|
|
|
import json |
|
import logging |
|
import os |
|
|
|
import datasets |
|
from detectron2.data.detection_utils import read_image |
|
from detectron2.data.transforms import ResizeTransform, TransformList |
|
from torch import tensor |
|
|
|
|
|
def load_image(image_path): |
|
image = read_image(image_path, format="BGR") |
|
h = image.shape[0] |
|
w = image.shape[1] |
|
img_trans = TransformList([ResizeTransform(h=h, w=w, new_h=224, new_w=224)]) |
|
|
|
image = tensor(img_trans.apply_image(image).copy()).permute( |
|
2, 0, 1 |
|
) |
|
return image, (w, h) |
|
|
|
|
|
_URL = "https://github.com/doc-analysis/XFUND/releases/download/v1.0/" |
|
|
|
_LANG = ["zh", "de", "es", "fr", "en", "it", "ja", "pt"] |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class XFUNDConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for XFUND.""" |
|
|
|
def __init__(self, lang, additional_langs=None, **kwargs): |
|
""" |
|
Args: |
|
lang: string, language for the input text |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
self.lang = lang |
|
self.additional_langs = additional_langs |
|
|
|
|
|
_LABELS = ["header", "question", "answer", "other"] |
|
|
|
|
|
def _get_box_feature(): |
|
return datasets.Sequence(datasets.Value("int64")) |
|
|
|
|
|
class XFUND(datasets.GeneratorBasedBuilder): |
|
"""XFUND dataset.""" |
|
|
|
BUILDER_CONFIGS = [XFUNDConfig(name=f"xfund.{lang}", lang=lang) for lang in _LANG] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"uid": datasets.Value("string"), |
|
"document": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"box": _get_box_feature(), |
|
"text": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=_LABELS), |
|
"words": datasets.Sequence( |
|
{ |
|
"box": _get_box_feature(), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
"linking": datasets.Sequence( |
|
datasets.Sequence(datasets.Value("int64")) |
|
), |
|
} |
|
), |
|
"img_meta": { |
|
"fname": datasets.Value("string"), |
|
"width": datasets.Value("int64"), |
|
"height": datasets.Value("int64"), |
|
"format": datasets.Value("string"), |
|
}, |
|
|
|
"img_data": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"), |
|
}, |
|
), |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": [ |
|
f"{_URL}{self.config.lang}.train.json", |
|
f"{_URL}{self.config.lang}.train.zip", |
|
], |
|
"val": [f"{_URL}{self.config.lang}.val.json", f"{_URL}{self.config.lang}.val.zip"], |
|
|
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
train_files_for_many_langs = [downloaded_files["train"]] |
|
val_files_for_many_langs = [downloaded_files["val"]] |
|
|
|
if self.config.additional_langs: |
|
additional_langs = self.config.additional_langs.split("+") |
|
if "all" in additional_langs: |
|
additional_langs = [lang for lang in _LANG if lang != self.config.lang] |
|
for lang in additional_langs: |
|
urls_to_download = { |
|
"train": [f"{_URL}{lang}.train.json", f"{_URL}{lang}.train.zip"] |
|
} |
|
additional_downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
train_files_for_many_langs.append(additional_downloaded_files["train"]) |
|
|
|
logger.info( |
|
f"Training on {self.config.lang} with additional langs({self.config.additional_langs})" |
|
) |
|
logger.info(f"Evaluating on {self.config.lang}") |
|
logger.info(f"Testing on {self.config.lang}") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_files_for_many_langs} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": val_files_for_many_langs} |
|
), |
|
|
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
for filepath in filepaths: |
|
logger.info("Generating examples from = %s", filepath) |
|
with open(filepath[0], encoding="utf-8") as f: |
|
data = json.load(f) |
|
|
|
for doc in data["documents"]: |
|
|
|
fpath = os.path.join(filepath[1], doc["img"]["fname"]) |
|
image, size = load_image(fpath) |
|
expected_size = tuple([doc["img"]["width"], doc["img"]["height"]]) |
|
if size != expected_size: |
|
raise ValueError( |
|
f"image has unexpected size: {size}. expected: {expected_size}" |
|
) |
|
|
|
doc["img_meta"] = doc.pop("img") |
|
doc["img_meta"]["format"] = "RGB" |
|
doc["img_data"] = image |
|
|
|
yield doc["id"], doc |
|
|