Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 100 new columns ({'1.5119723204174852e7', '1.747541557320995e9', '644083.9796256496', '31285.79404167611', '89033.91875107978', '9999.118749204134', '440.2942465970148', '4.135496481624483e6', '914230.9318943135', '453607.09241822315', '2.5105093021390205e6', '3.5112202237111435e9', '9.67888176463853e6', '5.499283895704416e6', '307552.0375986442', '1.0722751243801019e8', '156102.87857997054', '1.6501619970305355e6', '2.1544519789886147e8', '1.2184640961291596e7', '4.652364283949331', '5.336939070597535e7', '2.7831527833556814e9', '20.34523383094276', '4.328903172452657e8', '18.71718654608385', '2156.491597839866', '1.7073670618737122e8', '10.725618981138922', '4.646921998239603e6', '1.0476245254644096e7', '5.4623497631187e8', '8261.176109422766', '362130.2265175156', '98604.045829953', '3.430495615428214e8', '6.957212254324228e6', '1.3228208333439153e7', '2.4689665109653667e7', '7601.036705058511', '138.20410870949354', '2.6561138724413857e7', '124793.68253340195', '15560.711137754', '28284.18765771204', '8.302302929920467e6', '29113.414944471526', '204746.75387188286', '8.533574181413251e7', '1.2930410968973713e6', '113.89279710684745', '280532.1563857786', '5.866454099689419e6', '6.734202351792376e7', '410190.6065541312', '137164.46082250113', '225995.7516676413', '2.3126812745621093e6', '3.3516299856337853e7', '79.4437386217184', '2.598518193386953e6', '1481.0024059076623', '959.5252280255669', '4.4557897076924715e9', '4.229546364105783e7', '1428.8068249486626', '25305.395712415375', '8.697778548199577e8', '134602.77296895886', '3.194250005158269e8', '1.0989592657382755e9', '1.1660765754055479e6', '1.834470508688416e6', '2.205182127515807e9', '593917.422068759', '425636.4402747737', '3.769039893071624e7', '1959.4453567597564', '511541.50425043004', '728.251934865243', '6.593550737352258e6', '49796.713830108674', '637.5212947020908', '1.3923519414363956e9', '1.0373936681886966e6', '240.82446417693103', '1.353129159246658e8', '11135.113369005081', '1089.2123729186046', '179856.94860532624', '4376.247245905208', '4.655009964120082e7', '2.073497254210325e6', '44937.43160850424', '29061.432896919465', '7.080255454559991e8', '3519.2963887254837', '393.4622944663207', '742500.1549807513', '912911.9059429932'}) and 8 missing columns ({'0.00014510164230918768', '1.7585974958520265e-6', '0.004755984289301053', '0.4430654108438572', '3.1667636635676193e-10', '7.319601638529824e-12', '1.269314663652328e-7', '4.2531540694626194e-13'}).

This happened while the csv dataset builder was generating data using

hf://datasets/CelestineP/signalunmix/Observations.csv (at revision 06e987dbbca275baa9753996a45ec58ff98a5aa6)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              1.0373936681886966e6: double
              1.5119723204174852e7: double
              2.5105093021390205e6: double
              1.0476245254644096e7: double
              410190.6065541312: double
              204746.75387188286: double
              9999.118749204134: double
              5.499283895704416e6: double
              1.7073670618737122e8: double
              1.747541557320995e9: double
              8.302302929920467e6: double
              156102.87857997054: double
              728.251934865243: double
              2.205182127515807e9: double
              742500.1549807513: double
              3519.2963887254837: double
              8.697778548199577e8: double
              637.5212947020908: double
              8.533574181413251e7: double
              2.3126812745621093e6: double
              18.71718654608385: double
              1.2184640961291596e7: double
              912911.9059429932: double
              3.3516299856337853e7: double
              240.82446417693103: double
              2.6561138724413857e7: double
              2.7831527833556814e9: double
              1959.4453567597564: double
              2.598518193386953e6: double
              7601.036705058511: double
              4.646921998239603e6: double
              1.6501619970305355e6: double
              1.2930410968973713e6: double
              1.0989592657382755e9: double
              362130.2265175156: double
              4376.247245905208: double
              4.4557897076924715e9: double
              49796.713830108674: double
              225995.7516676413: double
              79.4437386217184: double
              137164.46082250113: double
              644083.9796256496: double
              9.67888176463853e6: double
              4.652364283949331: double
              10.725618981138922: double
              124793.68253340195: double
              138.20410870949354: double
              25305.395712415375: double
              5.4623497631187e8: double
              1.3923519414363956e9: double
              3.769039893071624e7: double
              5.336939070597535e7: double
              1.0722751243801019e8: double
              959.5252280255669: double
              393.4622944663207: double
              593917.422068759: double
              4.655009964120082e7: double
              44937.43160850424: double
              440.2942465970148: double
              5.866454099689419e6: double
              1.353129159246658e8: double
              1.3228208333439153e7: double
              1481.0024059076623: double
              4.328903172452657e8: double
              6.593550737352258e6: double
              1.834470508688416e6: double
              1089.2123729186046: double
              1.1660765754055479e6: double
              280532.1563857786: double
              4.135496481624483e6: double
              3.5112202237111435e9: double
              2.1544519789886147e8: double
              425636.4402747737: double
              511541.50425043004: double
              4.229546364105783e7: double
              15560.711137754: double
              113.89279710684745: double
              29113.414944471526: double
              89033.91875107978: double
              31285.79404167611: double
              6.957212254324228e6: double
              6.734202351792376e7: double
              11135.113369005081: double
              307552.0375986442: double
              3.430495615428214e8: double
              179856.94860532624: double
              2.073497254210325e6: double
              28284.18765771204: double
              134602.77296895886: double
              20.34523383094276: double
              914230.9318943135: double
              98604.045829953: double
              453607.09241822315: double
              2156.491597839866: double
              7.080255454559991e8: double
              1428.8068249486626: double
              3.194250005158269e8: double
              29061.432896919465: double
              2.4689665109653667e7: double
              8261.176109422766: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 14013
              to
              {'0.4430654108438572': Value(dtype='float64', id=None), '0.004755984289301053': Value(dtype='float64', id=None), '0.00014510164230918768': Value(dtype='float64', id=None), '1.7585974958520265e-6': Value(dtype='float64', id=None), '1.269314663652328e-7': Value(dtype='float64', id=None), '3.1667636635676193e-10': Value(dtype='float64', id=None), '7.319601638529824e-12': Value(dtype='float64', id=None), '4.2531540694626194e-13': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 100 new columns ({'1.5119723204174852e7', '1.747541557320995e9', '644083.9796256496', '31285.79404167611', '89033.91875107978', '9999.118749204134', '440.2942465970148', '4.135496481624483e6', '914230.9318943135', '453607.09241822315', '2.5105093021390205e6', '3.5112202237111435e9', '9.67888176463853e6', '5.499283895704416e6', '307552.0375986442', '1.0722751243801019e8', '156102.87857997054', '1.6501619970305355e6', '2.1544519789886147e8', '1.2184640961291596e7', '4.652364283949331', '5.336939070597535e7', '2.7831527833556814e9', '20.34523383094276', '4.328903172452657e8', '18.71718654608385', '2156.491597839866', '1.7073670618737122e8', '10.725618981138922', '4.646921998239603e6', '1.0476245254644096e7', '5.4623497631187e8', '8261.176109422766', '362130.2265175156', '98604.045829953', '3.430495615428214e8', '6.957212254324228e6', '1.3228208333439153e7', '2.4689665109653667e7', '7601.036705058511', '138.20410870949354', '2.6561138724413857e7', '124793.68253340195', '15560.711137754', '28284.18765771204', '8.302302929920467e6', '29113.414944471526', '204746.75387188286', '8.533574181413251e7', '1.2930410968973713e6', '113.89279710684745', '280532.1563857786', '5.866454099689419e6', '6.734202351792376e7', '410190.6065541312', '137164.46082250113', '225995.7516676413', '2.3126812745621093e6', '3.3516299856337853e7', '79.4437386217184', '2.598518193386953e6', '1481.0024059076623', '959.5252280255669', '4.4557897076924715e9', '4.229546364105783e7', '1428.8068249486626', '25305.395712415375', '8.697778548199577e8', '134602.77296895886', '3.194250005158269e8', '1.0989592657382755e9', '1.1660765754055479e6', '1.834470508688416e6', '2.205182127515807e9', '593917.422068759', '425636.4402747737', '3.769039893071624e7', '1959.4453567597564', '511541.50425043004', '728.251934865243', '6.593550737352258e6', '49796.713830108674', '637.5212947020908', '1.3923519414363956e9', '1.0373936681886966e6', '240.82446417693103', '1.353129159246658e8', '11135.113369005081', '1089.2123729186046', '179856.94860532624', '4376.247245905208', '4.655009964120082e7', '2.073497254210325e6', '44937.43160850424', '29061.432896919465', '7.080255454559991e8', '3519.2963887254837', '393.4622944663207', '742500.1549807513', '912911.9059429932'}) and 8 missing columns ({'0.00014510164230918768', '1.7585974958520265e-6', '0.004755984289301053', '0.4430654108438572', '3.1667636635676193e-10', '7.319601638529824e-12', '1.269314663652328e-7', '4.2531540694626194e-13'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/CelestineP/signalunmix/Observations.csv (at revision 06e987dbbca275baa9753996a45ec58ff98a5aa6)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

0.4430654108438572
float64
0.004755984289301053
float64
0.00014510164230918768
float64
1.7585974958520265e-6
float64
1.269314663652328e-7
float64
3.1667636635676193e-10
float64
7.319601638529824e-12
float64
4.2531540694626194e-13
float64
0.225117
0.002155
0.000212
0.000002
0
0
0
0
0.070801
0.014834
0.00002
0.000001
0
0
0
0
0.999667
0.01736
0.000098
0.000007
0
0
0
0
0.130398
0.002557
0.000211
0.000003
0
0
0
0
0.60616
0.005648
0.000186
0.000001
0
0
0
0
0.592062
0.003032
0.000054
0.000003
0
0
0
0
0.307356
0.013888
0.000249
0.000003
0
0
0
0
0.996758
0.009322
0.00003
0.000002
0
0
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

Dataset Description

Predict ChemicalConcentrations.csv given Observations.csv. This is a signal unmixing problem because the observations are a weighted sum of the chemical concentrations and pure spectra.

Downloads last month
42