finger or ear. The sensor uses light to estimate how much oxygen is in your blood. Arterial Blood Gas Test For this test, your doctor takes a blood sample from an artery, usually in your wrist. The sample is sent to a laboratory, where its oxygen and carbon dioxide levels are measured. This test is more accurate than pulse oximetry. The blood sample also can be tested to see whether an infection is causing your symptoms. Skin Test for Tuberculosis For this test, your doctor injects a substance under the top layer of skin on one of your arms. This substance reacts to tuberculosis (TB). If you have a positive reaction, a small hard lump will develop at the injection site 48 to 72 hours after the test. This test is done to rule out TB. Exercise Testing Exercise testing shows how well your lungs move oxygen and carbon dioxide in and out of your bloodstream when you're active. During this test, you walk or pedal on an exercise machine for a few minutes. An EKG(electrocardiogram) checks your heart rate, a blood pressure cuff checks your blood pressure, and a pulse oximeter shows how much oxygen is in your blood. Your doctor may place a catheter (a flexible tube) in an artery in one of your arms to draw blood samples. These samples will provide a more precise measure of the oxygen and carbon dioxide levels in your blood. Your doctor also may ask you to breathe into a tube that measures oxygen and carbon dioxide levels in your blood. Lung Biopsy For a lung biopsy, your doctor will take samples of lung tissue from several places in your lungs. The samples are examined under a microscope. A lung biopsy is the best way for your doctor to diagnose IPF. This procedure can help your doctor rule out other conditions, such as sarcoidosis (sar-koy-DO-sis), cancer, or infection. Lung biopsy also can show your doctor how far your disease has advanced. Doctors use several procedures to get lung tissue samples. Video-assisted thoracoscopy (thor-ah-KOS-ko-pee). This is the most common procedure used to get lung tissue samples. Your doctor inserts a small tube with an attached light and camera into your chest through small cuts between your ribs. The tube is called an endoscope. The endoscope provides a video image of the lungs and allows your doctor to collect tissue samples. This procedure must be done in a hospital. You'll be given medicine to make you sleep during the procedure. Bronchoscopy (bron-KOS-ko-pee). For a bronchoscopy, your doctor passes a thin, flexible tube through your nose or mouth, down your throat, and into your airways. At the tube's tip are a light and mini-camera. They allow your doctor to see your windpipe and airways. Your doctor then inserts a forceps through the tube to collect tissue samples. You'll be given medicine to help you relax during the procedure. Bronchoalveolar lavage (BRONG-ko-al-VE-o-lar lah-VAHZH). During bronchoscopy, your doctor may inject a small amount of salt water (saline) through the tube into your lungs. This fluid washes the lungs and helps bring up cells from the area around the air sacs. These cells are examined under a microscope. Thoracotomy (thor-ah-KOT-o-me). For this procedure, your doctor removes a few small pieces of lung tissue through a cut in the chest wall between your ribs. Thoracotomy is done in a hospital. You'll be given medicine to make you sleep during the procedure.
What are the treatments for Idiopathic Pulmonary Fibrosis ?
Doctors may prescribe medicines, oxygen therapy, pulmonary rehabilitation (PR), and lung transplant to treat idiopathic pulmonary fibrosis (IPF). Medicines Currently, no medicines are proven to slow the progression of IPF. Prednisone, azathioprine (A-zah-THI-o-preen), and N-acetylcysteine (a-SEH-til-SIS-tee-in) have been used to treat IPF, either alone or in combination. However, experts have not found enough evidence to support their use. Prednisone Prednisone is an anti-inflammatory medicine. You usually take it by mouth every day. However, your doctor may give it to you through a needle or tube inserted into a vein in your arm for several days. After that, you usually take it by mouth. Because prednisone can cause serious side effects, your doctor may prescribe it for 3 to 6 months or less at first. Then, if it works for you, your doctor may reduce the dose over time and keep you on it longer. Azathioprine Azathioprine suppresses your immune system. You usually take it by mouth every day. Because it can cause serious side effects, your doctor may prescribe it with prednisone for only 3 to 6 months. If you don't have serious side effects and the medicines seem to help you, your doctor may keep you on them longer. N-acetylcysteine N-acetylcysteine is an antioxidant that may help prevent lung damage. You usually take it by mouth several times a day. A common treatment for IPF is a combination of prednisone, azathioprine, and N-acetylcysteine. However, this treatment was recently found harmful in a study funded by the National Heart, Lung, and Blood Institute (NHLBI). If you have IPF and take this combination of medicines, talk with your doctor. Do not stop taking the medicines on your own. The NHLBI currently supports research to compare N-acetylcysteine treatment with placebo treatment (sugar pills) in patients who have IPF. New Medicines Being Studied Researchers, like those in the Idiopathic Pulmonary Fibrosis Network, are studying new treatments for IPF. With the support and guidance of the NHLBI, these researchers continue to look for new IPF treatments and therapies. Some of these researchers are studying medicines that may reduce inflammation and prevent or reduce scarring caused by IPF. If you're interested in joining a research study, talk with your doctor. For more information about ongoing research, go to the "Clinical Trials" section of this article. Other Treatments Other treatments that may help people who have IPF include the following: Flu andpneumonia vaccines may help prevent infections and keep you healthy. Cough medicines or oral codeine may relieve coughing. Vitamin D, calcium, and a bone-building medicine may help prevent bone loss if you're taking prednisone or another corticosteroid. Anti-reflux therapy may help control gastroesophageal reflux disease (GERD). Most people who have IPF also have GERD. Oxygen Therapy If the amount of oxygen in your blood gets low, you may need oxygen therapy. Oxygen therapy can help reduce shortness of breath and allow you to be more active. Oxygen usually is given through nasal prongs or a mask. At first, you may need it only during exercise and sleep. As your disease worsens, you may need it all the time. For more information, go to the Health Topics Oxygen Therapy article. Pulmonary Rehabilitation PR is now a standard treatment for people who have chronic (ongoing) lung disease. PR is a broad program that helps improve the well-being of people who have breathing problems. The program usually involves treatment by a team of specialists in a special clinic. The goal is to teach you how to manage your condition and function at your best. PR doesn't replace medical therapy. Instead, it's used with medical therapy and may include: Exercise training Nutritional counseling Education on your lung disease or condition and how to manage it Energy-conserving techniques Breathing strategies Psychological counseling and/or group support For more information, go to the Health Topics Pulmonary Rehabilitation article. Lung Transplant Your doctor may recommend a lung transplant if your condition is quickly worsening or very severe. A lung transplant can improve your quality of life and help you live longer. Some medical centers will consider patients older than 65 for lung transplants if they have no other serious medical problems. The major complications of a lung transplant are rejection and infection. ("Rejection" refers to your body creating proteins that attack the new organ.) You will have to take medicines for the rest of your life to reduce the risk of rejection. Because the supply of donor lungs is limited, talk with your doctor about a lung transplant as soon as possible. For more information, go to the Health Topics Lung Transplant article.
What is (are) Bronchiectasis ?
Bronchiectasis (brong-ke-EK-ta-sis) is a condition in which damage to the airways causes them to widen and become flabby and scarred. The airways are tubes that carry air in and out of your lungs. Bronchiectasis usually is the result of an infection or other condition that injures the walls of your airways or prevents the airways from clearing mucus. Mucus is a slimy substance that the airways produce to help remove inhaled dust, bacteria, and other small particles. In bronchiectasis, your airways slowly lose their ability to clear out mucus. When mucus can't be cleared, it builds up and creates an environment in which bacteria can grow. This leads to repeated, serious lung infections. Each infection causes more damage to your airways. Over time, the airways lose their ability to move air in and out. This can prevent enough oxygen from reaching your vital organs. Bronchiectasis can lead to serious health problems, such as respiratory failure, atelectasis (at-eh-LEK-tah-sis), and heart failure. Bronchiectasis Overview Bronchiectasis can affect just one section of one of your lungs or many sections of both lungs. The initial lung damage that leads to bronchiectasis often begins in childhood. However, symptoms may not occur until months or even years after you start having repeated lung infections. In the United States, common childhood infectionssuch as whooping cough and measlesused to cause many cases of bronchiectasis. However, these causes are now less common because of vaccines and antibiotics. Now bronchiectasis usually is due to a medical condition that injures the airway walls or prevents the airways from clearing mucus. Examples of such conditions include cystic fibrosis and primary ciliary (SIL-e-ar-e) dyskinesia (dis-kih-NE-ze-ah), or PCD. Bronchiectasis that affects only one part of the lung may be caused by a blockage rather than a medical condition. Bronchiectasis can be congenital (kon-JEN-ih-tal) or acquired. Congenital bronchiectasis affects infants and children. It's the result of a problem with how the lungs form in a fetus. Acquired bronchiectasis occurs as a result of another condition or factor. This type of bronchiectasis can affect adults and older children. Acquired bronchiectasis is more common than the congenital type. Outlook Currently, bronchiectasis has no cure. However, with proper care, most people who have it can enjoy a good quality of life. Early diagnosis and treatment of bronchiectasis are important. The sooner your doctor starts treating bronchiectasis and any underlying conditions, the better your chances of preventing further lung damage.
What causes Bronchiectasis ?
Damage to the walls of the airways usually is the cause of bronchiectasis. A lung infection may cause this damage. Examples of lung infections that can lead to bronchiectasis include: Severe pneumonia (nu-MO-ne-ah) Whooping cough or measles (uncommon in the United States due to vaccination) Tuberculosis Fungal infections Conditions that damage the airways and raise the risk of lung infections also can lead to bronchiectasis. Examples of such conditions include: Cystic fibrosis. This disease leads to almost half of the cases of bronchiectasis in the United States. Immunodeficiency disorders, such as common variable immunodeficiency and, less often, HIV and AIDS. Allergic bronchopulmonary aspergillosis (AS-per-ji-LO-sis). This is an allergic reaction to a fungus called aspergillus. The reaction causes swelling in the airways. Disorders that affect cilia (SIL-e-ah) function, such as primary ciliary dyskinesia. Cilia are small, hair-like structures that line your airways. They help clear mucus (a slimy substance) out of your airways. Chronic (ongoing) pulmonary aspiration (as-pih-RA-shun). This is a condition in which you inhale food, liquids, saliva, or vomited stomach contents into your lungs. Aspiration can inflame the airways, which can lead to bronchiectasis. Connective tissue diseases, such as rheumatoid arthritis, Sjgrens syndrome, and Crohns disease. Other conditions, such as an airway blockage, also can lead to bronchiectasis. Many things can cause a blockage, such as a growth or a noncancerous tumor. An inhaled object, such as a piece of a toy or a peanut that you inhaled as a child, also can cause an airway blockage. A problem with how the lungs form in a fetus may cause congenital bronchiectasis. This condition affects infants and children.
Who is at risk for Bronchiectasis? ?
People who have conditions that damage the lungs or increase the risk of lung infections are at risk for bronchiectasis. Such conditions include: Cystic fibrosis. This disease leads to almost half of the cases of bronchiectasis in the United States. Immunodeficiency disorders, such as common variable immunodeficiency and, less often, HIV and AIDS. Allergic bronchopulmonary aspergillosis. This is an allergic reaction to a fungus called aspergillus. The reaction causes swelling in the airways. Disorders that affect cilia function, such as primary ciliary dyskinesia. Cilia are small, hair-like structures that line your airways. They help clear mucus (a slimy substance) out of your airways. Bronchiectasis can develop at any age. Overall, two-thirds of people who have the condition are women. However, in children, the condition is more common in boys than in girls.
What are the symptoms of Bronchiectasis ?
The initial airway damage that leads to bronchiectasis often begins in childhood. However, signs and symptoms may not appear until months or even years after you start having repeated lung infections. The most common signs and symptoms of bronchiectasis are: A daily cough that occurs over months or years Daily production of large amounts of sputum (spit). Sputum, which you cough up and spit out, may contain mucus (a slimy substance), trapped particles, and pus. Shortness of breath and wheezing (a whistling sound when you breathe) Chest pain Clubbing (the flesh under your fingernails and toenails gets thicker) If your doctor listens to your lungs with a stethoscope, he or she may hear abnormal lung sounds. Over time, you may have more serious symptoms. You may cough up blood or bloody mucus and feel very tired. Children may lose weight or not grow at a normal rate. Complications of Bronchiectasis Severe bronchiectasis can lead to other serious health conditions, such as respiratory failure and atelectasis. Respiratory failure is a condition in which not enough oxygen passes from your lungs into your blood. The condition also can occur if your lungs can't properly remove carbon dioxide (a waste gas) from your blood. Respiratory failure can cause shortness of breath, rapid breathing, and air hunger (feeling like you can't breathe in enough air). In severe cases, signs and symptoms may include a bluish color on your skin, lips, and fingernails; confusion; and sleepiness. Atelectasis is a condition in which one or more areas of your lungs collapse or don't inflate properly. As a result, you may feel short of breath. Your heart rate and breathing rate may increase, and your skin and lips may turn blue. If bronchiectasis is so advanced that it affects all parts of your airways, it may cause heart failure. Heart failure is a condition in which the heart can't pump enough blood to meet the body's needs. The most common signs and symptoms of heart failure are shortness of breath or trouble breathing, tiredness, and swelling in the ankles, feet, legs, abdomen, and veins in the neck.
How to diagnose Bronchiectasis ?
Your doctor may suspect bronchiectasis if you have a daily cough that produces large amounts of sputum (spit). To find out whether you have bronchiectasis, your doctor may recommend tests to: Identify any underlying causes that require treatment Rule out other causes of your symptoms Find out how much your airways are damaged Diagnostic Tests and Procedures Chest CT Scan A chest computed tomography (to-MOG-ra-fee) scan, or chest CT scan, is the most common test for diagnosing bronchiectasis. This painless test creates precise pictures of your airways and other structures in your chest. A chest CT scan can show the extent and location of lung damage. This test gives more detailed pictures than a standard chest x ray. Chest X Ray This painless test creates pictures of the structures in your chest, such as your heart and lungs. A chest x ray can show areas of abnormal lung and thickened, irregular airway walls. Other Tests Your doctor may recommend other tests, such as: Blood tests. These tests can show whether you have an underlying condition that can lead to bronchiectasis. Blood tests also can show whether you have an infection or low levels of certain infection-fighting blood cells. A sputum culture. Lab tests can show whether a sample of your sputum contains bacteria (such as the bacteria that cause tuberculosis) or fungi. Lung function tests. These tests measure how much air you can breathe in and out, how fast you can breathe air out, and how well your lungs deliver oxygen to your blood. Lung function tests help show how much lung damage you have. A sweat test or other tests for cystic fibrosis. Bronchoscopy If your bronchiectasis doesn't respond to treatment, your doctor may recommend bronchoscopy (bron-KOS-ko-pee). Doctors use this procedure to look inside the airways. During bronchoscopy, a flexible tube with a light on the end is inserted through your nose or mouth into your airways. The tube is called a bronchoscope. It provides a video image of your airways. You'll be given medicine to numb your upper airway and help you relax during the procedure. Bronchoscopy can show whether you have a blockage in your airways. The procedure also can show the source of any bleeding in your airways.
What are the treatments for Bronchiectasis ?
Bronchiectasis often is treated with medicines, hydration, and chest physical therapy (CPT). Your doctor may recommend surgery if the bronchiectasis is isolated to a section of lung or you have a lot of bleeding. If the bronchiectasis is widespread and causing respiratory failure, your doctor may recommend oxygen therapy. The goals of treatment are to: Treat any underlying conditions and lung infections. Remove mucus (a slimy substance) from your lungs. Maintaining good hydration helps with mucus removal. Prevent complications. Early diagnosis and treatment of the underlying cause of bronchiectasis may help prevent further lung damage. In addition, any disease associated with the bronchiectasis, such as cystic fibrosisor immunodeficiency, also should be treated. Medicines Your doctor may prescribe antibiotics, bronchodilators, expectorants, or mucus-thinning medicines to treat bronchiectasis. Antibiotics Antibiotics are the main treatment for the repeated lung infections that bronchiectasis causes. Oral antibiotics often are used to treat these infections. For hard-to-treat infections, your doctor may prescribe intravenous (IV) antibiotics. These medicines are given through an IV line inserted into your arm. Your doctor may help you arrange for a home care provider to give you IV antibiotics at home. Expectorants and Mucus-Thinning Medicines Your doctor may prescribe expectorants and mucus thinners to help you cough up mucus. Expectorants help loosen the mucus in your lungs. They often are combined with decongestants, which may provide extra relief. Mucus thinners, such as acetylcysteine, loosen the mucus to make it easier to cough up. For some of these treatments, little information is available to show how well they work. Hydration Drinking plenty of fluid, especially water, helps prevent airway mucus from becoming thick and sticky. Good hydration helps keep airway mucus moist and slippery, which makes it easier to cough up. Chest Physical Therapy CPT also is called physiotherapy (FIZ-e-o-THER-ah-pe) or chest clapping or percussion. This technique is generally performed by a respiratory therapist but can be done by a trained member of the family. It involves the therapist pounding your chest and back over and over with his or her hands or a device. Doing this helps loosen the mucus from your lungs so you can cough it up. You can sit with your head tilted down or lie on your stomach with your head down while you do CPT. Gravity and force help drain the mucus from your lungs. Some people find CPT hard or uncomfortable to do. Several devices can help with CPT, such as: An electric chest clapper, known as a mechanical percussor. An inflatable therapy vest that uses high-frequency air waves to force mucus toward your upper airways so you can cough it up. A small handheld device that you breathe out through. It causes vibrations that dislodge the mucus. A mask that creates vibrations to help break loose mucus from your airway walls. Some of these methods and devices are popular with patients and doctors, but little information is available on how well they actually work. Choice usually is based on convenience and cost. Several breathing techniques also are used to help move mucus to the upper airway so it can be coughed up. These techniques include forced expiration technique (FET) and active cycle breathing (ACB). FET involves forcing out a couple of breaths and then doing relaxed breathing. ACB is FET that involves deep breathing exercises. Other Treatments Depending on your condition, your doctor also may recommend bronchodilators, inhaled corticosteroids, oxygen therapy, or surgery. Bronchodilators Bronchodilators relax the muscles around your airways. This helps open your airways and makes breathing easier. Most bronchodilators are inhaled medicines. You will use an inhaler or a nebulizer to breathe in a fine mist of medicine. Inhaled bronchodilators work quickly because the medicine goes straight to your lungs. Your doctor may recommend that you use a bronchodilator right before you do CPT. Inhaled Corticosteroids If you also have wheezing or asthma with your bronchiectasis, your doctor may prescribe inhaled corticosteroids (used to treat inflammation in the airways). Oxygen Therapy Oxygen therapy can help raise low blood oxygen levels. For this treatment, you'll receive oxygen through nasal prongs or a mask. Oxygen therapy can be done at home, in a hospital, or in another health facility. (For more information, go to the Health Topics Oxygen Therapy article.) Surgery Your doctor may recommend surgery if no other treatments have helped and only one part of your airway is affected. If you have major bleeding in your airway, your doctor may recommend surgery to remove part of your airway or a procedure to control the bleeding. In very rare instances of severe bronchiectasis, your doctor may recommend that you receive a lung transplant replacing your diseased lungs with a healthy set of lungs.
How to prevent Bronchiectasis ?
To prevent bronchiectasis, it's important to prevent the lung infections and lung damage that can cause it. Childhood vaccines for measles and whooping cough prevent infections related to these illnesses. These vaccines also reduce complications from these infections, such as bronchiectasis. Avoiding toxic fumes, gases, smoke, and other harmful substances also can help protect your lungs. Proper treatment of lung infections in children also may help preserve lung function and prevent lung damage that can lead to bronchiectasis. Stay alert to keep children (and adults) from inhaling small objects (such as pieces of toys and food that might stick in a small airway). If you think you, your child, or someone else has inhaled a small object, seek prompt medical care. In some cases, treating the underlying cause of bronchiectasis can slow or prevent its progression.
What is (are) Cardiomyopathy ?
Cardiomyopathy refers to diseases of the heart muscle. These diseases have many causes, signs and symptoms, and treatments. In cardiomyopathy, the heart muscle becomes enlarged, thick, or rigid. In rare cases, the muscle tissue in the heart is replaced with scar tissue. As cardiomyopathy worsens, the heart becomes weaker. It's less able to pump blood through the body and maintain a normal electrical rhythm. This can lead to heart failure or irregular heartbeats called arrhythmias. In turn, heart failure can cause fluid to build up in the lungs, ankles, feet, legs, or abdomen. The weakening of the heart also can cause other complications, such as heart valve problems. Overview The types of cardiomyopathy are: Hypertrophic cardiomyopathy Dilated cardiomyopathy Restrictive cardiomyopathy Arrhythmogenic right ventricular dysplasia Unclassified cardiomyopathy Cardiomyopathy can be acquired or inherited. "Acquired" means you aren't born with the disease, but you develop it due to another disease, condition, or factor. "Inherited" means your parents passed the gene for the disease on to you. Many times, the cause of cardiomyopathy isn't known. Cardiomyopathy can affect people of all ages. However, people in certain age groups are more likely to have certain types of cardiomyopathy. This article focuses on cardiomyopathy in adults. Outlook Some people who have cardiomyopathy have no signs or symptoms and need no treatment. For other people, the disease develops quickly, symptoms are severe, and serious complications occur. Treatments for cardiomyopathy include lifestyle changes, medicines, surgery, implanted devices to correct arrhythmias, and a nonsurgical procedure. These treatments can control symptoms, reduce complications, and stop the disease from getting worse.