mobie / README.md
phucdev's picture
Add ee data files
14d6dfa verified
|
raw
history blame
29.7 kB
metadata
annotations_creators:
  - expert-generated
language_creators:
  - found
language:
  - de
license:
  - cc-by-4.0
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - other
task_ids:
  - named-entity-recognition
paperswithcode_id: mobie
pretty_name: MobIE
tags:
  - structure-prediction
dataset_info:
  - config_name: ee
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: entity_mentions
        list:
          - name: text
            dtype: string
          - name: start
            dtype: int32
          - name: end
            dtype: int32
          - name: char_start
            dtype: int32
          - name: char_end
            dtype: int32
          - name: type
            dtype:
              class_label:
                names:
                  '0': O
                  '1': date
                  '2': disaster-type
                  '3': distance
                  '4': duration
                  '5': event-cause
                  '6': location
                  '7': location-city
                  '8': location-route
                  '9': location-stop
                  '10': location-street
                  '11': money
                  '12': number
                  '13': organization
                  '14': organization-company
                  '15': org-position
                  '16': percent
                  '17': person
                  '18': set
                  '19': time
                  '20': trigger
          - name: entity_id
            dtype: string
          - name: refids
            list:
              - name: key
                dtype: string
              - name: value
                dtype: string
      - name: event_mentions
        list:
          - name: id
            dtype: string
          - name: trigger
            struct:
              - name: text
                dtype: string
              - name: start
                dtype: int32
              - name: end
                dtype: int32
              - name: char_start
                dtype: int32
              - name: char_end
                dtype: int32
          - name: arguments
            list:
              - name: text
                dtype: string
              - name: start
                dtype: int32
              - name: end
                dtype: int32
              - name: char_start
                dtype: int32
              - name: char_end
                dtype: int32
              - name: role
                dtype:
                  class_label:
                    names:
                      '0': no_arg
                      '1': trigger
                      '2': location
                      '3': delay
                      '4': direction
                      '5': start_loc
                      '6': end_loc
                      '7': start_date
                      '8': end_date
                      '9': cause
                      '10': jam_length
                      '11': route
              - name: type
                dtype:
                  class_label:
                    names:
                      '0': O
                      '1': date
                      '2': disaster-type
                      '3': distance
                      '4': duration
                      '5': event-cause
                      '6': location
                      '7': location-city
                      '8': location-route
                      '9': location-stop
                      '10': location-street
                      '11': money
                      '12': number
                      '13': organization
                      '14': organization-company
                      '15': org-position
                      '16': percent
                      '17': person
                      '18': set
                      '19': time
                      '20': trigger
          - name: event_type
            dtype:
              class_label:
                names:
                  '0': O
                  '1': Accident
                  '2': CanceledRoute
                  '3': CanceledStop
                  '4': Delay
                  '5': Obstruction
                  '6': RailReplacementService
                  '7': TrafficJam
      - name: tokens
        sequence: string
      - name: pos_tags
        sequence: string
      - name: lemma
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-date
              '2': B-disaster-type
              '3': B-distance
              '4': B-duration
              '5': B-event-cause
              '6': B-location
              '7': B-location-city
              '8': B-location-route
              '9': B-location-stop
              '10': B-location-street
              '11': B-money
              '12': B-number
              '13': B-organization
              '14': B-organization-company
              '15': B-org-position
              '16': B-percent
              '17': B-person
              '18': B-set
              '19': B-time
              '20': B-trigger
              '21': I-date
              '22': I-disaster-type
              '23': I-distance
              '24': I-duration
              '25': I-event-cause
              '26': I-location
              '27': I-location-city
              '28': I-location-route
              '29': I-location-stop
              '30': I-location-street
              '31': I-money
              '32': I-number
              '33': I-organization
              '34': I-organization-company
              '35': I-org-position
              '36': I-percent
              '37': I-person
              '38': I-set
              '39': I-time
              '40': I-trigger
    splits:
      - name: train
        num_bytes: 3757740
        num_examples: 2115
      - name: test
        num_bytes: 1334445
        num_examples: 623
      - name: validation
        num_bytes: 827821
        num_examples: 494
    download_size: 1891736
    dataset_size: 5920006
  - config_name: el
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: entity_mentions
        list:
          - name: text
            dtype: string
          - name: start
            dtype: int32
          - name: end
            dtype: int32
          - name: char_start
            dtype: int32
          - name: char_end
            dtype: int32
          - name: type
            dtype:
              class_label:
                names:
                  '0': O
                  '1': date
                  '2': disaster-type
                  '3': distance
                  '4': duration
                  '5': event-cause
                  '6': location
                  '7': location-city
                  '8': location-route
                  '9': location-stop
                  '10': location-street
                  '11': money
                  '12': number
                  '13': organization
                  '14': organization-company
                  '15': org-position
                  '16': percent
                  '17': person
                  '18': set
                  '19': time
                  '20': trigger
          - name: entity_id
            dtype: string
          - name: refids
            list:
              - name: key
                dtype: string
              - name: value
                dtype: string
    splits:
      - name: train
        num_bytes: 1487615
        num_examples: 2115
      - name: test
        num_bytes: 557349
        num_examples: 623
      - name: validation
        num_bytes: 329567
        num_examples: 494
    download_size: 819444
    dataset_size: 2374531
  - config_name: ner
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-date
              '2': B-disaster-type
              '3': B-distance
              '4': B-duration
              '5': B-event-cause
              '6': B-location
              '7': B-location-city
              '8': B-location-route
              '9': B-location-stop
              '10': B-location-street
              '11': B-money
              '12': B-number
              '13': B-organization
              '14': B-organization-company
              '15': B-org-position
              '16': B-percent
              '17': B-person
              '18': B-set
              '19': B-time
              '20': B-trigger
              '21': I-date
              '22': I-disaster-type
              '23': I-distance
              '24': I-duration
              '25': I-event-cause
              '26': I-location
              '27': I-location-city
              '28': I-location-route
              '29': I-location-stop
              '30': I-location-street
              '31': I-money
              '32': I-number
              '33': I-organization
              '34': I-organization-company
              '35': I-org-position
              '36': I-percent
              '37': I-person
              '38': I-set
              '39': I-time
              '40': I-trigger
    splits:
      - name: train
        num_bytes: 1112606
        num_examples: 2115
      - name: test
        num_bytes: 354244
        num_examples: 623
      - name: validation
        num_bytes: 251031
        num_examples: 494
    download_size: 486201
    dataset_size: 1717881
  - config_name: re
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: entities
        sequence:
          list: int32
      - name: entity_roles
        sequence:
          class_label:
            names:
              '0': no_arg
              '1': trigger
              '2': location
              '3': delay
              '4': direction
              '5': start_loc
              '6': end_loc
              '7': start_date
              '8': end_date
              '9': cause
              '10': jam_length
              '11': route
      - name: entity_types
        sequence:
          class_label:
            names:
              '0': O
              '1': date
              '2': disaster-type
              '3': distance
              '4': duration
              '5': event-cause
              '6': location
              '7': location-city
              '8': location-route
              '9': location-stop
              '10': location-street
              '11': money
              '12': number
              '13': organization
              '14': organization-company
              '15': org-position
              '16': percent
              '17': person
              '18': set
              '19': time
              '20': trigger
      - name: event_type
        dtype:
          class_label:
            names:
              '0': O
              '1': Accident
              '2': CanceledRoute
              '3': CanceledStop
              '4': Delay
              '5': Obstruction
              '6': RailReplacementService
              '7': TrafficJam
      - name: entity_ids
        sequence: string
    splits:
      - name: train
        num_bytes: 1048457
        num_examples: 1199
      - name: test
        num_bytes: 501336
        num_examples: 609
      - name: validation
        num_bytes: 179001
        num_examples: 228
    download_size: 342446
    dataset_size: 1728794
configs:
  - config_name: ee
    data_files:
      - split: train
        path: ee/train-*
      - split: test
        path: ee/test-*
      - split: validation
        path: ee/validation-*
  - config_name: el
    data_files:
      - split: train
        path: el/train-*
      - split: test
        path: el/test-*
      - split: validation
        path: el/validation-*
  - config_name: ner
    data_files:
      - split: train
        path: ner/train-*
      - split: test
        path: ner/test-*
      - split: validation
        path: ner/validation-*
    default: true
  - config_name: re
    data_files:
      - split: train
        path: re/train-*
      - split: test
        path: re/test-*
      - split: validation
        path: re/validation-*

Dataset Card for "MobIE"

Table of Contents

Dataset Description

Dataset Summary

This script is for loading the MobIE dataset from https://github.com/dfki-nlp/mobie.

MobIE is a German-language dataset which is human-annotated with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated entities, 13.1K of which are linked to a knowledge base. A subset of the dataset is human-annotated with seven mobility-related, n-ary relation types, while the remaining documents are annotated using a weakly-supervised labeling approach implemented with the Snorkel framework. The dataset combines annotations for NER, EL and RE, and thus can be used for joint and multi-task learning of these fundamental information extraction tasks.

This version of the dataset loader provides configurations for:

For more details see https://github.com/dfki-nlp/mobie and https://aclanthology.org/2021.konvens-1.22/.

Supported Tasks and Leaderboards

  • Tasks: Named Entity Recognition, Entity Linking, n-ary Relation Extraction, Event Extraction
  • Leaderboards:

Languages

German

Dataset Structure

Data Instances

ner

  • Size of downloaded dataset files: 8.2 MB
  • Size of the generated dataset: 1.7 MB
  • Total amount of disk used: 10.9 MB

An example of 'train' looks as follows.

{ 
  "id": "http://www.ndr.de/nachrichten/verkehr/index.html#2@2016-05-04T21:02:14.000+02:00",
  "tokens": ["Vorsicht", "bitte", "auf", "der", "A28", "Leer", "Richtung", "Oldenburg", "zwischen", "Zwischenahner", "Meer", "und", "Neuenkruge", "liegen", "Gegenstände", "!"], 
  "ner_tags": [0, 0, 0, 0, 19, 13, 0, 13, 0, 11, 12, 0, 11, 0, 0, 0]
}

el

  • Size of downloaded dataset files: 8.2 MB
  • Size of the generated dataset: 2.1 MB
  • Total amount of disk used: 10.3 MB

An example of 'train' looks as follows.

{
  "id": "1108129826844672001",
  "text": "#S4 #RegioNDS #Teilausfall #Mellendorf(23.03)> #Bennemühlen(23.07).  Grund: technische Störung an der Strecke. Bitte nutzen Sie #RB38 nach Soltau über Bennemühlen Abfahrt: 23:08 Uhr vom Gleis 2",
  "entity_mentions": [
    {
      "text": "#S4",
      "start": 0,
      "end": 1,
      "char_start": 0,
      "char_end": 3,
      "type": 7,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "24007"
        }
      ]
    },
    {
      "text": "#RegioNDS",
      "start": 1,
      "end": 2,
      "char_start": 4,
      "char_end": 13,
      "type": 13,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "#Teilausfall",
      "start": 2,
      "end": 3,
      "char_start": 14,
      "char_end": 26,
      "type": 19,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "#Mellendorf",
      "start": 3,
      "end": 4,
      "char_start": 27,
      "char_end": 38,
      "type": 8,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "8003957"
        }
      ]
    },
    {
      "text": "23.03",
      "start": 5,
      "end": 6,
      "char_start": 39,
      "char_end": 44,
      "type": 0,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "#Bennemühlen",
      "start": 8,
      "end": 9,
      "char_start": 47,
      "char_end": 59,
      "type": 6,
      "entity_id": "29589800",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "29589800"
        },
        {
          "key": "osm_id",
          "value": "29589800"
        }
      ]
    },
    {
      "text": "23.07",
      "start": 10,
      "end": 11,
      "char_start": 60,
      "char_end": 65,
      "type": 0,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "technische Störung",
      "start": 15,
      "end": 17,
      "char_start": 76,
      "char_end": 94,
      "type": 4,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "#RB38",
      "start": 24,
      "end": 25,
      "char_start": 128,
      "char_end": 133,
      "type": 7,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "23138"
        }
      ]
    },
    {
      "text": "Soltau",
      "start": 26,
      "end": 27,
      "char_start": 139,
      "char_end": 145,
      "type": 6,
      "entity_id": "1809016",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "-1809016"
        },
        {
          "key": "osm_id",
          "value": "1809016"
        }
      ]
    },
    {
      "text": "Bennemühlen",
      "start": 28,
      "end": 29,
      "char_start": 151,
      "char_end": 162,
      "type": 8,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "8000871"
        }
      ]
    },
    {
      "text": "23:08 Uhr",
      "start": 31,
      "end": 33,
      "char_start": 172,
      "char_end": 181,
      "type": 18,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "2",
      "start": 35,
      "end": 36,
      "char_start": 192,
      "char_end": 193,
      "type": 11,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    }
  ]
}

re

  • Size of downloaded dataset files: 8.2 MB
  • Size of the generated dataset: 1.7 MB
  • Total amount of disk used: 10.9 MB

An example of 'train' looks as follows.

{
  "id": "1111185208647274501_1", 
  "text": "RT @SBahn_Stuttgart: 🚨Störung🚨 Derzeit steht eine #S2 Richtung Filderstadt mit einer Türstörung in Stg-Rohr. Es kommt auf den Linien #S1, #…", 
  "tokens": ["RT", "@SBahn_Stuttgart", ":", "🚨", "Störung", "🚨 ", "Derzeit", "steht", "eine", "#S2", "Richtung", "Filderstadt", "mit", "einer", "Türstörung", "in", "Stg", "-", "Rohr", ".", "Es", "kommt", "auf", "den", "Linien", "#S1", ",", "#", "…"], 
  "entities": [[1, 2], [4, 5], [9, 10], [11, 12], [14, 15], [16, 19], [25, 26]], 
  "entity_roles": [0, 1, 2, 0, 0, 0, 0], 
  "entity_types": [13, 4, 7, 6, 4, 8, 7], 
  "event_type": 5, 
  "entity_ids": ["NIL", "NIL", "NIL", "2796535", "NIL", "NIL", "NIL"]
}

ee

  • Size of downloaded dataset files: 8.2 MB
  • Size of the generated dataset: 3.7 MB
  • Total amount of disk used: 11.9 MB

An example of 'train' looks as follows.

{
  "id": "1111185208647274501",
  "text": "RT @SBahn_Stuttgart: 🚨Störung🚨 Derzeit steht eine #S2 Richtung Filderstadt mit einer Türstörung in Stg-Rohr. Es kommt auf den Linien #S1, #…",
  "entity_mentions": [
    {
      "text": "@SBahn_Stuttgart",
      "start": 1,
      "end": 2,
      "char_start": 3,
      "char_end": 19,
      "type": 13,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "Störung",
      "start": 4,
      "end": 5,
      "char_start": 22,
      "char_end": 29,
      "type": 4,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "#S2",
      "start": 9,
      "end": 10,
      "char_start": 50,
      "char_end": 53,
      "type": 7,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "17171"
        }
      ]
    },
    {
      "text": "Filderstadt",
      "start": 11,
      "end": 12,
      "char_start": 63,
      "char_end": 74,
      "type": 6,
      "entity_id": "2796535",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "-2796535"
        },
        {
          "key": "osm_id",
          "value": "2796535"
        }
      ]
    },
    {
      "text": "Türstörung",
      "start": 14,
      "end": 15,
      "char_start": 85,
      "char_end": 95,
      "type": 4,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "Stg-Rohr",
      "start": 16,
      "end": 19,
      "char_start": 99,
      "char_end": 107,
      "type": 8,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "NIL"
        }
      ]
    },
    {
      "text": "#S1",
      "start": 25,
      "end": 26,
      "char_start": 133,
      "char_end": 136,
      "type": 7,
      "entity_id": "NIL",
      "refids": [
        {
          "key": "spreeDBReferenceId",
          "value": "16703"
        }
      ]
    }
  ],
  "event_mentions": [
    {
      "id": "r/0f748b57-63ec-4cb9-ab54-e35d29ac44f8",
      "trigger": {
        "text": "Störung",
        "start": 4,
        "end": 5,
        "char_start": 22,
        "char_end": 29
      },
      "arguments": [
        {
          "text": "#S2",
          "start": 9,
          "end": 10,
          "char_start": 50,
          "char_end": 53,
          "role": 1,
          "type": 7
        }
      ],
      "event_type": 5
    }
  ],
  "tokens": ["RT", "@SBahn_Stuttgart", ":", "🚨", "Störung", "🚨 ", "Derzeit", "steht", "eine", "#S2", "Richtung", "Filderstadt", "mit", "einer", "Türstörung", "in", "Stg", "-", "Rohr", ".", "Es", "kommt", "auf", "den", "Linien", "#S1", ",", "#", "…"], 
  "pos_tags": ["NN", "NN", "$.", "CARD", "NN", "CARD", "ADV", "VVFIN", "ART", "NN", "NN", "NE", "APPR", "ART", "NN", "APPR", "NE", "$[", "NE", "$.", "PPER", "VVFIN", "APPR", "ART", "NN", "CARD", "$,", "CARD", "$["], 
  "lemma": ["rt", "@sbahn_stuttgart", ":", "🚨", "störung", "🚨", "derzeit", "steht", "eine", "#s2", "richtung", "filderstadt", "mit", "einer", "türstörung", "in", "stg", "-", "rohr", ".", "es", "kommt", "auf", "den", "linien", "#s1", ",", "#", "..."], 
  "ner_tags": [0, 14, 0, 0, 5, 0, 0, 0, 0, 8, 0, 7, 0, 0, 5, 0, 9, 29, 29, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0]
}

Data Fields

ner

  • id: example identifier, a string feature.
  • tokens: list of tokens, a list of string features.
  • ner_tags: a list of classification labels, with possible values including O (0), B-date (1), I-date (2), B-disaster-type (3), I-disaster-type (4), ...

el

  • id: example identifier, a string feature.
  • text: example text, a string feature.
  • entity_mentions: a list of struct features.
    • text: a string feature.
    • start: token offset start, a int32 feature.
    • end: token offset end, a int32 feature.
    • char_start: character offset start, a int32 feature.
    • char_end: character offset end, a int32 feature.
    • type: a classification label, with possible values including O (0), date (1), disaster-type (2), distance (3), duration (4), event-cause (5), ...
    • entity_id: Open Street Map ID, a string feature.
    • refids: knowledge base ids, a list of struct features.
      • key: name of the knowledge base, a string feature.
      • value: identifier, a string feature.

re

  • id: example identifier, a string feature.
  • text: example text, a string feature.
  • tokens: list of tokens, a list of string features.
  • entities: a list of token spans, a list of int32 featuress.
  • entity_roles: a list of classification labels, with possible values including no_arg (0), trigger (1), location (2), delay (3), direction (4), ...
  • event_type: a classification label, with possible values including O (0), Accident (1), CanceledRoute (2), CanceledStop (3), Delay (4), ...
  • entity_ids: list of Open Street Map IDs, a list of string features.

ee

  • id: example identifier, a string feature.
  • text: example text, a string feature.
  • entity_mentions: a list of struct features.
    • text: a string feature.
    • start: token offset start, a int32 feature.
    • end: token offset end, a int32 feature.
    • char_start: character offset start, a int32 feature.
    • char_end: character offset end, a int32 feature.
    • type: a classification label, with possible values including O (0), date (1), disaster-type (2), distance (3), duration (4), event-cause (5), ...
    • entity_id: Open Street Map ID, a string feature.
    • refids: knowledge base ids, a list of struct features.
      • key: name of the knowledge base, a string feature.
      • value: identifier, a string feature.
  • event_mentions: a list of struct features.
    • id: event identifier, a string feature.
    • trigger: a struct feature.
      • text: a string feature.
      • start: token offset start, a int32 feature.
      • end: token offset end, a int32 feature.
      • char_start: character offset start, a int32 feature.
      • char_end: character offset end, a int32 feature.
    • arguments: a list of struct features.
      • text: a string feature.
      • start: token offset start, a int32 feature.
      • end: token offset end, a int32 feature.
      • char_start: character offset start, a int32 feature.
      • char_end: character offset end, a int32 feature.
      • role: a classification label, with possible values including no_arg (0), trigger (1), location (2), delay (3), direction (4), ...
      • type: a classification label, with possible values including O (0), date (1), disaster-type (2), distance (3), duration (4), event-cause (5), ...
    • event_type: a classification label, with possible values including O (0), Accident (1), CanceledRoute (2), CanceledStop (3), Delay (4), ...
  • tokens: list of tokens, a list of string features.
  • pos_tags: list of part-of-speech tags, a list of string features.
  • lemma: list of lemmatized tokens, a list of string features.
  • ner_tags: a list of classification labels, with possible values including O (0), B-date (1), I-date (2), B-disaster-type (3), I-disaster-type (4), ...

Data Splits

Train Dev Test
NER 2115 494 623
EL 2115 494 623
RE 1199 228 609
EE 788 152 484

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

CC BY-SA 4.0 license

Citation Information

@inproceedings{hennig-etal-2021-mobie,
    title = "{M}ob{IE}: A {G}erman Dataset for Named Entity Recognition, Entity Linking and Relation Extraction in the Mobility Domain",
    author = "Hennig, Leonhard  and
      Truong, Phuc Tran  and
      Gabryszak, Aleksandra",
    booktitle = "Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021)",
    month = "6--9 " # sep,
    year = "2021",
    address = {D{\"u}sseldorf, Germany},
    publisher = "KONVENS 2021 Organizers",
    url = "https://aclanthology.org/2021.konvens-1.22",
    pages = "223--227",
}

Contributions