Datasets:

Languages:
English
License:
File size: 5,542 Bytes
748e977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" The Text REtrieval Conference (TREC) Question Classification dataset."""

from __future__ import absolute_import, division, print_function

import datasets


_CITATION = """\
@inproceedings{li-roth-2002-learning,
    title = "Learning Question Classifiers",
    author = "Li, Xin  and
      Roth, Dan",
    booktitle = "{COLING} 2002: The 19th International Conference on Computational Linguistics",
    year = "2002",
    url = "https://www.aclweb.org/anthology/C02-1150",
}
@inproceedings{hovy-etal-2001-toward,
    title = "Toward Semantics-Based Answer Pinpointing",
    author = "Hovy, Eduard  and
      Gerber, Laurie  and
      Hermjakob, Ulf  and
      Lin, Chin-Yew  and
      Ravichandran, Deepak",
    booktitle = "Proceedings of the First International Conference on Human Language Technology Research",
    year = "2001",
    url = "https://www.aclweb.org/anthology/H01-1069",
}
"""

_DESCRIPTION = """\
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set. The dataset has 6 labels, 47 level-2 labels. Average length of each sentence is 10, vocabulary size of 8700.

Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set.
"""

_URLs = {
    "train": "http://cogcomp.org/Data/QA/QC/train_5500.label",
    "test": "http://cogcomp.org/Data/QA/QC/TREC_10.label",
}

_COARSE_LABELS = ["DESC", "ENTY", "ABBR", "HUM", "NUM", "LOC"]

_FINE_LABELS = [
    "manner",
    "cremat",
    "animal",
    "exp",
    "ind",
    "gr",
    "title",
    "def",
    "date",
    "reason",
    "event",
    "state",
    "desc",
    "count",
    "other",
    "letter",
    "religion",
    "food",
    "country",
    "color",
    "termeq",
    "city",
    "body",
    "dismed",
    "mount",
    "money",
    "product",
    "period",
    "substance",
    "sport",
    "plant",
    "techmeth",
    "volsize",
    "instru",
    "abb",
    "speed",
    "word",
    "lang",
    "perc",
    "code",
    "dist",
    "temp",
    "symbol",
    "ord",
    "veh",
    "weight",
    "currency",
]


class Trec(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        # TODO: Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "label-coarse": datasets.ClassLabel(names=_COARSE_LABELS),
                    "label-fine": datasets.ClassLabel(names=_FINE_LABELS),
                    "text": datasets.Value("string"),
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://cogcomp.seas.upenn.edu/Data/QA/QC/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO: Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        dl_files = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": dl_files["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": dl_files["test"],
                },
            ),
        ]

    def _generate_examples(self, filepath):
        """ Yields examples. """
        # TODO: Yields (key, example) tuples from the dataset
        with open(filepath, "rb") as f:
            for id_, row in enumerate(f):
                # One non-ASCII byte: sisterBADBYTEcity. We replace it with a space
                label, _, text = row.replace(b"\xf0", b" ").strip().decode().partition(" ")
                coarse_label, _, fine_label = label.partition(":")
                yield id_, {
                    "label-coarse": coarse_label,
                    "label-fine": fine_label,
                    "text": text,
                }