Datasets:
annotations_creators:
- expert-generated
language:
- en
language_creators:
- found
license:
- other
multilinguality:
- monolingual
paperswithcode_id: acronym-identification
pretty_name: >-
Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction
and Classification in Scientific Papers
size_categories:
- 1K<n<10K
source_datasets: []
tags:
- Relation Classification
- Relation extraction
- Scientific papers
- Research papers
task_categories:
- text-classification
task_ids:
- entity-linking-classification
train-eval-index:
- col_mapping:
labels: tags
tokens: tokens
config: default
splits:
eval_split: test
task: text-classification
task_id: entity_extraction
Dataset Card for SemEval2018Task7
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://lipn.univ-paris13.fr/~gabor/semeval2018task7/
- Repository: https://github.com/gkata/SemEval2018Task7/tree/testing
- Paper: SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers
- Leaderboard: https://competitions.codalab.org/competitions/17422#learn_the_details-overview
- Size of downloaded dataset files: 1.93 MB
Dataset Summary
Semeval2018Task7 is a dataset that describes the Semantic Relation Extraction and Classification in Scientific Papers. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.
The three subtasks are:
Subtask 1.1: Relation classification on clean data
- In the training data, semantic relations are manually annotated between entities.
- In the test data, only entity annotations and unlabeled relation instances are given.
- Given a scientific publication, The task is to predict the semantic relation between the entities.
Subtask 1.2: Relation classification on noisy data
- Entity occurrences are automatically annotated in both the training and the test data.
- The task is to predict the semantic relation between the entities.
Subtask 2: Metrics for the extraction and classification scenario
- Evaluation of relation extraction
- Evaluation of relation classification
The Relations types are USAGE, RESULT, MODEL, PART_WHOLE, TOPIC, COMPARISION.
The following example shows a text snippet with the information provided in the test data: Korean, a <entity id=”H01-1041.10”>verb final language</entity>with<entity id=”H01-1041.11”>overt case markers</entity>(...)
- A relation instance is identified by the unique identifier of the entities in the pair, e.g.(H01-1041.10, H01-1041.11)
- The information to be predicted is the relation class label: MODEL-FEATURE(H01-1041.10, H01-1041.11). For details, see the paper https://aclanthology.org/S18-1111/.
Supported Tasks and Leaderboards
- Tasks: Relation extraction and classification in scientific papers
- Leaderboards: https://competitions.codalab.org/competitions/17422#learn_the_details-overview
Languages
The language in the dataset is English.
Dataset Structure
Data Instances
subtask_1.1
- Size of downloaded dataset files: 714 KB
An example of 'train' looks as follows:
{
"id": "H01-1041",
"title": "'Interlingua-Based Broad-Coverage Korean-to-English Translation in CCLING'",
"abstract": 'At MIT Lincoln Laboratory, we have been developing a Korean-to-English machine translation system CCLINC (Common Coalition Language System at Lincoln Laboratory) . The CCLINC Korean-to-English translation system consists of two core modules , language understanding and generation modules mediated by a language neutral meaning representation called a semantic frame . The key features of the system include: (i) Robust efficient parsing of Korean (a verb final language with overt case markers , relatively free word order , and frequent omissions of arguments ). (ii) High quality translation via word sense disambiguation and accurate word order generation of the target language . (iii) Rapid system development and porting to new domains via knowledge-based automated acquisition of grammars . Having been trained on Korean newspaper articles on missiles and chemical biological warfare, the system produces the translation output sufficient for content understanding of the original document.
"entities": [{'id': 'H01-1041.1', 'char_start': 54, 'char_end': 97},
{'id': 'H01-1041.2', 'char_start': 99, 'char_end': 161},
{'id': 'H01-1041.3', 'char_start': 169, 'char_end': 211},
{'id': 'H01-1041.4', 'char_start': 229, 'char_end': 240},
{'id': 'H01-1041.5', 'char_start': 244, 'char_end': 288},
{'id': 'H01-1041.6', 'char_start': 304, 'char_end': 342},
{'id': 'H01-1041.7', 'char_start': 353, 'char_end': 366},
{'id': 'H01-1041.8', 'char_start': 431, 'char_end': 437},
{'id': 'H01-1041.9', 'char_start': 442, 'char_end': 447},
{'id': 'H01-1041.10', 'char_start': 452, 'char_end': 470},
{'id': 'H01-1041.11', 'char_start': 477, 'char_end': 494},
{'id': 'H01-1041.12', 'char_start': 509, 'char_end': 523},
{'id': 'H01-1041.13', 'char_start': 553, 'char_end': 561},
{'id': 'H01-1041.14', 'char_start': 584, 'char_end': 594},
{'id': 'H01-1041.15', 'char_start': 600, 'char_end': 624},
{'id': 'H01-1041.16', 'char_start': 639, 'char_end': 659},
{'id': 'H01-1041.17', 'char_start': 668, 'char_end': 682},
{'id': 'H01-1041.18', 'char_start': 692, 'char_end': 715},
{'id': 'H01-1041.19', 'char_start': 736, 'char_end': 742},
{'id': 'H01-1041.20', 'char_start': 748, 'char_end': 796},
{'id': 'H01-1041.21', 'char_start': 823, 'char_end': 847},
{'id': 'H01-1041.22', 'char_start': 918, 'char_end': 935},
{'id': 'H01-1041.23', 'char_start': 981, 'char_end': 997}],
}
"relation": [{'label': 3, 'arg1': 'H01-1041.3', 'arg2': 'H01-1041.4', 'reverse': True},
{'label': 0, 'arg1': 'H01-1041.8', 'arg2': 'H01-1041.9', 'reverse': False},
{'label': 2, 'arg1': 'H01-1041.10', 'arg2': 'H01-1041.11', 'reverse': True},
{'label': 0, 'arg1': 'H01-1041.14', 'arg2': 'H01-1041.15', 'reverse': True}]
Subtask_1.2
- Size of downloaded dataset files: 1.00 MB
An example of 'train' looks as follows:
{'id': 'L08-1450',
'title': '\nA LAF/GrAF based Encoding Scheme for underspecified Representations of syntactic Annotations.\n',
'abstract': 'Data models and encoding formats for syntactically annotated text corpora need to deal with syntactic ambiguity; underspecified representations are particularly well suited for the representation of ambiguousdata because they allow for high informational efficiency. We discuss the issue of being informationally efficient, and the trade-off between efficient encoding of linguistic annotations and complete documentation of linguistic analyses. The main topic of this article is adata model and an encoding scheme based on LAF/GrAF ( Ide and Romary, 2006 ; Ide and Suderman, 2007 ) which provides a flexible framework for encoding underspecified representations. We show how a set of dependency structures and a set of TiGer graphs ( Brants et al., 2002 ) representing the readings of an ambiguous sentence can be encoded, and we discuss basic issues in querying corpora which are encoded using the framework presented here.\n',
'entities': [{'id': 'L08-1450.4', 'char_start': 0, 'char_end': 3},
{'id': 'L08-1450.5', 'char_start': 5, 'char_end': 10},
{'id': 'L08-1450.6', 'char_start': 25, 'char_end': 31},
{'id': 'L08-1450.7', 'char_start': 61, 'char_end': 64},
{'id': 'L08-1450.8', 'char_start': 66, 'char_end': 72},
{'id': 'L08-1450.9', 'char_start': 82, 'char_end': 85},
{'id': 'L08-1450.10', 'char_start': 92, 'char_end': 100},
{'id': 'L08-1450.11', 'char_start': 102, 'char_end': 110},
{'id': 'L08-1450.12', 'char_start': 128, 'char_end': 142},
{'id': 'L08-1450.13', 'char_start': 181, 'char_end': 194},
{'id': 'L08-1450.14', 'char_start': 208, 'char_end': 211},
{'id': 'L08-1450.15', 'char_start': 255, 'char_end': 264},
{'id': 'L08-1450.16', 'char_start': 282, 'char_end': 286},
{'id': 'L08-1450.17', 'char_start': 408, 'char_end': 420},
{'id': 'L08-1450.18', 'char_start': 425, 'char_end': 443},
{'id': 'L08-1450.19', 'char_start': 450, 'char_end': 453},
{'id': 'L08-1450.20', 'char_start': 455, 'char_end': 459},
{'id': 'L08-1450.21', 'char_start': 481, 'char_end': 484},
{'id': 'L08-1450.22', 'char_start': 486, 'char_end': 490},
{'id': 'L08-1450.23', 'char_start': 508, 'char_end': 513},
{'id': 'L08-1450.24', 'char_start': 515, 'char_end': 519},
{'id': 'L08-1450.25', 'char_start': 535, 'char_end': 537},
{'id': 'L08-1450.26', 'char_start': 559, 'char_end': 561},
{'id': 'L08-1450.27', 'char_start': 591, 'char_end': 598},
{'id': 'L08-1450.28', 'char_start': 611, 'char_end': 619},
{'id': 'L08-1450.29', 'char_start': 649, 'char_end': 663},
{'id': 'L08-1450.30', 'char_start': 687, 'char_end': 707},
{'id': 'L08-1450.31', 'char_start': 722, 'char_end': 726},
{'id': 'L08-1450.32', 'char_start': 801, 'char_end': 808},
{'id': 'L08-1450.33', 'char_start': 841, 'char_end': 845},
{'id': 'L08-1450.34', 'char_start': 847, 'char_end': 852},
{'id': 'L08-1450.35', 'char_start': 857, 'char_end': 864},
{'id': 'L08-1450.36', 'char_start': 866, 'char_end': 872},
{'id': 'L08-1450.37', 'char_start': 902, 'char_end': 910},
{'id': 'L08-1450.1', 'char_start': 12, 'char_end': 16},
{'id': 'L08-1450.2', 'char_start': 27, 'char_end': 32},
{'id': 'L08-1450.3', 'char_start': 72, 'char_end': 80}],
'relation': [{'label': 1,
'arg1': 'L08-1450.12',
'arg2': 'L08-1450.13',
'reverse': False},
{'label': 5, 'arg1': 'L08-1450.17', 'arg2': 'L08-1450.18', 'reverse': False},
{'label': 1, 'arg1': 'L08-1450.28', 'arg2': 'L08-1450.29', 'reverse': False},
{'label': 3, 'arg1': 'L08-1450.30', 'arg2': 'L08-1450.32', 'reverse': False},
{'label': 3, 'arg1': 'L08-1450.34', 'arg2': 'L08-1450.35', 'reverse': False},
{'label': 3, 'arg1': 'L08-1450.36', 'arg2': 'L08-1450.37', 'reverse': True}]}
[ ]
Data Fields
subtask_1_1
id
: the instance id of this abstract, astring
feature.title
: the title of this abstract, astring
featureabstract
: the abstract from the scientific papers, astring
featureentities
: the entity id's for the key phrases, alist
of entity id's.id
: the instance id of this sentence, astring
feature.char_start
: the 0-based index of the entity starting, anìnt
feature.char_end
: the 0-based index of the entity ending, anìnt
feature.
relation
: the list of relations of this sentence marking the relation between the key phrases, alist
of classification labels.label
: the list of relations between the key phrases, alist
of classification labels.arg1
: the entity id of this key phrase, astring
feature.arg2
: the entity id of the related key phrase, astring
feature.reverse
: the reverse isTrue
only if reverse is possible otherwiseFalse
, abool
feature.
RELATIONS
{"":0,"USAGE": 1, "RESULT": 2, "MODEL-FEATURE": 3, "PART_WHOLE": 4, "TOPIC": 5, "COMPARE": 6}
subtask_1_2
id
: the instance id of this abstract, astring
feature.title
: the title of this abstract, astring
featureabstract
: the abstract from the scientific papers, astring
featureentities
: the entity id's for the key phrases, alist
of entity id's.id
: the instance id of this sentence, astring
feature.char_start
: the 0-based index of the entity starting, anìnt
feature.char_end
: the 0-based index of the entity ending, anìnt
feature.
relation
: the list of relations of this sentence marking the relation between the key phrases, alist
of classification labels.label
: the list of relations between the key phrases, alist
of classification labels.arg1
: the entity id of this key phrase, astring
feature.arg2
: the entity id of the related key phrase, astring
feature.reverse
: the reverse isTrue
only if reverse is possible otherwiseFalse
, abool
feature.
RELATIONS
{"":0,"USAGE": 1, "RESULT": 2, "MODEL-FEATURE": 3, "PART_WHOLE": 4, "TOPIC": 5, "COMPARE": 6}
Data Splits
Train | Test | ||
---|---|---|---|
subtask_1_1 | text | 2807 | 3326 |
relations | 1228 | 1248 | |
subtask_1_2 | text | 1196 | 1193 |
relations | 335 | 355 |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Citation Information
@inproceedings{gabor-etal-2018-semeval,
title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
author = {G{\'a}bor, Kata and
Buscaldi, Davide and
Schumann, Anne-Kathrin and
QasemiZadeh, Behrang and
Zargayouna, Ha{\"\i}fa and
Charnois, Thierry},
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1111",
doi = "10.18653/v1/S18-1111",
pages = "679--688",
abstract = "This paper describes the first task on semantic relation extraction and classification in scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.",
}
Contributions
Thanks to @basvoju for adding this dataset.