Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
400
Revisiting Competitive Coding Approach for Palmprint Recognition: A Linear Discriminant Analysis Perspective
The competitive Coding approach (CompCode) is one of the most promising methods for palmprint recognition. Due to its high performance and simple formulation, it has been continuously studied for many years. However, although numerous variations of CompCode have been proposed, a detailed analysis of the method is still absent. In this paper, we provide a detailed analysis of CompCode from the perspective of linear discriminant analysis (LDA) for the first time. A non-trivial sufficient condition under which the CompCode is optimal in the sense of Fisher's criterion is presented. Based on our analysis, we examined the statistics of palmprints and concluded that CompCode deviates from the optimal condition. To mitigate the deviation, we propose a new method called Class-Specific CompCode that improves CompCode by excluding non-palm-line areas from matching. A nonlinear mapping of the competitive code is also applied in this method to further enhance accuracy. Experiments on two public databases demonstrate the effectiveness of the proposed method.
401
GitHub Copilot AI pair programmer: Asset or Liability?
Automatic program synthesis is a long-lasting dream in software engineering. Recently, a promising Deep Learning (DL) based solution, called Copilot, has been proposed by Open AI and Microsoft as an industrial product. Although some studies evaluate the correctness of Copilot solutions and report its issues, more empirical evaluations are necessary to understand how developers can benefit from it effectively. In this paper, we study the capabilities of Copilot in two different programming tasks: (1) generating (and reproducing) correct and efficient solutions for fundamental algorithmic problems, and (2) comparing Copilot's proposed solutions with those of human programmers on a set of programming tasks. For the former, we assess the performance and functionality of Copilot in solving selected fundamental problems in computer science, like sorting and implementing basic data structures. In the latter, a dataset of programming problems with human-provided solutions is used. The results show that Copilot is capable of providing solutions for almost all fundamental algorithmic problems, however, some solutions are buggy and non-reproducible. Moreover, Copilot has some difficulties in combining multiple methods to generate a solution. Comparing Copilot to humans, our results show that the correct ratio of human solutions is greater than Copilot's correct ratio, while the buggy solutions generated by Copilot require less effort to be repaired. While Copilot shows limitations as an assistant for developers especially in advanced programming tasks, as highlighted in this study and previous ones, it can generate preliminary solutions for basic programming tasks.
402
Neural Annotation Refinement: Development of a New 3D Dataset for Adrenal Gland Analysis
The human annotations are imperfect, especially when produced by junior practitioners. Multi-expert consensus is usually regarded as golden standard, while this annotation protocol is too expensive to implement in many real-world projects. In this study, we propose a method to refine human annotation, named Neural Annotation Refinement (NeAR). It is based on a learnable implicit function, which decodes a latent vector into represented shape. By integrating the appearance as an input of implicit functions, the appearance-aware NeAR fixes the annotation artefacts. Our method is demonstrated on the application of adrenal gland analysis. We first show that the NeAR can repair distorted golden standards on a public adrenal gland segmentation dataset. Besides, we develop a new Adrenal gLand ANalysis (ALAN) dataset with the proposed NeAR, where each case consists of a 3D shape of adrenal gland and its diagnosis label (normal vs. abnormal) assigned by experts. We show that models trained on the shapes repaired by the NeAR can diagnose adrenal glands better than the original ones. The ALAN dataset will be open-source, with 1,594 shapes for adrenal gland diagnosis, which serves as a new benchmark for medical shape analysis. Code and dataset are available at https://github.com/M3DV/NeAR.
403
Interpretable Anomaly Detection in Echocardiograms with Dynamic Variational Trajectory Models
We propose a novel anomaly detection method for echocardiogram videos. The introduced method takes advantage of the periodic nature of the heart cycle to learn different variants of a variational latent trajectory model (TVAE). The models are trained on the healthy samples of an in-house dataset of infant echocardiogram videos consisting of multiple chamber views to learn a normative prior of the healthy population. During inference, maximum a posteriori (MAP) based anomaly detection is performed to detect out-of-distribution samples in our dataset. The proposed method reliably identifies severe congenital heart defects, such as Ebstein's Anomaly or Shonecomplex. Moreover, it achieves superior performance over MAP-based anomaly detection with standard variational autoencoders on the task of detecting pulmonary hypertension and right ventricular dilation. Finally, we demonstrate that the proposed method provides interpretable explanations of its output through heatmaps which highlight the regions corresponding to anomalous heart structures.
404
FL-Tuning: Layer Tuning for Feed-Forward Network in Transformer
Prompt tuning is an emerging way of adapting pre-trained language models to downstream tasks. However, the existing studies are mainly to add prompts to the input sequence. This way would not work as expected due to the intermediate multi-head self-attention and feed-forward network computation, making model optimization not very smooth. Hence, we propose a novel tuning way called layer tuning, aiming to add learnable parameters in Transformer layers. Specifically, we focus on layer tuning for feed-forward network in the Transformer, namely FL-tuning. It introduces additional units into the hidden layer of each feed-forward network. We conduct extensive experiments on the public CLUE benchmark. The results show that: 1) Our FL-tuning outperforms prompt tuning methods under both full-data and few-shot settings in almost all cases. In particular, it improves accuracy by 17.93% (full-data setting) on WSC 1.0 and F1 by 16.142% (few-shot setting) on CLUENER over P-tuning v2. 2) Our FL-tuning is more stable and converges about 1.17 times faster than P-tuning v2. 3) With only about 3% of Transformer's parameters to be trained, FL-tuning is comparable with fine-tuning on most datasets, and significantly outperforms fine-tuning (e.g., accuracy improved by 12.9% on WSC 1.1) on several datasets. The source codes are available at https://github.com/genggui001/FL-Tuning.
405
Transfer Learning with Deep Tabular Models
Recent work on deep learning for tabular data demonstrates the strong performance of deep tabular models, often bridging the gap between gradient boosted decision trees and neural networks. Accuracy aside, a major advantage of neural models is that they learn reusable features and are easily fine-tuned in new domains. This property is often exploited in computer vision and natural language applications, where transfer learning is indispensable when task-specific training data is scarce. In this work, we demonstrate that upstream data gives tabular neural networks a decisive advantage over widely used GBDT models. We propose a realistic medical diagnosis benchmark for tabular transfer learning, and we present a how-to guide for using upstream data to boost performance with a variety of tabular neural network architectures. Finally, we propose a pseudo-feature method for cases where the upstream and downstream feature sets differ, a tabular-specific problem widespread in real-world applications. Our code is available at https://github.com/LevinRoman/tabular-transfer-learning .
406
Physics-informed machine learning for Structural Health Monitoring
The use of machine learning in Structural Health Monitoring is becoming more common, as many of the inherent tasks (such as regression and classification) in developing condition-based assessment fall naturally into its remit. This chapter introduces the concept of physics-informed machine learning, where one adapts ML algorithms to account for the physical insight an engineer will often have of the structure they are attempting to model or assess. The chapter will demonstrate how grey-box models, that combine simple physics-based models with data-driven ones, can improve predictive capability in an SHM setting. A particular strength of the approach demonstrated here is the capacity of the models to generalise, with enhanced predictive capability in different regimes. This is a key issue when life-time assessment is a requirement, or when monitoring data do not span the operational conditions a structure will undergo. The chapter will provide an overview of physics-informed ML, introducing a number of new approaches for grey-box modelling in a Bayesian setting. The main ML tool discussed will be Gaussian process regression, we will demonstrate how physical assumptions/models can be incorporated through constraints, through the mean function and kernel design, and finally in a state-space setting. A range of SHM applications will be demonstrated, from loads monitoring tasks for off-shore and aerospace structures, through to performance monitoring for long-span bridges.
407
Machine learning for automated quality control in injection moulding manufacturing
Machine learning (ML) may improve and automate quality control (QC) in injection moulding manufacturing. As the labelling of extensive, real-world process data is costly, however, the use of simulated process data may offer a first step towards a successful implementation. In this study, simulated data was used to develop a predictive model for the product quality of an injection moulded sorting container. The achieved accuracy, specificity and sensitivity on the test set was $99.4\%$, $99.7\%$ and $94.7\%$, respectively. This study thus shows the potential of ML towards automated QC in injection moulding and encourages the extension to ML models trained on real-world data.
408
QuASK -- Quantum Advantage Seeker with Kernels
QuASK is a quantum machine learning software written in Python that supports researchers in designing, experimenting, and assessing different quantum and classical kernels performance. This software is package agnostic and can be integrated with all major quantum software packages (e.g. IBM Qiskit, Xanadu's Pennylane, Amazon Braket). QuASK guides the user through a simple preprocessing of input data, definition and calculation of quantum and classical kernels, either custom or pre-defined ones. From this evaluation the package provides an assessment about potential quantum advantage and prediction bounds on generalization error. Moreover, it allows for the generation of parametric quantum kernels that can be trained using gradient-descent-based optimization, grid search, or genetic algorithms. Projected quantum kernels, an effective solution to mitigate the curse of dimensionality induced by the exponential scaling dimension of large Hilbert spaces, are also calculated. QuASK can furthermore generate the observable values of a quantum model and use them to study the prediction capabilities of the quantum and classical kernels.
409
TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes
Recent contrastive learning methods achieved state-of-the-art in low label regimes. However, the training requires large batch sizes and heavy augmentations to create multiple views of an image. With non-contrastive methods, the negatives are implicitly incorporated in the loss, allowing different images and modalities as pairs. Although the meta-information (i.e., age, sex) in medical imaging is abundant, the annotations are noisy and prone to class imbalance. In this work, we exploited already existing temporal information (different visits from a patient) in a longitudinal optical coherence tomography (OCT) dataset using temporally informed non-contrastive loss (TINC) without increasing complexity and need for negative pairs. Moreover, our novel pair-forming scheme can avoid heavy augmentations and implicitly incorporates the temporal information in the pairs. Finally, these representations learned from the pretraining are more successful in predicting disease progression where the temporal information is crucial for the downstream task. More specifically, our model outperforms existing models in predicting the risk of conversion within a time frame from intermediate age-related macular degeneration (AMD) to the late wet-AMD stage.
410
R-MelNet: Reduced Mel-Spectral Modeling for Neural TTS
This paper introduces R-MelNet, a two-part autoregressive architecture with a frontend based on the first tier of MelNet and a backend WaveRNN-style audio decoder for neural text-to-speech synthesis. Taking as input a mixed sequence of characters and phonemes, with an optional audio priming sequence, this model produces low-resolution mel-spectral features which are interpolated and used by a WaveRNN decoder to produce an audio waveform. Coupled with half precision training, R-MelNet uses under 11 gigabytes of GPU memory on a single commodity GPU (NVIDIA 2080Ti). We detail a number of critical implementation details for stable half precision training, including an approximate, numerically stable mixture of logistics attention. Using a stochastic, multi-sample per step inference scheme, the resulting model generates highly varied audio, while enabling text and audio based controls to modify output waveforms. Qualitative and quantitative evaluations of an R-MelNet system trained on a single speaker TTS dataset demonstrate the effectiveness of our approach.
411
Invariance Properties of the Natural Gradient in Overparametrised Systems
The natural gradient field is a vector field that lives on a model equipped with a distinguished Riemannian metric, e.g. the Fisher-Rao metric, and represents the direction of steepest ascent of an objective function on the model with respect to this metric. In practice, one tries to obtain the corresponding direction on the parameter space by multiplying the ordinary gradient by the inverse of the Gram matrix associated with the metric. We refer to this vector on the parameter space as the natural parameter gradient. In this paper we study when the pushforward of the natural parameter gradient is equal to the natural gradient. Furthermore we investigate the invariance properties of the natural parameter gradient. Both questions are addressed in an overparametrised setting.
412
Deep Reinforcement Learning with Swin Transformer
Transformers are neural network models that utilize multiple layers of self-attention heads. Attention is implemented in transformers as the contextual embeddings of the 'key' and 'query'. Transformers allow the re-combination of attention information from different layers and the processing of all inputs at once, which are more convenient than recurrent neural networks when dealt with a large number of data. Transformers have exhibited great performances on natural language processing tasks in recent years. Meanwhile, there have been tremendous efforts to adapt transformers into other fields of machine learning, such as Swin Transformer and Decision Transformer. Swin Transformer is a promising neural network architecture that splits image pixels into small patches and applies local self-attention operations inside the (shifted) windows of fixed sizes. Decision Transformer has successfully applied transformers to off-line reinforcement learning and showed that random-walk samples from Atari games are sufficient to let an agent learn optimized behaviors. However, it is considerably more challenging to combine online reinforcement learning with transformers. In this article, we further explore the possibility of not modifying the reinforcement learning policy, but only replacing the convolutional neural network architecture with the self-attention architecture from Swin Transformer. Namely, we target at changing how an agent views the world, but not how an agent plans about the world. We conduct our experiment on 49 games in Arcade Learning Environment. The results show that using Swin Transformer in reinforcement learning achieves significantly higher evaluation scores across the majority of games in Arcade Learning Environment. Thus, we conclude that online reinforcement learning can benefit from exploiting self-attentions with spatial token embeddings.
413
Benchmark Dataset for Precipitation Forecasting by Post-Processing the Numerical Weather Prediction
Precipitation forecasting is an important scientific challenge that has wide-reaching impacts on society. Historically, this challenge has been tackled using numerical weather prediction (NWP) models, grounded on physics-based simulations. Recently, many works have proposed an alternative approach, using end-to-end deep learning (DL) models to replace physics-based NWP. While these DL methods show improved performance and computational efficiency, they exhibit limitations in long-term forecasting and lack the explainability of NWP models. In this work, we present a hybrid NWP-DL workflow to fill the gap between standalone NWP and DL approaches. Under this workflow, the NWP output is fed into a deep model, which post-processes the data to yield a refined precipitation forecast. The deep model is trained with supervision, using Automatic Weather Station (AWS) observations as ground-truth labels. This can achieve the best of both worlds, and can even benefit from future improvements in NWP technology. To facilitate study in this direction, we present a novel dataset focused on the Korean Peninsula, termed KoMet (Korea Meteorological Dataset), comprised of NWP predictions and AWS observations. For NWP, we use the Global Data Assimilation and Prediction Systems-Korea Integrated Model (GDAPS-KIM).
414
Learning Nonparametric Ordinary differential Equations: Application to Sparse and Noisy Data
Learning nonparametric systems of Ordinary Differential Equations (ODEs) $\dot x = f(t,x)$ from noisy and sparse data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for $f$ for which the solution of the ODE exists and is unique. Learning $f$ consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the $L^2$ distance between $x$ and its estimator. Experiments are provided for the FitzHugh Nagumo oscillator and for the prediction of the Amyloid level in the cortex of aging subjects. In both cases, we show competitive results when compared with the state of the art.
415
When an Active Learner Meets a Black-box Teacher
Active learning maximizes the hypothesis updates to find those desired unlabeled data. An inherent assumption is that this learning manner can derive those updates into the optimal hypothesis. However, its convergence may not be guaranteed well if those incremental updates are negative and disordered. In this paper, we introduce a machine teacher who provides a black-box teaching hypothesis for an active learner, where the teaching hypothesis is an effective approximation for the optimal hypothesis. Theoretically, we prove that, under the guidance of this teaching hypothesis, the learner can converge into a tighter generalization error and label complexity bound than those non-educated learners who do not receive any guidance from a teacher. We further consider two teaching scenarios: teaching a white-box and black-box learner, where self-improvement of teaching is firstly proposed to improve the teaching performance. Experiments verify this idea and show better performance than the fundamental active learning strategies, such as IWAL, IWAL-D, etc.
416
Data-Efficient Learning via Minimizing Hyperspherical Energy
Deep learning on large-scale data is dominant nowadays. The unprecedented scale of data has been arguably one of the most important driving forces for the success of deep learning. However, there still exist scenarios where collecting data or labels could be extremely expensive, e.g., medical imaging and robotics. To fill up this gap, this paper considers the problem of data-efficient learning from scratch using a small amount of representative data. First, we characterize this problem by active learning on homeomorphic tubes of spherical manifolds. This naturally generates feasible hypothesis class. With homologous topological properties, we identify an important connection -- finding tube manifolds is equivalent to minimizing hyperspherical energy (MHE) in physical geometry. Inspired by this connection, we propose a MHE-based active learning (MHEAL) algorithm, and provide comprehensive theoretical guarantees for MHEAL, covering convergence and generalization analysis. Finally, we demonstrate the empirical performance of MHEAL in a wide range of applications on data-efficient learning, including deep clustering, distribution matching, version space sampling and deep active learning.
417
A Rare Topic Discovery Model for Short Texts Based on Co-occurrence word Network
We provide a simple and general solution for the discovery of scarce topics in unbalanced short-text datasets, namely, a word co-occurrence network-based model CWIBTD, which can simultaneously address the sparsity and unbalance of short-text topics and attenuate the effect of occasional pairwise occurrences of words, allowing the model to focus more on the discovery of scarce topics. Unlike previous approaches, CWIBTD uses co-occurrence word networks to model the topic distribution of each word, which improves the semantic density of the data space and ensures its sensitivity in identify-ing rare topics by improving the way node activity is calculated and normal-izing scarce topics and large topics to some extent. In addition, using the same Gibbs sampling as LDA makes CWIBTD easy to be extended to vari-ous application scenarios. Extensive experimental validation in the unbal-anced short text dataset confirms the superiority of CWIBTD over the base-line approach in discovering rare topics. Our model can be used for early and accurate discovery of emerging topics or unexpected events on social platforms.
418
The Topological BERT: Transforming Attention into Topology for Natural Language Processing
In recent years, the introduction of the Transformer models sparked a revolution in natural language processing (NLP). BERT was one of the first text encoders using only the attention mechanism without any recurrent parts to achieve state-of-the-art results on many NLP tasks. This paper introduces a text classifier using topological data analysis. We use BERT's attention maps transformed into attention graphs as the only input to that classifier. The model can solve tasks such as distinguishing spam from ham messages, recognizing whether a sentence is grammatically correct, or evaluating a movie review as negative or positive. It performs comparably to the BERT baseline and outperforms it on some tasks. Additionally, we propose a new method to reduce the number of BERT's attention heads considered by the topological classifier, which allows us to prune the number of heads from 144 down to as few as ten with no reduction in performance. Our work also shows that the topological model displays higher robustness against adversarial attacks than the original BERT model, which is maintained during the pruning process. To the best of our knowledge, this work is the first to confront topological-based models with adversarial attacks in the context of NLP.
419
Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach
Load forecasting is very essential in the analysis and grid planning of power systems. For this reason, we first propose a household load forecasting method based on federated deep learning and non-intrusive load monitoring (NILM). For all we know, this is the first research on federated learning (FL) in household load forecasting based on NILM. In this method, the integrated power is decomposed into individual device power by non-intrusive load monitoring, and the power of individual appliances is predicted separately using a federated deep learning model. Finally, the predicted power values of individual appliances are aggregated to form the total power prediction. Specifically, by separately predicting the electrical equipment to obtain the predicted power, it avoids the error caused by the strong time dependence in the power signal of a single device. And in the federated deep learning prediction model, the household owners with the power data share the parameters of the local model instead of the local power data, guaranteeing the privacy of the household user data. The case results demonstrate that the proposed approach provides a better prediction effect than the traditional methodology that directly predicts the aggregated signal as a whole. In addition, experiments in various federated learning environments are designed and implemented to validate the validity of this methodology.
420
Classification of network topology and dynamics via sequence characterization
Sequences arise in many real-world scenarios; thus, identifying the mechanisms behind symbol generation is essential to understanding many complex systems. This paper analyzes sequences generated by agents walking on a networked topology. Given that in many real scenarios, the underlying processes generating the sequence is hidden, we investigate whether the reconstruction of the network via the co-occurrence method is useful to recover both the network topology and agent dynamics generating sequences. We found that the characterization of reconstructed networks provides valuable information regarding the process and topology used to create the sequences. In a machine learning approach considering 16 combinations of network topology and agent dynamics as classes, we obtained an accuracy of 87% with sequences generated with less than 40% of nodes visited. Larger sequences turned out to generate improved machine learning models. Our findings suggest that the proposed methodology could be extended to classify sequences and understand the mechanisms behind sequence generation.
421
Simulating reaction time for Eureka effect in visual object recognition using artificial neural network
The human brain can recognize objects hidden in even severely degraded images after observing them for a while, which is known as a type of Eureka effect, possibly associated with human creativity. A previous psychological study suggests that the basis of this "Eureka recognition" is neural processes of coincidence of multiple stochastic activities. Here we constructed an artificial-neural-network-based model that simulated the characteristics of the human Eureka recognition.
422
Out-of-Distribution Detection for Long-tailed and Fine-grained Skin Lesion Images
Recent years have witnessed a rapid development of automated methods for skin lesion diagnosis and classification. Due to an increasing deployment of such systems in clinics, it has become important to develop a more robust system towards various Out-of-Distribution(OOD) samples (unknown skin lesions and conditions). However, the current deep learning models trained for skin lesion classification tend to classify these OOD samples incorrectly into one of their learned skin lesion categories. To address this issue, we propose a simple yet strategic approach that improves the OOD detection performance while maintaining the multi-class classification accuracy for the known categories of skin lesion. To specify, this approach is built upon a realistic scenario of a long-tailed and fine-grained OOD detection task for skin lesion images. Through this approach, 1) First, we target the mixup amongst middle and tail classes to address the long-tail problem. 2) Later, we combine the above mixup strategy with prototype learning to address the fine-grained nature of the dataset. The unique contribution of this paper is two-fold, justified by extensive experiments. First, we present a realistic problem setting of OOD task for skin lesion. Second, we propose an approach to target the long-tailed and fine-grained aspects of the problem setting simultaneously to increase the OOD performance.
423
Neural Network Assisted Depth Map Packing for Compression Using Standard Hardware Video Codecs
Depth maps are needed by various graphics rendering and processing operations. Depth map streaming is often necessary when such operations are performed in a distributed system and it requires in most cases fast performing compression, which is why video codecs are often used. Hardware implementations of standard video codecs enable relatively high resolution and framerate combinations, even on resource constrained devices, but unfortunately those implementations do not currently support RGB+depth extensions. However, they can be used for depth compression by first packing the depth maps into RGB or YUV frames. We investigate depth map compression using a combination of depth map packing followed by encoding with a standard video codec. We show that the precision at which depth maps are packed has a large and nontrivial impact on the resulting error caused by the combination of the packing scheme and lossy compression when bitrate is constrained. Consequently, we propose a variable precision packing scheme assisted by a neural network model that predicts the optimal precision for each depth map given a bitrate constraint. We demonstrate that the model yields near optimal predictions and that it can be integrated into a game engine with very low overhead using modern hardware.
424
A Medical Image Fusion Method based on MDLatLRRv2
Since MDLatLRR only considers detailed parts (salient features) of input images extracted by latent low-rank representation (LatLRR), it doesn't use base parts (principal features) extracted by LatLRR effectively. Therefore, we proposed an improved multi-level decomposition method called MDLatLRRv2 which effectively analyzes and utilizes all the image features obtained by LatLRR. Then we apply MDLatLRRv2 to medical image fusion. The base parts are fused by average strategy and the detail parts are fused by nuclear-norm operation. The comparison with the existing methods demonstrates that the proposed method can achieve state-of-the-art fusion performance in objective and subjective assessment.
425
A note on large deviations for interacting particle dynamics for finding mixed equilibria in zero-sum games
Finding equilibria points in continuous minimax games has become a key problem within machine learning, in part due to its connection to the training of generative adversarial networks. Because of existence and robustness issues, recent developments have shifted from pure equilibria to focusing on mixed equilibria points. In this note we consider a method proposed by Domingo-Enrich et al. for finding mixed equilibria in two-layer zero-sum games. The method is based on entropic regularisation and the two competing strategies are represented by two sets of interacting particles. We show that the sequence of empirical measures of the particle system satisfies a large deviation principle as the number of particles grows to infinity, and how this implies convergence of the empirical measure and the associated Nikaid\^o-Isoda error, complementing existing law of large numbers results.
426
Graph-Time Convolutional Neural Networks: Architecture and Theoretical Analysis
Devising and analyzing learning models for spatiotemporal network data is of importance for tasks including forecasting, anomaly detection, and multi-agent coordination, among others. Graph Convolutional Neural Networks (GCNNs) are an established approach to learn from time-invariant network data. The graph convolution operation offers a principled approach to aggregate multiresolution information. However, extending the convolution principled learning and respective analysis to the spatiotemporal domain is challenging because spatiotemporal data have more intrinsic dependencies. Hence, a higher flexibility to capture jointly the spatial and the temporal dependencies is required to learn meaningful higher-order representations. Here, we leverage product graphs to represent the spatiotemporal dependencies in the data and introduce Graph-Time Convolutional Neural Networks (GTCNNs) as a principled architecture to aid learning. The proposed approach can work with any type of product graph and we also introduce a parametric product graph to learn also the spatiotemporal coupling. The convolution principle further allows a similar mathematical tractability as for GCNNs. In particular, the stability result shows GTCNNs are stable to spatial perturbations but there is an implicit trade-off between discriminability and robustness; i.e., the more complex the model, the less stable. Extensive numerical results on benchmark datasets corroborate our findings and show the GTCNN compares favorably with state-of-the-art solutions. We anticipate the GTCNN to be a starting point for more sophisticated models that achieve good performance but are also fundamentally grounded.
427
Reliable Representations Make A Stronger Defender: Unsupervised Structure Refinement for Robust GNN
Benefiting from the message passing mechanism, Graph Neural Networks (GNNs) have been successful on flourish tasks over graph data. However, recent studies have shown that attackers can catastrophically degrade the performance of GNNs by maliciously modifying the graph structure. A straightforward solution to remedy this issue is to model the edge weights by learning a metric function between pairwise representations of two end nodes, which attempts to assign low weights to adversarial edges. The existing methods use either raw features or representations learned by supervised GNNs to model the edge weights. However, both strategies are faced with some immediate problems: raw features cannot represent various properties of nodes (e.g., structure information), and representations learned by supervised GNN may suffer from the poor performance of the classifier on the poisoned graph. We need representations that carry both feature information and as mush correct structure information as possible and are insensitive to structural perturbations. To this end, we propose an unsupervised pipeline, named STABLE, to optimize the graph structure. Finally, we input the well-refined graph into a downstream classifier. For this part, we design an advanced GCN that significantly enhances the robustness of vanilla GCN without increasing the time complexity. Extensive experiments on four real-world graph benchmarks demonstrate that STABLE outperforms the state-of-the-art methods and successfully defends against various attacks.
428
Using Person Embedding to Enrich Features and Data Augmentation for Classification
Today, machine learning is applied in almost any field. In machine learning, where there are numerous methods, classification is one of the most basic and crucial ones. Various problems can be solved by classification. The feature selection for model setup is extremely important, and producing new features via feature engineering also has a vital place in the success of the model. In our study, fraud detection classification models are built on a labeled and imbalanced dataset as a case-study. Although it is a natural language processing method, a customer space has been created with word embedding, which has been used in different areas, especially for recommender systems. The customer vectors in the created space are fed to the classification model as a feature. Moreover, to increase the number of positive labels, rows with similar characteristics are re-labeled as positive by using customer similarity determined by embedding. The model in which embedding methods are included in the classification, which provides a better representation of customers, has been compared with other models. Considering the results, it is observed that the customer embedding method had a positive effect on the success of the classification models.
429
HRFuser: A Multi-resolution Sensor Fusion Architecture for 2D Object Detection
Besides standard cameras, autonomous vehicles typically include multiple additional sensors, such as lidars and radars, which help acquire richer information for perceiving the content of the driving scene. While several recent works focus on fusing certain pairs of sensors - such as camera and lidar or camera and radar - by using architectural components specific to the examined setting, a generic and modular sensor fusion architecture is missing from the literature. In this work, we focus on 2D object detection, a fundamental high-level task which is defined on the 2D image domain, and propose HRFuser, a multi-resolution sensor fusion architecture that scales straightforwardly to an arbitrary number of input modalities. The design of HRFuser is based on state-of-the-art high-resolution networks for image-only dense prediction and incorporates a novel multi-window cross-attention block as the means to perform fusion of multiple modalities at multiple resolutions. Even though cameras alone provide very informative features for 2D detection, we demonstrate via extensive experiments on the nuScenes and Seeing Through Fog datasets that our model effectively leverages complementary features from additional modalities, substantially improving upon camera-only performance and consistently outperforming state-of-the-art fusion methods for 2D detection both in normal and adverse conditions. The source code will be made publicly available.
430
Pulse Shape Simulation and Discrimination using Machine-Learning Techniques
An essential metric for the quality of a particle-identification experiment is its statistical power to discriminate between signal and background. Pulse shape discrimination (PSD) is a basic method for this purpose in many nuclear, high-energy, and rare-event search experiments where scintillator detectors are used. Conventional techniques exploit the difference between decay-times of the pulse from signal and background events or pulse signals caused by different types of radiation quanta to achieve good discrimination. However, such techniques are efficient only when the total light-emission is sufficient to get a proper pulse profile. This is only possible when there is significant recoil energy due to the incident particle in the detector. But, rare-event search experiments like neutrino or dark-matter direct search experiments don't always satisfy these conditions. Hence, it becomes imperative to have a method that can deliver very efficient discrimination in these scenarios. Neural network-based machine-learning algorithms have been used for classification problems in many areas of physics, especially in high-energy experiments, and have given better results compared to conventional techniques. We present the results of our investigations of two network-based methods viz. Dense Neural Network and Recurrent Neural Network, for pulse shape discrimination and compare the same with conventional methods.
431
Neural Networks can Learn Representations with Gradient Descent
Significant theoretical work has established that in specific regimes, neural networks trained by gradient descent behave like kernel methods. However, in practice, it is known that neural networks strongly outperform their associated kernels. In this work, we explain this gap by demonstrating that there is a large class of functions which cannot be efficiently learned by kernel methods but can be easily learned with gradient descent on a two layer neural network outside the kernel regime by learning representations that are relevant to the target task. We also demonstrate that these representations allow for efficient transfer learning, which is impossible in the kernel regime. Specifically, we consider the problem of learning polynomials which depend on only a few relevant directions, i.e. of the form $f^\star(x) = g(Ux)$ where $U: \R^d \to \R^r$ with $d \gg r$. When the degree of $f^\star$ is $p$, it is known that $n \asymp d^p$ samples are necessary to learn $f^\star$ in the kernel regime. Our primary result is that gradient descent learns a representation of the data which depends only on the directions relevant to $f^\star$. This results in an improved sample complexity of $n\asymp d^2 r + dr^p$. Furthermore, in a transfer learning setup where the data distributions in the source and target domain share the same representation $U$ but have different polynomial heads we show that a popular heuristic for transfer learning has a target sample complexity independent of $d$.
432
Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning
The second-order optimization methods, notably the D-KFAC (Distributed Kronecker Factored Approximate Curvature) algorithms, have gained traction on accelerating deep neural network (DNN) training on GPU clusters. However, existing D-KFAC algorithms require to compute and communicate a large volume of second-order information, i.e., Kronecker factors (KFs), before preconditioning gradients, resulting in large computation and communication overheads as well as a high memory footprint. In this paper, we propose DP-KFAC, a novel distributed preconditioning scheme that distributes the KF constructing tasks at different DNN layers to different workers. DP-KFAC not only retains the convergence property of the existing D-KFAC algorithms but also enables three benefits: reduced computation overhead in constructing KFs, no communication of KFs, and low memory footprint. Extensive experiments on a 64-GPU cluster show that DP-KFAC reduces the computation overhead by 1.55x-1.65x, the communication cost by 2.79x-3.15x, and the memory footprint by 1.14x-1.47x in each second-order update compared to the state-of-the-art D-KFAC methods.
433
Personalized Detection of Cognitive Biases in Actions of Users from Their Logs: Anchoring and Recency Biases
Cognitive biases are mental shortcuts humans use in dealing with information and the environment, and which result in biased actions and behaviors (or, actions), unbeknownst to themselves. Biases take many forms, with cognitive biases occupying a central role that inflicts fairness, accountability, transparency, ethics, law, medicine, and discrimination. Detection of biases is considered a necessary step toward their mitigation. Herein, we focus on two cognitive biases - anchoring and recency. The recognition of cognitive bias in computer science is largely in the domain of information retrieval, and bias is identified at an aggregate level with the help of annotated data. Proposing a different direction for bias detection, we offer a principled approach along with Machine Learning to detect these two cognitive biases from Web logs of users' actions. Our individual user level detection makes it truly personalized, and does not rely on annotated data. Instead, we start with two basic principles established in cognitive psychology, use modified training of an attention network, and interpret attention weights in a novel way according to those principles, to infer and distinguish between these two biases. The personalized approach allows detection for specific users who are susceptible to these biases when performing their tasks, and can help build awareness among them so as to undertake bias mitigation.
434
The maximum capability of a topological feature in link prediction
Link prediction aims to predict links of a network that are not directly visible, with profound applications in biological and social systems. Despite intensive utilization of the topological feature in this task, it is unclear to what extent a particular feature can be leveraged to infer missing links. Here, we show that the maximum capability of a topological feature follows a simple mathematical expression, which is independent of how an index gauges the feature. Hence, a family of indexes associated with one topological feature shares the same performance limit. A feature's capability is lifted in the supervised prediction, which in general gives rise to better results compared with unsupervised prediction. The universality of the pattern uncovered is empirically verified by 550 structurally diverse networks, which can be applied to feature selection and the analysis of network characteristics associated with a topological feature in link prediction.
435
Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis
Human brains lie at the core of complex neurobiological systems, where the neurons, circuits, and subsystems interact in enigmatic ways. Understanding the structural and functional mechanisms of the brain has long been an intriguing pursuit for neuroscience research and clinical disorder therapy. Mapping the connections of the human brain as a network is one of the most pervasive paradigms in neuroscience. Graph Neural Networks (GNNs) have recently emerged as a potential method for modeling complex network data. Deep models, on the other hand, have low interpretability, which prevents their usage in decision-critical contexts like healthcare. To bridge this gap, we propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections. The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator that highlights disorder-specific biomarkers including salient ROIs and important connections. We conduct experiments on three real-world datasets of brain disorders. The results verify that our framework can obtain outstanding performance and also identify meaningful biomarkers. All code for this work is available at https://github.com/HennyJie/IBGNN.git.
436
Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple Machine Learning Models
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems and learning analytics, indicators of such behavior can be detected, enabling predictions of future procrastination and other dilatory behavior. However, research focusing on such predictions is scarce. Moreover, studies involving different types of predictors and comparisons between the predictive performance of various methods are virtually non-existent. In this study, we aim to fill these research gaps by analyzing the performance of multiple machine learning algorithms when predicting the delayed or timely submission of online assignments in a higher education setting with two categories of predictors: subjective, questionnaire-based variables and objective, log-data based indicators extracted from a learning management system. The results show that models with objective predictors consistently outperform models with subjective predictors, and a combination of both variable types perform slightly better. For each of these three options, a different approach prevailed (Gradient Boosting Machines for the subjective, Bayesian multilevel models for the objective, and Random Forest for the combined predictors). We conclude that careful attention should be paid to the selection of predictors and algorithms before implementing such models in learning management systems.
437
Laplacian Autoencoders for Learning Stochastic Representations
Established methods for unsupervised representation learning such as variational autoencoders produce none or poorly calibrated uncertainty estimates making it difficult to evaluate if learned representations are stable and reliable. In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower-bound of the autoencoder evidence. This is maximized using Monte Carlo EM with a variational distribution that takes the shape of a Laplace approximation. We develop a new Hessian approximation that scales linearly with data size allowing us to model high-dimensional data. Empirically, we show that our Laplacian autoencoder estimates well-calibrated uncertainties in both latent and output space. We demonstrate that this results in improved performance across a multitude of downstream tasks.
438
A note on Linear Bottleneck networks and their Transition to Multilinearity
Randomly initialized wide neural networks transition to linear functions of weights as the width grows, in a ball of radius $O(1)$ around initialization. A necessary condition for this result is that all layers of the network are wide enough, i.e., all widths tend to infinity. However, the transition to linearity breaks down when this infinite width assumption is violated. In this work we show that linear networks with a bottleneck layer learn bilinear functions of the weights, in a ball of radius $O(1)$ around initialization. In general, for $B-1$ bottleneck layers, the network is a degree $B$ multilinear function of weights. Importantly, the degree only depends on the number of bottlenecks and not the total depth of the network.
439
FeaRLESS: Feature Refinement Loss for Ensembling Self-Supervised Learning Features in Robust End-to-end Speech Recognition
Self-supervised learning representations (SSLR) have resulted in robust features for downstream tasks in many fields. Recently, several SSLRs have shown promising results on automatic speech recognition (ASR) benchmark corpora. However, previous studies have only shown performance for solitary SSLRs as an input feature for ASR models. In this study, we propose to investigate the effectiveness of diverse SSLR combinations using various fusion methods within end-to-end (E2E) ASR models. In addition, we will show there are correlations between these extracted SSLRs. As such, we further propose a feature refinement loss for decorrelation to efficiently combine the set of input features. For evaluation, we show that the proposed 'FeaRLESS learning features' perform better than systems without the proposed feature refinement loss for both the WSJ and Fearless Steps Challenge (FSC) corpora.
440
Group-invariant tensor train networks for supervised learning
Invariance has recently proven to be a powerful inductive bias in machine learning models. One such class of predictive or generative models are tensor networks. We introduce a new numerical algorithm to construct a basis of tensors that are invariant under the action of normal matrix representations of an arbitrary discrete group. This method can be up to several orders of magnitude faster than previous approaches. The group-invariant tensors are then combined into a group-invariant tensor train network, which can be used as a supervised machine learning model. We applied this model to a protein binding classification problem, taking into account problem-specific invariances, and obtained prediction accuracy in line with state-of-the-art deep learning approaches.
441
ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time
Humans have the remarkable ability to recognize and acquire novel visual concepts in a zero-shot manner. Given a high-level, symbolic description of a novel concept in terms of previously learned visual concepts and their relations, humans can recognize novel concepts without seeing any examples. Moreover, they can acquire new concepts by parsing and communicating symbolic structures using learned visual concepts and relations. Endowing these capabilities in machines is pivotal in improving their generalization capability at inference time. In this work, we introduce Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way. ZeroC represents concepts as graphs of constituent concept models (as nodes) and their relations (as edges). To allow inference time composition, we employ energy-based models (EBMs) to model concepts and relations. We design ZeroC architecture so that it allows a one-to-one mapping between a symbolic graph structure of a concept and its corresponding EBM, which for the first time, allows acquiring new concepts, communicating its graph structure, and applying it to classification and detection tasks (even across domains) at inference time. We introduce algorithms for learning and inference with ZeroC. We evaluate ZeroC on a challenging grid-world dataset which is designed to probe zero-shot concept recognition and acquisition, and demonstrate its capability.
442
Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation
Ensembles of deep neural networks have demonstrated superior performance, but their heavy computational cost hinders applying them for resource-limited environments. It motivates distilling knowledge from the ensemble teacher into a smaller student network, and there are two important design choices for this ensemble distillation: 1) how to construct the student network, and 2) what data should be shown during training. In this paper, we propose a weight averaging technique where a student with multiple subnetworks is trained to absorb the functional diversity of ensemble teachers, but then those subnetworks are properly averaged for inference, giving a single student network with no additional inference cost. We also propose a perturbation strategy that seeks inputs from which the diversities of teachers can be better transferred to the student. Combining these two, our method significantly improves upon previous methods on various image classification tasks.
443
Causality-Based Multivariate Time Series Anomaly Detection
Anomaly detection in multivariate time series plays an important role in monitoring the behaviors of various real-world systems, e.g., IT system operations or manufacturing industry. Previous approaches model the joint distribution without considering the underlying mechanism of multivariate time series, making them complicated and computationally hungry. In this paper, we formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data. We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism to generate each variable from its direct causes, whose conditional distribution can be directly estimated from data. In light of the modularity property of causal systems, the original problem is divided into a series of separate low-dimensional anomaly detection problems so that where an anomaly happens can be directly identified. We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications, showing its efficacy, robustness, and practical feasibility.
444
CoVaxNet: An Online-Offline Data Repository for COVID-19 Vaccine Hesitancy Research
Despite the astonishing success of COVID-19 vaccines against the virus, a substantial proportion of the population is still hesitant to be vaccinated, undermining governmental efforts to control the virus. To address this problem, we need to understand the different factors giving rise to such a behavior, including social media discourses, news media propaganda, government responses, demographic and socioeconomic statuses, and COVID-19 statistics, etc. However, existing datasets fail to cover all these aspects, making it difficult to form a complete picture in inferencing about the problem of vaccine hesitancy. In this paper, we construct a multi-source, multi-modal, and multi-feature online-offline data repository CoVaxNet. We provide descriptive analyses and insights to illustrate critical patterns in CoVaxNet. Moreover, we propose a novel approach for connecting online and offline data so as to facilitate the inference tasks that exploit complementary information sources.
445
Stochastic Bilevel Distributed Optimization over a Network
Bilevel optimization has been applied to a wide variety of machine learning models. Numerous stochastic bilevel optimization algorithms have been developed in recent years. However, most of them restrict their focus on the single-machine setting so that they are incapable of handling the distributed data. To address this issue, under the setting where all participants compose a network and perform the peer-to-peer communication in this network, we developed two novel distributed stochastic bilevel optimization algorithms based on the gradient tracking communication mechanism and two different gradient estimators. Additionally, we show that they can achieve $O(\frac{1}{\epsilon^{2}(1-\lambda)^2})$ and $O(\frac{1}{\epsilon^{3/2}(1-\lambda)^2})$ convergence rate respectively to obtain the $\epsilon$-accuracy solution, where $1-\lambda$ denotes the spectral gap of the communication network. To our knowledge, this is the first work achieving these theoretical results. Finally, we applied our algorithms to practical machine learning models, and the experimental results confirmed the efficacy of our algorithms.
446
GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language
Helping end users comprehend the abstract distribution shifts can greatly facilitate AI deployment. Motivated by this, we propose a novel task, dataset explanation. Given two image data sets, dataset explanation aims to automatically point out their dataset-level distribution shifts with natural language. Current techniques for monitoring distribution shifts provide inadequate information to understand datasets with the goal of improving data quality. Therefore, we introduce GSCLIP, a training-free framework to solve the dataset explanation task. In GSCLIP, we propose the selector as the first quantitative evaluation method to identify explanations that are proper to summarize dataset shifts. Furthermore, we leverage this selector to demonstrate the superiority of a generator based on language model generation. Systematic evaluation on natural data shift verifies that GSCLIP, a combined system of a hybrid generator group and an efficient selector is not only easy-to-use but also powerful for dataset explanation at scale.
447
Non-Parametric Inference of Relational Dependence
Independence testing plays a central role in statistical and causal inference from observational data. Standard independence tests assume that the data samples are independent and identically distributed (i.i.d.) but that assumption is violated in many real-world datasets and applications centered on relational systems. This work examines the problem of estimating independence in data drawn from relational systems by defining sufficient representations for the sets of observations influencing individual instances. Specifically, we define marginal and conditional independence tests for relational data by considering the kernel mean embedding as a flexible aggregation function for relational variables. We propose a consistent, non-parametric, scalable kernel test to operationalize the relational independence test for non-i.i.d. observational data under a set of structural assumptions. We empirically evaluate our proposed method on a variety of synthetic and semi-synthetic networks and demonstrate its effectiveness compared to state-of-the-art kernel-based independence tests.
448
Continuous-Time and Multi-Level Graph Representation Learning for Origin-Destination Demand Prediction
Traffic demand forecasting by deep neural networks has attracted widespread interest in both academia and industry society. Among them, the pairwise Origin-Destination (OD) demand prediction is a valuable but challenging problem due to several factors: (i) the large number of possible OD pairs, (ii) implicitness of spatial dependence, and (iii) complexity of traffic states. To address the above issues, this paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD). Firstly, a continuous-time dynamic graph representation learning framework is constructed, which maintains a dynamic state vector for each traffic node (metro stations or taxi zones). The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions. Secondly, a multi-level structure learning module is proposed to model the spatial dependency of station-level nodes. It can not only exploit relations between nodes adaptively from data, but also share messages and representations via cluster-level and area-level virtual nodes. Lastly, a cross-level fusion module is designed to integrate multi-level memories and generate comprehensive node representations for the final prediction. Extensive experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
449
Bridging Mean-Field Games and Normalizing Flows with Trajectory Regularization
Mean-field games (MFGs) are a modeling framework for systems with a large number of interacting agents. They have applications in economics, finance, and game theory. Normalizing flows (NFs) are a family of deep generative models that compute data likelihoods by using an invertible mapping, which is typically parameterized by using neural networks. They are useful for density modeling and data generation. While active research has been conducted on both models, few noted the relationship between the two. In this work, we unravel the connections between MFGs and NFs by contextualizing the training of an NF as solving the MFG. This is achieved by reformulating the MFG problem in terms of agent trajectories and parameterizing a discretization of the resulting MFG with flow architectures. With this connection, we explore two research directions. First, we employ expressive NF architectures to accurately solve high-dimensional MFGs, sidestepping the curse of dimensionality in traditional numerical methods. Compared with other deep learning approaches, our trajectory-based formulation encodes the continuity equation in the neural network, resulting in a better approximation of the population dynamics. Second, we regularize the training of NFs with transport costs and show the effectiveness on controlling the model's Lipschitz bound, resulting in better generalization performance. We demonstrate numerical results through comprehensive experiments on a variety of synthetic and real-life datasets.
450
Towards Federated Long-Tailed Learning
Data privacy and class imbalance are the norm rather than the exception in many machine learning tasks. Recent attempts have been launched to, on one side, address the problem of learning from pervasive private data, and on the other side, learn from long-tailed data. However, both assumptions might hold in practical applications, while an effective method to simultaneously alleviate both issues is yet under development. In this paper, we focus on learning with long-tailed (LT) data distributions under the context of the popular privacy-preserved federated learning (FL) framework. We characterize three scenarios with different local or global long-tailed data distributions in the FL framework, and highlight the corresponding challenges. The preliminary results under different scenarios reveal that substantial future work are of high necessity to better resolve the characterized federated long-tailed learning tasks.
451
Lookback for Learning to Branch
The expressive and computationally inexpensive bipartite Graph Neural Networks (GNN) have been shown to be an important component of deep learning based Mixed-Integer Linear Program (MILP) solvers. Recent works have demonstrated the effectiveness of such GNNs in replacing the branching (variable selection) heuristic in branch-and-bound (B&B) solvers. These GNNs are trained, offline and on a collection of MILPs, to imitate a very good but computationally expensive branching heuristic, strong branching. Given that B&B results in a tree of sub-MILPs, we ask (a) whether there are strong dependencies exhibited by the target heuristic among the neighboring nodes of the B&B tree, and (b) if so, whether we can incorporate them in our training procedure. Specifically, we find that with the strong branching heuristic, a child node's best choice was often the parent's second-best choice. We call this the "lookback" phenomenon. Surprisingly, the typical branching GNN of Gasse et al. (2019) often misses this simple "answer". To imitate the target behavior more closely by incorporating the lookback phenomenon in GNNs, we propose two methods: (a) target smoothing for the standard cross-entropy loss function, and (b) adding a Parent-as-Target (PAT) Lookback regularizer term. Finally, we propose a model selection framework to incorporate harder-to-formulate objectives such as solving time in the final models. Through extensive experimentation on standard benchmark instances, we show that our proposal results in up to 22% decrease in the size of the B&B tree and up to 15% improvement in the solving times.
452
A Validity Perspective on Evaluating the Justified Use of Data-driven Decision-making Algorithms
This work seeks to center validity considerations in deliberations around whether and how to build data-driven algorithms in high-stakes domains. Toward this end, we translate key concepts from validity theory to predictive algorithms. We describe common challenges in problem formulation and data issues that jeopardize the validity of predictive algorithms. We distill these issues into a series of high-level questions intended to promote and document reflections on the legitimacy of the predictive task and the suitability of the data. This contribution lays the foundation for co-designing a validity protocol, in collaboration with real-world stakeholders, including decision-makers, modelers, and members of potentially impacted communities, to critically evaluate the justifiability of specific designs and uses of data-driven algorithmic systems.
453
Randomized Coordinate Subgradient Method for Nonsmooth Optimization
Nonsmooth optimization finds wide applications in many engineering fields. In this work, we propose to utilize the {Randomized Coordinate Subgradient Method} (RCS) for solving both nonsmooth convex and nonsmooth nonconvex (nonsmooth weakly convex) optimization problems. At each iteration, RCS randomly selects one block coordinate rather than all the coordinates to update. Motivated by practical applications, we consider the {linearly bounded subgradients assumption} for the objective function, which is much more general than the Lipschitz continuity assumption. Under such a general assumption, we conduct thorough convergence analysis for RCS in both convex and nonconvex cases and establish both expected convergence rate and almost sure asymptotic convergence results. In order to derive these convergence results, we establish a convergence lemma and the relationship between the global metric subregularity properties of a weakly convex function and its Moreau envelope, which are fundamental and of independent interests. Finally, we conduct several experiments to show the possible superiority of RCS over the subgradient method.
454
Semi-Supervised Generative Adversarial Network for Stress Detection Using Partially Labeled Physiological Data
Physiological measurements involves observing variables that attribute to the normative functioning of human systems and subsystems directly or indirectly. The measurements can be used to detect affective states of a person with aims such as improving human-computer interactions. There are several methods of collecting physiological data, but wearable sensors are a common, non-invasive tool for accurate readings. However, valuable information is hard to extract from the raw physiological data, especially for affective state detection. Machine Learning techniques are used to detect the affective state of a person through labeled physiological data. A clear problem with using labeled data is creating accurate labels. An expert is needed to analyze a form of recording of participants and mark sections with different states such as stress and calm. While expensive, this method delivers a complete dataset with labeled data that can be used in any number of supervised algorithms. An interesting question arises from the expensive labeling: how can we reduce the cost while maintaining high accuracy? Semi-Supervised learning (SSL) is a potential solution to this problem. These algorithms allow for machine learning models to be trained with only a small subset of labeled data (unlike unsupervised which use no labels). They provide a way of avoiding expensive labeling. This paper compares a fully supervised algorithm to a SSL on the public WESAD (Wearable Stress and Affect Detection) Dataset for stress detection. This paper shows that Semi-Supervised algorithms are a viable method for inexpensive affective state detection systems with accurate results.
455
Machine Learning Approaches to Predict Breast Cancer: Bangladesh Perspective
Nowadays, Breast cancer has risen to become one of the most prominent causes of death in recent years. Among all malignancies, this is the most frequent and the major cause of death for women globally. Manually diagnosing this disease requires a good amount of time and expertise. Breast cancer detection is time-consuming, and the spread of the disease can be reduced by developing machine-based breast cancer predictions. In Machine learning, the system can learn from prior instances and find hard-to-detect patterns from noisy or complicated data sets using various statistical, probabilistic, and optimization approaches. This work compares several machine learning algorithm's classification accuracy, precision, sensitivity, and specificity on a newly collected dataset. In this work Decision tree, Random Forest, Logistic Regression, Naive Bayes, and XGBoost, these five machine learning approaches have been implemented to get the best performance on our dataset. This study focuses on finding the best algorithm that can forecast breast cancer with maximum accuracy in terms of its classes. This work evaluated the quality of each algorithm's data classification in terms of efficiency and effectiveness. And also compared with other published work on this domain. After implementing the model, this study achieved the best model accuracy, 94% on Random Forest and XGBoost.
456
Masked Part-Of-Speech Model: Does Modeling Long Context Help Unsupervised POS-tagging?
Previous Part-Of-Speech (POS) induction models usually assume certain independence assumptions (e.g., Markov, unidirectional, local dependency) that do not hold in real languages. For example, the subject-verb agreement can be both long-term and bidirectional. To facilitate flexible dependency modeling, we propose a Masked Part-of-Speech Model (MPoSM), inspired by the recent success of Masked Language Models (MLM). MPoSM can model arbitrary tag dependency and perform POS induction through the objective of masked POS reconstruction. We achieve competitive results on both the English Penn WSJ dataset as well as the universal treebank containing 10 diverse languages. Though modeling the long-term dependency should ideally help this task, our ablation study shows mixed trends in different languages. To better understand this phenomenon, we design a novel synthetic experiment that can specifically diagnose the model's ability to learn tag agreement. Surprisingly, we find that even strong baselines fail to solve this problem consistently in a very simplified setting: the agreement between adjacent words. Nonetheless, MPoSM achieves overall better performance. Lastly, we conduct a detailed error analysis to shed light on other remaining challenges. Our code is available at https://github.com/owenzx/MPoSM
457
Decision Forest Based EMG Signal Classification with Low Volume Dataset Augmented with Random Variance Gaussian Noise
Electromyography signals can be used as training data by machine learning models to classify various gestures. We seek to produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience while comparing the effect of our feature extraction results on model accuracy to other more conventional methods such as the use of AR parameters on a sliding window across the channels of a signal. We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting where EMG classification is being conducted, as opposed to more complicated methods such as the use of the Fourier Transform. To augment our limited training data, we used a standard technique, known as jitter, where random noise is added to each observation in a channel wise manner. Once all datasets were produced using the above methods, we performed a grid search with Random Forest and XGBoost to ultimately create a high accuracy model. For human computer interface purposes, high accuracy classification of EMG signals is of particular importance to their functioning and given the difficulty and cost of amassing any sort of biomedical data in a high volume, it is valuable to have techniques that can work with a low amount of high-quality samples with less expensive feature extraction methods that can reliably be carried out in an online application.
458
Variational Inference for Additive Main and Multiplicative Interaction Effects Models
In plant breeding the presence of a genotype by environment (GxE) interaction has a strong impact on cultivation decision making and the introduction of new crop cultivars. The combination of linear and bilinear terms has been shown to be very useful in modelling this type of data. A widely-used approach to identify GxE is the Additive Main Effects and Multiplicative Interaction Effects (AMMI) model. However, as data frequently can be high-dimensional, Markov chain Monte Carlo (MCMC) approaches can be computationally infeasible. In this article, we consider a variational inference approach for such a model. We derive variational approximations for estimating the parameters and we compare the approximations to MCMC using both simulated and real data. The new inferential framework we propose is on average two times faster whilst maintaining the same predictive performance as MCMC.
459
Manifold Interpolating Optimal-Transport Flows for Trajectory Inference
Here, we present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow) that learns stochastic, continuous population dynamics from static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic models, manifold learning, and optimal transport by training neural ordinary differential equations (Neural ODE) to interpolate between static population snapshots as penalized by optimal transport with manifold ground distance. Further, we ensure that the flow follows the geometry by operating in the latent space of an autoencoder that we call a geodesic autoencoder (GAE). In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define. We show that this method is superior to normalizing flows, Schr\"odinger bridges and other generative models that are designed to flow from noise to data in terms of interpolating between populations. Theoretically, we link these trajectories with dynamic optimal transport. We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
460
AFAFed -- Protocol analysis
In this paper, we design, analyze the convergence properties and address the implementation aspects of AFAFed. This is a novel Asynchronous Fair Adaptive Federated learning framework for stream-oriented IoT application environments, which are featured by time-varying operating conditions, heterogeneous resource-limited devices (i.e., coworkers), non-i.i.d. local training data and unreliable communication links. The key new of AFAFed is the synergic co-design of: (i) two sets of adaptively tuned tolerance thresholds and fairness coefficients at the coworkers and central server, respectively; and, (ii) a distributed adaptive mechanism, which allows each coworker to adaptively tune own communication rate. The convergence properties of AFAFed under (possibly) non-convex loss functions is guaranteed by a set of new analytical bounds, which formally unveil the impact on the resulting AFAFed convergence rate of a number of Federated Learning (FL) parameters, like, first and second moments of the per-coworker number of consecutive model updates, data skewness, communication packet-loss probability, and maximum/minimum values of the (adaptively tuned) mixing coefficient used for model aggregation.
461
ComDensE : Combined Dense Embedding of Relation-aware and Common Features for Knowledge Graph Completion
Real-world knowledge graphs (KG) are mostly incomplete. The problem of recovering missing relations, called KG completion, has recently become an active research area. Knowledge graph (KG) embedding, a low-dimensional representation of entities and relations, is the crucial technique for KG completion. Convolutional neural networks in models such as ConvE, SACN, InteractE, and RGCN achieve recent successes. This paper takes a different architectural view and proposes ComDensE which combines relation-aware and common features using dense neural networks. In the relation-aware feature extraction, we attempt to create relational inductive bias by applying an encoding function specific to each relation. In the common feature extraction, we apply the common encoding function to all input embeddings. These encoding functions are implemented using dense layers in ComDensE. ComDensE achieves the state-of-the-art performance in the link prediction in terms of MRR, HIT@1 on FB15k-237 and HIT@1 on WN18RR compared to the previous baseline approaches. We conduct an extensive ablation study to examine the effects of the relation-aware layer and the common layer of the ComDensE. Experimental results illustrate that the combined dense architecture as implemented in ComDensE achieves the best performance.
462
On Non-Random Missing Labels in Semi-Supervised Learning
Semi-Supervised Learning (SSL) is fundamentally a missing label problem, in which the label Missing Not At Random (MNAR) problem is more realistic and challenging, compared to the widely-adopted yet naive Missing Completely At Random assumption where both labeled and unlabeled data share the same class distribution. Different from existing SSL solutions that overlook the role of "class" in causing the non-randomness, e.g., users are more likely to label popular classes, we explicitly incorporate "class" into SSL. Our method is three-fold: 1) We propose Class-Aware Propensity (CAP) that exploits the unlabeled data to train an improved classifier using the biased labeled data. 2) To encourage rare class training, whose model is low-recall but high-precision that discards too many pseudo-labeled data, we propose Class-Aware Imputation (CAI) that dynamically decreases (or increases) the pseudo-label assignment threshold for rare (or frequent) classes. 3) Overall, we integrate CAP and CAI into a Class-Aware Doubly Robust (CADR) estimator for training an unbiased SSL model. Under various MNAR settings and ablations, our method not only significantly outperforms existing baselines but also surpasses other label bias removal SSL methods. Please check our code at: https://github.com/JoyHuYY1412/CADR-FixMatch.
463
Towards out of distribution generalization for problems in mechanics
There has been a massive increase in research interest towards applying data driven methods to problems in mechanics. While traditional machine learning (ML) methods have enabled many breakthroughs, they rely on the assumption that the training (observed) data and testing (unseen) data are independent and identically distributed (i.i.d). Thus, traditional ML approaches often break down when applied to real world mechanics problems with unknown test environments and data distribution shifts. In contrast, out-of-distribution (OOD) generalization assumes that the test data may shift (i.e., violate the i.i.d. assumption). To date, multiple methods have been proposed to improve the OOD generalization of ML methods. However, because of the lack of benchmark datasets for OOD regression problems, the efficiency of these OOD methods on regression problems, which dominate the mechanics field, remains unknown. To address this, we investigate the performance of OOD generalization methods for regression problems in mechanics. Specifically, we identify three OOD problems: covariate shift, mechanism shift, and sampling bias. For each problem, we create two benchmark examples that extend the Mechanical MNIST dataset collection, and we investigate the performance of popular OOD generalization methods on these mechanics-specific regression problems. Our numerical experiments show that in most cases, while the OOD generalization algorithms perform better compared to traditional ML methods on these OOD problems, there is a compelling need to develop more robust OOD generalization methods that are effective across multiple OOD scenarios. Overall, we expect that this study, as well as the associated open access benchmark datasets, will enable further development of OOD generalization methods for mechanics specific regression problems.
464
Best of Both Worlds Model Selection
We study the problem of model selection in bandit scenarios in the presence of nested policy classes, with the goal of obtaining simultaneous adversarial and stochastic ("best of both worlds") high-probability regret guarantees. Our approach requires that each base learner comes with a candidate regret bound that may or may not hold, while our meta algorithm plays each base learner according to a schedule that keeps the base learner's candidate regret bounds balanced until they are detected to violate their guarantees. We develop careful mis-specification tests specifically designed to blend the above model selection criterion with the ability to leverage the (potentially benign) nature of the environment. We recover the model selection guarantees of the CORRAL algorithm for adversarial environments, but with the additional benefit of achieving high probability regret bounds, specifically in the case of nested adversarial linear bandits. More importantly, our model selection results also hold simultaneously in stochastic environments under gap assumptions. These are the first theoretical results that achieve best of both world (stochastic and adversarial) guarantees while performing model selection in (linear) bandit scenarios.
465
A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback
We present a modified tuning of the algorithm of Zimmert and Seldin [2020] for adversarial multiarmed bandits with delayed feedback, which in addition to the minimax optimal adversarial regret guarantee shown by Zimmert and Seldin simultaneously achieves a near-optimal regret guarantee in the stochastic setting with fixed delays. Specifically, the adversarial regret guarantee is $\mathcal{O}(\sqrt{TK} + \sqrt{dT\log K})$, where $T$ is the time horizon, $K$ is the number of arms, and $d$ is the fixed delay, whereas the stochastic regret guarantee is $\mathcal{O}\left(\sum_{i \neq i^*}(\frac{1}{\Delta_i} \log(T) + \frac{d}{\Delta_{i}\log K}) + d K^{1/3}\log K\right)$, where $\Delta_i$ are the suboptimality gaps. We also present an extension of the algorithm to the case of arbitrary delays, which is based on an oracle knowledge of the maximal delay $d_{max}$ and achieves $\mathcal{O}(\sqrt{TK} + \sqrt{D\log K} + d_{max}K^{1/3} \log K)$ regret in the adversarial regime, where $D$ is the total delay, and $\mathcal{O}\left(\sum_{i \neq i^*}(\frac{1}{\Delta_i} \log(T) + \frac{\sigma_{max}}{\Delta_{i}\log K}) + d_{max}K^{1/3}\log K\right)$ regret in the stochastic regime, where $\sigma_{max}$ is the maximal number of outstanding observations. Finally, we present a lower bound that matches regret upper bound achieved by the skipping technique of Zimmert and Seldin [2020] in the adversarial setting.
466
Discrete Langevin Sampler via Wasserstein Gradient Flow
Recently, a family of locally balanced (LB) samplers has demonstrated excellent performance at sampling and learning energy-based models (EBMs) in discrete spaces. However, the theoretical understanding of this success is limited. In this work, we show how LB functions give rise to LB dynamics corresponding to Wasserstein gradient flow in a discrete space. From first principles, previous LB samplers can then be seen as discretizations of the LB dynamics with respect to Hamming distance. Based on this observation, we propose a new algorithm, the Locally Balanced Jump (LBJ), by discretizing the LB dynamics with respect to simulation time. As a result, LBJ has a location-dependent "velocity" that allows it to make proposals with larger distances. Additionally, LBJ decouples each dimension into independent sub-processes, enabling convenient parallel implementation. We demonstrate the advantages of LBJ for sampling and learning in various binary and categorical distributions.
467
Semantic Unfolding of StyleGAN Latent Space
Generative adversarial networks (GANs) have proven to be surprisingly efficient for image editing by inverting and manipulating the latent code corresponding to an input real image. This editing property emerges from the disentangled nature of the latent space. In this paper, we identify that the facial attribute disentanglement is not optimal, thus facial editing relying on linear attribute separation is flawed. We thus propose to improve semantic disentanglement with supervision. Our method consists in learning a proxy latent representation using normalizing flows, and we show that this leads to a more efficient space for face image editing.
468
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
Most of the existing methods for estimating the local intrinsic dimension of a data distribution do not scale well to high-dimensional data. Many of them rely on a non-parametric nearest neighbors approach which suffers from the curse of dimensionality. We attempt to address that challenge by proposing a novel approach to the problem: Local Intrinsic Dimension estimation using approximate Likelihood (LIDL). Our method relies on an arbitrary density estimation method as its subroutine and hence tries to sidestep the dimensionality challenge by making use of the recent progress in parametric neural methods for likelihood estimation. We carefully investigate the empirical properties of the proposed method, compare them with our theoretical predictions, and show that LIDL yields competitive results on the standard benchmarks for this problem and that it scales to thousands of dimensions. What is more, we anticipate this approach to improve further with the continuing advances in the density estimation literature.
469
Continual Learning for Human State Monitoring
Continual Learning (CL) on time series data represents a promising but under-studied avenue for real-world applications. We propose two new CL benchmarks for Human State Monitoring. We carefully designed the benchmarks to mirror real-world environments in which new subjects are continuously added. We conducted an empirical evaluation to assess the ability of popular CL strategies to mitigate forgetting in our benchmarks. Our results show that, possibly due to the domain-incremental properties of our benchmarks, forgetting can be easily tackled even with a simple finetuning and that existing strategies struggle in accumulating knowledge over a fixed, held-out, test subject.
470
Teach me how to Interpolate a Myriad of Embeddings
Mixup refers to interpolation-based data augmentation, originally motivated as a way to go beyond empirical risk minimization (ERM). Yet, its extensions focus on the definition of interpolation and the space where it takes place, while the augmentation itself is less studied: For a mini-batch of size $m$, most methods interpolate between $m$ pairs with a single scalar interpolation factor $\lambda$. In this work, we make progress in this direction by introducing MultiMix, which interpolates an arbitrary number $n$ of tuples, each of length $m$, with one vector $\lambda$ per tuple. On sequence data, we further extend to dense interpolation and loss computation over all spatial positions. Overall, we increase the number of tuples per mini-batch by orders of magnitude at little additional cost. This is possible by interpolating at the very last layer before the classifier. Finally, to address inconsistencies due to linear target interpolation, we introduce a self-distillation approach to generate and interpolate synthetic targets. We empirically show that our contributions result in significant improvement over state-of-the-art mixup methods on four benchmarks. By analyzing the embedding space, we observe that the classes are more tightly clustered and uniformly spread over the embedding space, thereby explaining the improved behavior.
471
Momentum Diminishes the Effect of Spectral Bias in Physics-Informed Neural Networks
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs). However, they often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias. In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under stochastic gradient descent with momentum (SGDM). This demonstrates SGDM significantly reduces the effect of spectral bias. We have also examined why training a model via the Adam optimizer can accelerate the convergence while reducing the spectral bias. Moreover, our numerical experiments have confirmed that wide-enough networks using SGDM still converge to desirable solutions, even in the presence of high-frequency features. In fact, we show that the width of a network plays a critical role in convergence.
472
Solving Quantitative Reasoning Problems with Language Models
Language models have achieved remarkable performance on a wide range of tasks that require natural language understanding. Nevertheless, state-of-the-art models have generally struggled with tasks that require quantitative reasoning, such as solving mathematics, science, and engineering problems at the college level. To help close this gap, we introduce Minerva, a large language model pretrained on general natural language data and further trained on technical content. The model achieves state-of-the-art performance on technical benchmarks without the use of external tools. We also evaluate our model on over two hundred undergraduate-level problems in physics, biology, chemistry, economics, and other sciences that require quantitative reasoning, and find that the model can correctly answer nearly a third of them.
473
Fairness via In-Processing in the Over-parameterized Regime: A Cautionary Tale
The success of DNNs is driven by the counter-intuitive ability of over-parameterized networks to generalize, even when they perfectly fit the training data. In practice, test error often continues to decrease with increasing over-parameterization, referred to as double descent. This allows practitioners to instantiate large models without having to worry about over-fitting. Despite its benefits, however, prior work has shown that over-parameterization can exacerbate bias against minority subgroups. Several fairness-constrained DNN training methods have been proposed to address this concern. Here, we critically examine MinDiff, a fairness-constrained training procedure implemented within TensorFlow's Responsible AI Toolkit, that aims to achieve Equality of Opportunity. We show that although MinDiff improves fairness for under-parameterized models, it is likely to be ineffective in the over-parameterized regime. This is because an overfit model with zero training loss is trivially group-wise fair on training data, creating an "illusion of fairness," thus turning off the MinDiff optimization (this will apply to any disparity-based measures which care about errors or accuracy. It won't apply to demographic parity). Within specified fairness constraints, under-parameterized MinDiff models can even have lower error compared to their over-parameterized counterparts (despite baseline over-parameterized models having lower error). We further show that MinDiff optimization is very sensitive to choice of batch size in the under-parameterized regime. Thus, fair model training using MinDiff requires time-consuming hyper-parameter searches. Finally, we suggest using previously proposed regularization techniques, viz. L2, early stopping and flooding in conjunction with MinDiff to train fair over-parameterized models.
474
Provably Efficient Reinforcement Learning for Online Adaptive Influence Maximization
Online influence maximization aims to maximize the influence spread of a content in a social network with unknown network model by selecting a few seed nodes. Recent studies followed a non-adaptive setting, where the seed nodes are selected before the start of the diffusion process and network parameters are updated when the diffusion stops. We consider an adaptive version of content-dependent online influence maximization problem where the seed nodes are sequentially activated based on real-time feedback. In this paper, we formulate the problem as an infinite-horizon discounted MDP under a linear diffusion process and present a model-based reinforcement learning solution. Our algorithm maintains a network model estimate and selects seed users adaptively, exploring the social network while improving the optimal policy optimistically. We establish $\widetilde O(\sqrt{T})$ regret bound for our algorithm. Empirical evaluations on synthetic network demonstrate the efficiency of our algorithm.
475
Causality for Inherently Explainable Transformers: CAT-XPLAIN
There have been several post-hoc explanation approaches developed to explain pre-trained black-box neural networks. However, there is still a gap in research efforts toward designing neural networks that are inherently explainable. In this paper, we utilize a recently proposed instance-wise post-hoc causal explanation method to make an existing transformer architecture inherently explainable. Once trained, our model provides an explanation in the form of top-$k$ regions in the input space of the given instance contributing to its decision. We evaluate our method on binary classification tasks using three image datasets: MNIST, FMNIST, and CIFAR. Our results demonstrate that compared to the causality-based post-hoc explainer model, our inherently explainable model achieves better explainability results while eliminating the need of training a separate explainer model. Our code is available at https://github.com/mvrl/CAT-XPLAIN.
476
Strong Lensing Source Reconstruction Using Continuous Neural Fields
From the nature of dark matter to the rate of expansion of our Universe, observations of distant galaxies distorted through strong gravitational lensing have the potential to answer some of the major open questions in astrophysics. Modeling galaxy-galaxy strong lensing observations presents a number of challenges as the exact configuration of both the background source and foreground lens galaxy is unknown. A timely call, prompted by a number of upcoming surveys anticipating high-resolution lensing images, demands methods that can efficiently model lenses at their full complexity. In this work, we introduce a method that uses continuous neural fields to non-parametrically reconstruct the complex morphology of a source galaxy while simultaneously inferring a distribution over foreground lens galaxy configurations. We demonstrate the efficacy of our method through experiments on simulated data targeting high-resolution lensing images similar to those anticipated in near-future astrophysical surveys.
477
Visual Foresight With a Local Dynamics Model
Model-free policy learning has been shown to be capable of learning manipulation policies which can solve long-time horizon tasks using single-step manipulation primitives. However, training these policies is a time-consuming process requiring large amounts of data. We propose the Local Dynamics Model (LDM) which efficiently learns the state-transition function for these manipulation primitives. By combining the LDM with model-free policy learning, we can learn policies which can solve complex manipulation tasks using one-step lookahead planning. We show that the LDM is both more sample-efficient and outperforms other model architectures. When combined with planning, we can outperform other model-based and model-free policies on several challenging manipulation tasks in simulation.
478
Meta-Learning over Time for Destination Prediction Tasks
A need to understand and predict vehicles' behavior underlies both public and private goals in the transportation domain, including urban planning and management, ride-sharing services, and intelligent transportation systems. Individuals' preferences and intended destinations vary throughout the day, week, and year: for example, bars are most popular in the evenings, and beaches are most popular in the summer. Despite this principle, we note that recent studies on a popular benchmark dataset from Porto, Portugal have found, at best, only marginal improvements in predictive performance from incorporating temporal information. We propose an approach based on hypernetworks, a variant of meta-learning ("learning to learn") in which a neural network learns to change its own weights in response to an input. In our case, the weights responsible for destination prediction vary with the metadata, in particular the time, of the input trajectory. The time-conditioned weights notably improve the model's error relative to ablation studies and comparable prior work, and we confirm our hypothesis that knowledge of time should improve prediction of a vehicle's intended destination.
479
Understanding Generalization via Leave-One-Out Conditional Mutual Information
We study the mutual information between (certain summaries of) the output of a learning algorithm and its $n$ training data, conditional on a supersample of $n+1$ i.i.d. data from which the training data is chosen at random without replacement. These leave-one-out variants of the conditional mutual information (CMI) of an algorithm (Steinke and Zakynthinou, 2020) are also seen to control the mean generalization error of learning algorithms with bounded loss functions. For learning algorithms achieving zero empirical risk under 0-1 loss (i.e., interpolating algorithms), we provide an explicit connection between leave-one-out CMI and the classical leave-one-out error estimate of the risk. Using this connection, we obtain upper and lower bounds on risk in terms of the (evaluated) leave-one-out CMI. When the limiting risk is constant or decays polynomially, the bounds converge to within a constant factor of two. As an application, we analyze the population risk of the one-inclusion graph algorithm, a general-purpose transductive learning algorithm for VC classes in the realizable setting. Using leave-one-out CMI, we match the optimal bound for learning VC classes in the realizable setting, answering an open challenge raised by Steinke and Zakynthinou (2020). Finally, in order to understand the role of leave-one-out CMI in studying generalization, we place leave-one-out CMI in a hierarchy of measures, with a novel unconditional mutual information at the root. For 0-1 loss and interpolating learning algorithms, this mutual information is observed to be precisely the risk.
480
Generalized Permutants and Graph GENEOs
In this paper we establish a bridge between Topological Data Analysis and Geometric Deep Learning, adapting the topological theory of group equivariant non-expansive operators (GENEOs) to act on the space of all graphs weighted on vertices or edges. This is done by showing how the general concept of GENEO can be used to transform graphs and to give information about their structure. This requires the introduction of the new concepts of generalized permutant and generalized permutant measure and the mathematical proof that these concepts allow us to build GENEOs between graphs. An experimental section concludes the paper, illustrating the possible use of our operators to extract information from graphs. This paper is part of a line of research devoted to developing a compositional and geometric theory of GENEOs for Geometric Deep Learning.
481
3D-Aware Video Generation
Generative models have emerged as an essential building block for many image synthesis and editing tasks. Recent advances in this field have also enabled high-quality 3D or video content to be generated that exhibits either multi-view or temporal consistency. With our work, we explore 4D generative adversarial networks (GANs) that learn unconditional generation of 3D-aware videos. By combining neural implicit representations with time-aware discriminator, we develop a GAN framework that synthesizes 3D video supervised only with monocular videos. We show that our method learns a rich embedding of decomposable 3D structures and motions that enables new visual effects of spatio-temporal renderings while producing imagery with quality comparable to that of existing 3D or video GANs.
482
On the Robustness of Dialogue History Representation in Conversational Question Answering: A Comprehensive Study and a New Prompt-based Method
Most works on modeling the conversation history in Conversational Question Answering (CQA) report a single main result on a common CQA benchmark. While existing models show impressive results on CQA leaderboards, it remains unclear whether they are robust to shifts in setting (sometimes to more realistic ones), training data size (e.g. from large to small sets) and domain. In this work, we design and conduct the first large-scale robustness study of history modeling approaches for CQA. We find that high benchmark scores do not necessarily translate to strong robustness, and that various methods can perform extremely differently under different settings. Equipped with the insights from our study, we design a novel prompt-based history modeling approach, and demonstrate its strong robustness across various settings. Our approach is inspired by existing methods that highlight historic answers in the passage. However, instead of highlighting by modifying the passage token embeddings, we add textual prompts directly in the passage text. Our approach is simple, easy-to-plug into practically any model, and highly effective, thus we recommend it as a starting point for future model developers. We also hope that our study and insights will raise awareness to the importance of robustness-focused evaluation, in addition to obtaining high leaderboard scores, leading to better CQA systems.
483
ENS-10: A Dataset For Post-Processing Ensemble Weather Forecast
Post-processing ensemble prediction systems can improve weather forecasting, especially for extreme event prediction. In recent years, different machine learning models have been developed to improve the quality of the post-processing step. However, these models heavily rely on the data and generating such ensemble members requires multiple runs of numerical weather prediction models, at high computational cost. This paper introduces the ENS-10 dataset, consisting of ten ensemble members spread over 20 years (1998-2017). The ensemble members are generated by perturbing numerical weather simulations to capture the chaotic behavior of the Earth. To represent the three-dimensional state of the atmosphere, ENS-10 provides the most relevant atmospheric variables in 11 distinct pressure levels as well as the surface at 0.5-degree resolution. The dataset targets the prediction correction task at 48-hour lead time, which is essentially improving the forecast quality by removing the biases of the ensemble members. To this end, ENS-10 provides the weather variables for forecast lead times T=0, 24, and 48 hours (two data points per week). We provide a set of baselines for this task on ENS-10 and compare their performance in correcting the prediction of different weather variables. We also assess our baselines for predicting extreme events using our dataset. The ENS-10 dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.
484
IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound
Recent works have tried to increase the verifiability of adversarially trained networks by running the attacks over domains larger than the original perturbations and adding various regularization terms to the objective. However, these algorithms either underperform or require complex and expensive stage-wise training procedures, hindering their practical applicability. We present IBP-R, a novel verified training algorithm that is both simple and effective. IBP-R induces network verifiability by coupling adversarial attacks on enlarged domains with a regularization term, based on inexpensive interval bound propagation, that minimizes the gap between the non-convex verification problem and its approximations. By leveraging recent branch-and-bound frameworks, we show that IBP-R obtains state-of-the-art verified robustness-accuracy trade-offs for small perturbations on CIFAR-10 while training significantly faster than relevant previous work. Additionally, we present UPB, a novel branching strategy that, relying on a simple heuristic based on $\beta$-CROWN, reduces the cost of state-of-the-art branching algorithms while yielding splits of comparable quality.
485
Distilling Model Failures as Directions in Latent Space
Existing methods for isolating hard subpopulations and spurious correlations in datasets often require human intervention. This can make these methods labor-intensive and dataset-specific. To address these shortcomings, we present a scalable method for automatically distilling a model's failure modes. Specifically, we harness linear classifiers to identify consistent error patterns, and, in turn, induce a natural representation of these failure modes as directions within the feature space. We demonstrate that this framework allows us to discover and automatically caption challenging subpopulations within the training dataset, and intervene to improve the model's performance on these subpopulations. Code available at https://github.com/MadryLab/failure-directions
486
An Auto-Regressive Formulation for Smoothing and Moving Mean with Exponentially Tapered Windows
We investigate an auto-regressive formulation for the problem of smoothing time-series by manipulating the inherent objective function of the traditional moving mean smoothers. Not only the auto-regressive smoothers enforce a higher degree of smoothing, they are just as efficient as the traditional moving means and can be optimized accordingly with respect to the input dataset. Interestingly, the auto-regressive models result in moving means with exponentially tapered windows.
487
Modeling Teams Performance Using Deep Representational Learning on Graphs
The large majority of human activities require collaborations within and across formal or informal teams. Our understanding of how the collaborative efforts spent by teams relate to their performance is still a matter of debate. Teamwork results in a highly interconnected ecosystem of potentially overlapping components where tasks are performed in interaction with team members and across other teams. To tackle this problem, we propose a graph neural network model designed to predict a team's performance while identifying the drivers that determine such an outcome. In particular, the model is based on three architectural channels: topological, centrality, and contextual which capture different factors potentially shaping teams' success. We endow the model with two attention mechanisms to boost model performance and allow interpretability. A first mechanism allows pinpointing key members inside the team. A second mechanism allows us to quantify the contributions of the three driver effects in determining the outcome performance. We test model performance on a wide range of domains outperforming most of the classical and neural baselines considered. Moreover, we include synthetic datasets specifically designed to validate how the model disentangles the intended properties on which our model vastly outperforms baselines.
488
Private Graph Extraction via Feature Explanations
Privacy and interpretability are two of the important ingredients for achieving trustworthy machine learning. We study the interplay of these two aspects in graph machine learning through graph reconstruction attacks. The goal of the adversary here is to reconstruct the graph structure of the training data given access to model explanations. Based on the different kinds of auxiliary information available to the adversary, we propose several graph reconstruction attacks. We show that additional knowledge of post-hoc feature explanations substantially increases the success rate of these attacks. Further, we investigate in detail the differences between attack performance with respect to three different classes of explanation methods for graph neural networks: gradient-based, perturbation-based, and surrogate model-based methods. While gradient-based explanations reveal the most in terms of the graph structure, we find that these explanations do not always score high in utility. For the other two classes of explanations, privacy leakage increases with an increase in explanation utility. Finally, we propose a defense based on a randomized response mechanism for releasing the explanations which substantially reduces the attack success rate. Our anonymized code is available.
489
DrumGAN VST: A Plugin for Drum Sound Analysis/Synthesis With Autoencoding Generative Adversarial Networks
In contemporary popular music production, drum sound design is commonly performed by cumbersome browsing and processing of pre-recorded samples in sound libraries. One can also use specialized synthesis hardware, typically controlled through low-level, musically meaningless parameters. Today, the field of Deep Learning offers methods to control the synthesis process via learned high-level features and allows generating a wide variety of sounds. In this paper, we present DrumGAN VST, a plugin for synthesizing drum sounds using a Generative Adversarial Network. DrumGAN VST operates on 44.1 kHz sample-rate audio, offers independent and continuous instrument class controls, and features an encoding neural network that maps sounds into the GAN's latent space, enabling resynthesis and manipulation of pre-existing drum sounds. We provide numerous sound examples and a demo of the proposed VST plugin.
490
Trial2Vec: Zero-Shot Clinical Trial Document Similarity Search using Self-Supervision
Clinical trials are essential for drug development but are extremely expensive and time-consuming to conduct. It is beneficial to study similar historical trials when designing a clinical trial. However, lengthy trial documents and lack of labeled data make trial similarity search difficult. We propose a zero-shot clinical trial retrieval method, Trial2Vec, which learns through self-supervision without annotating similar clinical trials. Specifically, the meta-structure of trial documents (e.g., title, eligibility criteria, target disease) along with clinical knowledge (e.g., UMLS knowledge base https://www.nlm.nih.gov/research/umls/index.html) are leveraged to automatically generate contrastive samples. Besides, Trial2Vec encodes trial documents considering meta-structure thus producing compact embeddings aggregating multi-aspect information from the whole document. We show that our method yields medically interpretable embeddings by visualization and it gets a 15% average improvement over the best baselines on precision/recall for trial retrieval, which is evaluated on our labeled 1600 trial pairs. In addition, we prove the pre-trained embeddings benefit the downstream trial outcome prediction task over 240k trials.
491
An extensible Benchmarking Graph-Mesh dataset for studying Steady-State Incompressible Navier-Stokes Equations
Recent progress in \emph{Geometric Deep Learning} (GDL) has shown its potential to provide powerful data-driven models. This gives momentum to explore new methods for learning physical systems governed by \emph{Partial Differential Equations} (PDEs) from Graph-Mesh data. However, despite the efforts and recent achievements, several research directions remain unexplored and progress is still far from satisfying the physical requirements of real-world phenomena. One of the major impediments is the absence of benchmarking datasets and common physics evaluation protocols. In this paper, we propose a 2-D graph-mesh dataset to study the airflow over airfoils at high Reynolds regime (from $10^6$ and beyond). We also introduce metrics on the stress forces over the airfoil in order to evaluate GDL models on important physical quantities. Moreover, we provide extensive GDL baselines.
492
An Embedding Framework for the Design and Analysis of Consistent Polyhedral Surrogates
We formalize and study the natural approach of designing convex surrogate loss functions via embeddings, for problems such as classification, ranking, or structured prediction. In this approach, one embeds each of the finitely many predictions (e.g. rankings) as a point in $R^d$, assigns the original loss values to these points, and "convexifies" the loss in some way to obtain a surrogate. We establish a strong connection between this approach and polyhedral (piecewise-linear convex) surrogate losses: every discrete loss is embedded by some polyhedral loss, and every polyhedral loss embeds some discrete loss. Moreover, an embedding gives rise to a consistent link function as well as linear surrogate regret bounds. Our results are constructive, as we illustrate with several examples. In particular, our framework gives succinct proofs of consistency or inconsistency for various polyhedral surrogates in the literature, and for inconsistent surrogates, it further reveals the discrete losses for which these surrogates are consistent. We go on to show additional structure of embeddings, such as the equivalence of embedding and matching Bayes risks, and the equivalence of various notions of non-redudancy. Using these results, we establish that indirect elicitation, a necessary condition for consistency, is also sufficient when working with polyhedral surrogates.
493
Hidden Parameter Recurrent State Space Models For Changing Dynamics Scenarios
Recurrent State-space models (RSSMs) are highly expressive models for learning patterns in time series data and system identification. However, these models assume that the dynamics are fixed and unchanging, which is rarely the case in real-world scenarios. Many control applications often exhibit tasks with similar but not identical dynamics which can be modeled as a latent variable. We introduce the Hidden Parameter Recurrent State Space Models (HiP-RSSMs), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors. We present a simple and effective way of learning and performing inference over this Gaussian graphical model that avoids approximations like variational inference. We show that HiP-RSSMs outperforms RSSMs and competing multi-task models on several challenging robotic benchmarks both on real-world systems and simulations.
494
Multi-scale Physical Representations for Approximating PDE Solutions with Graph Neural Operators
Representing physical signals at different scales is among the most challenging problems in engineering. Several multi-scale modeling tools have been developed to describe physical systems governed by \emph{Partial Differential Equations} (PDEs). These tools are at the crossroad of principled physical models and numerical schema. Recently, data-driven models have been introduced to speed-up the approximation of PDE solutions compared to numerical solvers. Among these recent data-driven methods, neural integral operators are a class that learn a mapping between function spaces. These functions are discretized on graphs (meshes) which are appropriate for modeling interactions in physical phenomena. In this work, we study three multi-resolution schema with integral kernel operators that can be approximated with \emph{Message Passing Graph Neural Networks} (MPGNNs). To validate our study, we make extensive MPGNNs experiments with well-chosen metrics considering steady and unsteady PDEs.
495
Computer-aided diagnosis and prediction in brain disorders
Computer-aided methods have shown added value for diagnosing and predicting brain disorders and can thus support decision making in clinical care and treatment planning. This chapter will provide insight into the type of methods, their working, their input data - such as cognitive tests, imaging and genetic data - and the types of output they provide. We will focus on specific use cases for diagnosis, i.e. estimating the current 'condition' of the patient, such as early detection and diagnosis of dementia, differential diagnosis of brain tumours, and decision making in stroke. Regarding prediction, i.e. estimation of the future 'condition' of the patient, we will zoom in on use cases such as predicting the disease course in multiple sclerosis and predicting patient outcomes after treatment in brain cancer. Furthermore, based on these use cases, we will assess the current state-of-the-art methodology and highlight current efforts on benchmarking of these methods and the importance of open science therein. Finally, we assess the current clinical impact of computer-aided methods and discuss the required next steps to increase clinical impact.
496
BiometryNet: Landmark-based Fetal Biometry Estimation from Standard Ultrasound Planes
Fetal growth assessment from ultrasound is based on a few biometric measurements that are performed manually and assessed relative to the expected gestational age. Reliable biometry estimation depends on the precise detection of landmarks in standard ultrasound planes. Manual annotation can be time-consuming and operator dependent task, and may results in high measurements variability. Existing methods for automatic fetal biometry rely on initial automatic fetal structure segmentation followed by geometric landmark detection. However, segmentation annotations are time-consuming and may be inaccurate, and landmark detection requires developing measurement-specific geometric methods. This paper describes BiometryNet, an end-to-end landmark regression framework for fetal biometry estimation that overcomes these limitations. It includes a novel Dynamic Orientation Determination (DOD) method for enforcing measurement-specific orientation consistency during network training. DOD reduces variabilities in network training, increases landmark localization accuracy, thus yields accurate and robust biometric measurements. To validate our method, we assembled a dataset of 3,398 ultrasound images from 1,829 subjects acquired in three clinical sites with seven different ultrasound devices. Comparison and cross-validation of three different biometric measurements on two independent datasets shows that BiometryNet is robust and yields accurate measurements whose errors are lower than the clinically permissible errors, outperforming other existing automated biometry estimation methods. Code is available at https://github.com/netanellavisdris/fetalbiometry.
497
Signature Methods in Machine Learning
Signature-based techniques give mathematical insight into the interactions between complex streams of evolving data. These insights can be quite naturally translated into numerical approaches to understanding streamed data, and perhaps because of their mathematical precision, have proved useful in analysing streamed data in situations where the data is irregular, and not stationary, and the dimension of the data and the sample sizes are both moderate. Understanding streamed multi-modal data is exponential: a word in $n$ letters from an alphabet of size $d$ can be any one of $d^n$ messages. Signatures remove the exponential amount of noise that arises from sampling irregularity, but an exponential amount of information still remain. This survey aims to stay in the domain where that exponential scaling can be managed directly. Scalability issues are an important challenge in many problems but would require another survey article and further ideas. This survey describes a range of contexts where the data sets are small enough to remove the possibility of massive machine learning, and the existence of small sets of context free and principled features can be used effectively. The mathematical nature of the tools can make their use intimidating to non-mathematicians. The examples presented in this article are intended to bridge this communication gap and provide tractable working examples drawn from the machine learning context. Notebooks are available online for several of these examples. This survey builds on the earlier paper of Ilya Chevryev and Andrey Kormilitzin which had broadly similar aims at an earlier point in the development of this machinery. This article illustrates how the theoretical insights offered by signatures are simply realised in the analysis of application data in a way that is largely agnostic to the data type.
498
Ensemble CNN models for Covid-19 Recognition and Severity Perdition From 3D CT-scan
Since the appearance of Covid-19 in late 2019, Covid-19 has become an active research topic for the artificial intelligence (AI) community. One of the most interesting AI topics is Covid-19 analysis of medical imaging. CT-scan imaging is the most informative tool about this disease. This work is part of the 2nd COV19D competition, where two challenges are set: Covid-19 Detection and Covid-19 Severity Detection from the CT-scans. For Covid-19 detection from CT-scans, we proposed an ensemble of 2D Convolution blocks with Densenet-161 models. Here, each 2D convolutional block with Densenet-161 architecture is trained separately and in testing phase, the ensemble model is based on the average of their probabilities. On the other hand, we proposed an ensemble of Convolutional Layers with Inception models for Covid-19 severity detection. In addition to the Convolutional Layers, three Inception variants were used, namely Inception-v3, Inception-v4 and Inception-Resnet. Our proposed approaches outperformed the baseline approach in the validation data of the 2nd COV19D competition by 11% and 16% for Covid-19 detection and Covid-19 severity detection, respectively.
499
Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning
We propose a novel framework to solve risk-sensitive reinforcement learning (RL) problems where the agent optimises time-consistent dynamic spectral risk measures. Based on the notion of conditional elicitability, our methodology constructs (strictly consistent) scoring functions that are used as penalizers in the estimation procedure. Our contribution is threefold: we (i) devise an efficient approach to estimate a class of dynamic spectral risk measures with deep neural networks, (ii) prove that these dynamic spectral risk measures may be approximated to any arbitrary accuracy using deep neural networks, and (iii) develop a risk-sensitive actor-critic algorithm that uses full episodes and does not require any additional nested transitions. We compare our conceptually improved reinforcement learning algorithm with the nested simulation approach and illustrate its performance in two settings: statistical arbitrage and portfolio allocation on both simulated and real data.