Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K<n<10K
License:
albertvillanova
HF staff
Convert dataset sizes from base 2 to base 10 in the dataset card (#4)
6dc47d2
annotations_creators: | |
- expert-generated | |
language_creators: | |
- expert-generated | |
language: | |
- en | |
license: | |
- unknown | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 1K<n<10K | |
source_datasets: | |
- original | |
task_categories: | |
- text-classification | |
task_ids: | |
- multi-class-classification | |
paperswithcode_id: trecqa | |
pretty_name: Text Retrieval Conference Question Answering | |
dataset_info: | |
features: | |
- name: text | |
dtype: string | |
- name: coarse_label | |
dtype: | |
class_label: | |
names: | |
'0': ABBR | |
'1': ENTY | |
'2': DESC | |
'3': HUM | |
'4': LOC | |
'5': NUM | |
- name: fine_label | |
dtype: | |
class_label: | |
names: | |
'0': ABBR:abb | |
'1': ABBR:exp | |
'2': ENTY:animal | |
'3': ENTY:body | |
'4': ENTY:color | |
'5': ENTY:cremat | |
'6': ENTY:currency | |
'7': ENTY:dismed | |
'8': ENTY:event | |
'9': ENTY:food | |
'10': ENTY:instru | |
'11': ENTY:lang | |
'12': ENTY:letter | |
'13': ENTY:other | |
'14': ENTY:plant | |
'15': ENTY:product | |
'16': ENTY:religion | |
'17': ENTY:sport | |
'18': ENTY:substance | |
'19': ENTY:symbol | |
'20': ENTY:techmeth | |
'21': ENTY:termeq | |
'22': ENTY:veh | |
'23': ENTY:word | |
'24': DESC:def | |
'25': DESC:desc | |
'26': DESC:manner | |
'27': DESC:reason | |
'28': HUM:gr | |
'29': HUM:ind | |
'30': HUM:title | |
'31': HUM:desc | |
'32': LOC:city | |
'33': LOC:country | |
'34': LOC:mount | |
'35': LOC:other | |
'36': LOC:state | |
'37': NUM:code | |
'38': NUM:count | |
'39': NUM:date | |
'40': NUM:dist | |
'41': NUM:money | |
'42': NUM:ord | |
'43': NUM:other | |
'44': NUM:period | |
'45': NUM:perc | |
'46': NUM:speed | |
'47': NUM:temp | |
'48': NUM:volsize | |
'49': NUM:weight | |
splits: | |
- name: train | |
num_bytes: 385090 | |
num_examples: 5452 | |
- name: test | |
num_bytes: 27983 | |
num_examples: 500 | |
download_size: 359212 | |
dataset_size: 413073 | |
# Dataset Card for "trec" | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** [https://cogcomp.seas.upenn.edu/Data/QA/QC/](https://cogcomp.seas.upenn.edu/Data/QA/QC/) | |
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
- **Size of downloaded dataset files:** 0.36 MB | |
- **Size of the generated dataset:** 0.41 MB | |
- **Total amount of disk used:** 0.78 MB | |
### Dataset Summary | |
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set. | |
The dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700. | |
Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled. | |
### Supported Tasks and Leaderboards | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Languages | |
The language in this dataset is English (`en`). | |
## Dataset Structure | |
### Data Instances | |
- **Size of downloaded dataset files:** 0.36 MB | |
- **Size of the generated dataset:** 0.41 MB | |
- **Total amount of disk used:** 0.78 MB | |
An example of 'train' looks as follows. | |
``` | |
{ | |
'text': 'How did serfdom develop in and then leave Russia ?', | |
'coarse_label': 2, | |
'fine_label': 26 | |
} | |
``` | |
### Data Fields | |
The data fields are the same among all splits. | |
- `text` (`str`): Text of the question. | |
- `coarse_label` (`ClassLabel`): Coarse class label. Possible values are: | |
- 'ABBR' (0): Abbreviation. | |
- 'ENTY' (1): Entity. | |
- 'DESC' (2): Description and abstract concept. | |
- 'HUM' (3): Human being. | |
- 'LOC' (4): Location. | |
- 'NUM' (5): Numeric value. | |
- `fine_label` (`ClassLabel`): Fine class label. Possible values are: | |
- ABBREVIATION: | |
- 'ABBR:abb' (0): Abbreviation. | |
- 'ABBR:exp' (1): Expression abbreviated. | |
- ENTITY: | |
- 'ENTY:animal' (2): Animal. | |
- 'ENTY:body' (3): Organ of body. | |
- 'ENTY:color' (4): Color. | |
- 'ENTY:cremat' (5): Invention, book and other creative piece. | |
- 'ENTY:currency' (6): Currency name. | |
- 'ENTY:dismed' (7): Disease and medicine. | |
- 'ENTY:event' (8): Event. | |
- 'ENTY:food' (9): Food. | |
- 'ENTY:instru' (10): Musical instrument. | |
- 'ENTY:lang' (11): Language. | |
- 'ENTY:letter' (12): Letter like a-z. | |
- 'ENTY:other' (13): Other entity. | |
- 'ENTY:plant' (14): Plant. | |
- 'ENTY:product' (15): Product. | |
- 'ENTY:religion' (16): Religion. | |
- 'ENTY:sport' (17): Sport. | |
- 'ENTY:substance' (18): Element and substance. | |
- 'ENTY:symbol' (19): Symbols and sign. | |
- 'ENTY:techmeth' (20): Techniques and method. | |
- 'ENTY:termeq' (21): Equivalent term. | |
- 'ENTY:veh' (22): Vehicle. | |
- 'ENTY:word' (23): Word with a special property. | |
- DESCRIPTION: | |
- 'DESC:def' (24): Definition of something. | |
- 'DESC:desc' (25): Description of something. | |
- 'DESC:manner' (26): Manner of an action. | |
- 'DESC:reason' (27): Reason. | |
- HUMAN: | |
- 'HUM:gr' (28): Group or organization of persons | |
- 'HUM:ind' (29): Individual. | |
- 'HUM:title' (30): Title of a person. | |
- 'HUM:desc' (31): Description of a person. | |
- LOCATION: | |
- 'LOC:city' (32): City. | |
- 'LOC:country' (33): Country. | |
- 'LOC:mount' (34): Mountain. | |
- 'LOC:other' (35): Other location. | |
- 'LOC:state' (36): State. | |
- NUMERIC: | |
- 'NUM:code' (37): Postcode or other code. | |
- 'NUM:count' (38): Number of something. | |
- 'NUM:date' (39): Date. | |
- 'NUM:dist' (40): Distance, linear measure. | |
- 'NUM:money' (41): Price. | |
- 'NUM:ord' (42): Order, rank. | |
- 'NUM:other' (43): Other number. | |
- 'NUM:period' (44): Lasting time of something | |
- 'NUM:perc' (45): Percent, fraction. | |
- 'NUM:speed' (46): Speed. | |
- 'NUM:temp' (47): Temperature. | |
- 'NUM:volsize' (48): Size, area and volume. | |
- 'NUM:weight' (49): Weight. | |
### Data Splits | |
| name | train | test | | |
|---------|------:|-----:| | |
| default | 5452 | 500 | | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
#### Who are the source language producers? | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Annotations | |
#### Annotation process | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
#### Who are the annotators? | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Personal and Sensitive Information | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Discussion of Biases | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Other Known Limitations | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Licensing Information | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Citation Information | |
``` | |
@inproceedings{li-roth-2002-learning, | |
title = "Learning Question Classifiers", | |
author = "Li, Xin and | |
Roth, Dan", | |
booktitle = "{COLING} 2002: The 19th International Conference on Computational Linguistics", | |
year = "2002", | |
url = "https://www.aclweb.org/anthology/C02-1150", | |
} | |
@inproceedings{hovy-etal-2001-toward, | |
title = "Toward Semantics-Based Answer Pinpointing", | |
author = "Hovy, Eduard and | |
Gerber, Laurie and | |
Hermjakob, Ulf and | |
Lin, Chin-Yew and | |
Ravichandran, Deepak", | |
booktitle = "Proceedings of the First International Conference on Human Language Technology Research", | |
year = "2001", | |
url = "https://www.aclweb.org/anthology/H01-1069", | |
} | |
``` | |
### Contributions | |
Thanks to [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |