Search is not available for this dataset
index
int64
0
256k
L1s_real
float64
-14.74
15.1
L1_real
float64
0
15.1
L2s_real
float64
-217.31
227
L2_real
float64
0
227
Lpls_real
float64
-1
1
Lpl_real
float64
0
1
L1s_prediction
float64
-2.47
3.11
L1_prediction
float64
-1.13
5.49
L2s_prediction
float64
-14.75
17.4
L2_prediction
float64
-11.98
30.1
Lpls_prediction
float64
-0.48
0.64
Lpl_prediction
float64
-0.03
1.02
0
-0.433971
0.433971
-0.188331
0.188331
-0.14754
0.14754
-0.232144
1.756522
-2.466874
6.030414
-0.005799
0.439715
1
-0.021408
0.021408
-0.000458
0.000458
-0.007332
0.007332
0.154809
2.000029
-1.24359
7.31355
0.089877
0.48754
2
2.110844
2.110844
4.455662
4.455662
0.618711
0.618711
-0.043024
1.639788
-1.317369
5.337839
0.027273
0.417921
3
0.482685
0.482685
0.232985
0.232985
0.163819
0.163819
0.335774
1.277652
-0.115386
2.954824
0.11968
0.367573
4
0.942024
0.942024
0.887409
0.887409
0.311875
0.311875
-0.016333
1.559114
-1.98336
4.085974
0.059816
0.429266
5
-1.080873
1.080873
-1.168286
1.168286
-0.354143
0.354143
0.000261
1.116913
-1.562187
1.647138
0.051681
0.349118
6
-5.506159
5.506159
-30.317787
30.317787
-0.954999
0.954999
-0.384737
1.974764
-3.025888
6.937162
-0.030062
0.482245
7
-0.031466
0.031466
-0.00099
0.00099
-0.010776
0.010776
-0.13746
1.502202
-1.794013
4.264724
0.012464
0.400376
8
-3.124965
3.124965
-9.765406
9.765406
-0.789547
0.789547
0.229615
1.791506
-0.754064
5.882746
0.105953
0.457132
9
1.222986
1.222986
1.495695
1.495695
0.395956
0.395956
0.190157
1.192667
-0.693786
2.751808
0.090221
0.342609
10
-0.215598
0.215598
-0.046482
0.046482
-0.073703
0.073703
0.238711
1.435016
-0.912448
4.065323
0.107402
0.390854
11
2.62645
2.62645
6.89824
6.89824
0.716053
0.716053
-0.067851
2.039616
-2.200552
7.267297
0.04666
0.501301
12
1.961788
1.961788
3.848612
3.848612
0.586206
0.586206
-0.126084
1.681854
-1.982586
5.467411
0.01562
0.432213
13
2.496401
2.496401
6.232018
6.232018
0.693651
0.693651
-0.414979
2.249656
-3.382584
9.213477
-0.046033
0.517342
14
1.15231
1.15231
1.327818
1.327818
0.375353
0.375353
-0.142534
2.24918
-2.777965
8.819776
0.032087
0.530255
15
-4.343562
4.343562
-18.866531
18.866531
-0.902876
0.902876
-0.08578
2.362801
-2.692339
9.451199
0.052983
0.548078
16
0.875035
0.875035
0.765686
0.765686
0.291019
0.291019
-0.450876
2.118084
-4.010604
8.055501
-0.037792
0.506341
17
0.887986
0.887986
0.788519
0.788519
0.295073
0.295073
0.150843
1.799871
-1.563975
5.900881
0.100682
0.46057
18
-3.225615
3.225615
-10.404592
10.404592
-0.80218
0.80218
-0.364693
2.75117
-3.70509
12.437599
-0.022419
0.596359
19
-1.485991
1.485991
-2.208169
2.208169
-0.469101
0.469101
-0.131538
1.931642
-2.506625
7.179878
0.027388
0.467726
20
-0.700373
0.700373
-0.490522
0.490522
-0.235365
0.235365
0.285108
1.001364
0.03507
1.628891
0.101957
0.309056
21
0.887986
0.887986
0.788519
0.788519
0.295073
0.295073
-0.304562
2.133782
-2.808903
8.502312
-0.023499
0.497099
22
-3.111275
3.111275
-9.680032
9.680032
-0.787774
0.787774
-0.229021
2.212501
-2.914157
8.548074
0.010372
0.52281
23
1.222986
1.222986
1.495695
1.495695
0.395956
0.395956
0.267784
1.165581
-0.487464
2.483198
0.112542
0.339869
24
1.05049
1.05049
1.103529
1.103529
0.34501
0.34501
0.370353
1.462222
-0.253495
3.743171
0.142195
0.403742
25
-4.086629
4.086629
-16.700537
16.700537
-0.88526
0.88526
-0.300375
2.596005
-3.242467
11.236876
-0.009801
0.577477
26
-0.518572
0.518572
-0.268917
0.268917
-0.175755
0.175755
-0.366208
1.879747
-3.183196
6.699619
-0.030901
0.464149
27
-1.948453
1.948453
-3.796469
3.796469
-0.5832
0.5832
-0.033204
2.054167
-1.920956
7.76342
0.044923
0.493614
28
-5.61047
5.61047
-31.477374
31.477374
-0.958037
0.958037
1.122508
5.354496
2.628029
29.098897
0.292948
1.00515
29
3.859866
3.859866
14.898566
14.898566
0.867259
0.867259
0.249925
2.007558
-1.312945
7.197945
0.12511
0.495061
30
1.762648
1.762648
3.106927
3.106927
0.539653
0.539653
0.675971
0.757465
1.962096
-0.052585
0.186741
0.268937
31
-0.091975
0.091975
-0.008459
0.008459
-0.031489
0.031489
0.166435
1.193726
-0.691069
2.645451
0.08576
0.342914
32
0.87137
0.87137
0.759286
0.759286
0.289869
0.289869
0.811409
1.280759
2.839048
3.458113
0.203864
0.350792
33
-4.630754
4.630754
-21.443883
21.443883
-0.919522
0.919522
-0.175022
1.706873
-2.702448
5.85792
0.018433
0.430417
34
-1.418986
1.418986
-2.013521
2.013521
-0.451011
0.451011
-0.265842
2.907281
-4.159547
12.888749
0.025916
0.638133
35
-4.371765
4.371765
-19.112329
19.112329
-0.904646
0.904646
-0.334999
2.405948
-4.380255
9.700584
0.010775
0.558773
36
-2.124965
2.124965
-4.515476
4.515476
-0.621687
0.621687
-0.310086
2.073772
-2.924954
8.134334
-0.022416
0.488395
37
-3.062651
3.062651
-9.379831
9.379831
-0.781373
0.781373
-0.297029
1.604678
-3.590398
5.352175
0.003707
0.409416
38
5.698105
5.698105
32.468401
32.468401
0.960433
0.960433
0.866742
0.742925
3.115504
-0.052216
0.224458
0.257546
39
-1.841909
1.841909
-3.392629
3.392629
-0.55861
0.55861
0.24378
1.159671
-0.519702
2.53346
0.104206
0.336426
40
-6.203192
6.203192
-38.479591
38.479591
-0.971842
0.971842
-0.296976
3.148978
-4.11251
15.081467
0.006842
0.658276
41
-2.709987
2.709987
-7.34403
7.34403
-0.72971
0.72971
-0.302448
1.881765
-3.445268
6.357323
0.002768
0.472819
42
-9.644245
9.644245
-93.011462
93.011462
-0.997299
0.997299
-0.45781
3.147431
-4.942206
15.219086
-0.021355
0.649936
43
0.274063
0.274063
0.075111
0.075111
0.093585
0.093585
-0.291195
2.316193
-3.138681
9.193931
-0.005226
0.53966
44
-2.84769
2.84769
-8.109338
8.109338
-0.75101
0.75101
-0.355235
2.78904
-5.086877
12.505457
0.015303
0.609732
45
-13.438237
13.438237
-180.586214
180.586214
-0.999799
0.999799
-0.7512
3.080815
-6.081798
14.515961
-0.090485
0.651403
46
0.110844
0.110844
0.012286
0.012286
0.037943
0.037943
0.224618
1.483988
-0.791098
3.812514
0.107369
0.410326
47
-1.343562
1.343562
-1.805159
1.805159
-0.430197
0.430197
-0.169505
2.861299
-3.573788
12.730495
0.042152
0.627324
48
2.968534
2.968534
8.812194
8.812194
0.7685
0.7685
0.154088
1.486639
-1.012983
4.191558
0.085296
0.401245
49
2.698105
2.698105
7.279771
7.279771
0.727802
0.727802
0.519103
1.010771
0.769334
1.544069
0.166134
0.309753
50
0.492581
0.492581
0.242636
0.242636
0.167115
0.167115
-1.00384
3.964954
-7.818486
19.434488
-0.124664
0.808289
51
-3.37355
3.37355
-11.38084
11.38084
-0.819522
0.819522
-0.778808
2.073212
-5.70243
7.698118
-0.103758
0.500225
52
2.158091
2.158091
4.657357
4.657357
0.628598
0.628598
0.08075
1.363883
-1.526437
3.850586
0.076274
0.368137
53
2.719865
2.719865
7.397667
7.397667
0.731288
0.731288
0.533974
0.919904
1.328082
1.055806
0.157143
0.290705
54
0.222986
0.222986
0.049723
0.049723
0.076219
0.076219
0.153196
1.347722
-0.84508
3.799426
0.081996
0.363847
55
-1.327403
1.327403
-1.761999
1.761999
-0.425676
0.425676
-0.129749
2.019565
-2.675423
7.348003
0.033522
0.494703
56
-3.290461
3.290461
-10.827134
10.827134
-0.809957
0.809957
-1.116658
4.617011
-7.829075
23.664714
-0.163631
0.904244
57
-2.506159
2.506159
-6.280833
6.280833
-0.695381
0.695381
0.005357
1.381492
-1.951541
3.37997
0.065068
0.388889
58
-1.506159
1.506159
-2.268515
2.268515
-0.47447
0.47447
0.087382
1.391677
-1.778851
3.457963
0.086225
0.39147
59
-11.124965
11.124965
-123.764846
123.764846
-0.999019
0.999019
-0.355152
2.44495
-4.682946
10.011063
0.009595
0.565235
60
-5.506159
5.506159
-30.317787
30.317787
-0.954999
0.954999
-0.923634
2.214402
-6.100836
8.711793
-0.138236
0.5175
61
-7.138567
7.138567
-50.959139
50.959139
-0.985063
0.985063
-1.648308
2.629689
-10.905697
10.772699
-0.244852
0.594933
62
-0.343562
0.343562
-0.118035
0.118035
-0.117122
0.117122
0.099477
2.163613
-1.217877
8.145797
0.074904
0.518381
63
-5.3448
5.3448
-28.566887
28.566887
-0.949872
0.949872
-0.369637
2.007666
-3.353875
6.958187
-0.021218
0.497531
64
-7.893537
7.893537
-62.307926
62.307926
-0.991067
0.991067
-0.153387
2.083048
-1.666581
8.098702
-0.001561
0.493018
65
-5.026794
5.026794
-25.268658
25.268658
-0.93805
0.93805
-0.694862
2.153364
-4.954283
8.172781
-0.086208
0.508871
66
-2.49902
2.49902
-6.245101
6.245101
-0.694116
0.694116
-0.558856
2.522019
-4.058794
10.412447
-0.069376
0.574453
67
-8.131783
8.131783
-66.125895
66.125895
-0.992407
0.992407
0.254564
2.958029
-0.929916
13.488868
0.115783
0.634493
68
-3.017543
3.017543
-9.105566
9.105566
-0.775283
0.775283
-0.228035
2.676374
-3.108171
12.069579
0.006727
0.582755
69
0.059972
0.059972
0.003597
0.003597
0.020536
0.020536
-0.121223
1.642481
-1.982273
5.398881
0.019151
0.419666
70
-1.649594
1.649594
-2.72116
2.72116
-0.511639
0.511639
0.114136
1.198358
-0.954062
2.906129
0.071652
0.339779
71
-0.279384
0.279384
-0.078055
0.078055
-0.095391
0.095391
0.036917
1.554539
-1.400416
4.83757
0.055157
0.406647
72
-0.084359
0.084359
-0.007116
0.007116
-0.028883
0.028883
0.16585
1.682098
-0.986151
5.171469
0.092372
0.439846
73
-2.191775
2.191775
-4.803878
4.803878
-0.635525
0.635525
0.02205
1.460039
-1.396129
4.476371
0.053081
0.382719
74
0.481428
0.481428
0.231773
0.231773
0.1634
0.1634
0.345983
1.766927
-0.222296
5.713423
0.131838
0.453773
75
-0.417235
0.417235
-0.174085
0.174085
-0.141928
0.141928
0.12526
1.731969
-0.974142
5.967553
0.072233
0.435402
76
-4.475091
4.475091
-20.026439
20.026439
-0.910871
0.910871
-0.631394
2.266845
-4.319343
9.268719
-0.089047
0.519695
77
-3.630754
3.630754
-13.182375
13.182375
-0.846436
0.846436
-0.280432
1.6255
-1.997958
5.24842
-0.032783
0.415775
78
-2.753137
2.753137
-7.579763
7.579763
-0.736545
0.736545
-0.107607
2.326799
-2.689671
9.502398
0.042916
0.535274
79
-4.017543
4.017543
-16.140652
16.140652
-0.880033
0.880033
-0.30896
2.680415
-3.573986
11.623976
-0.005036
0.596849
80
-1.991437
1.991437
-3.965821
3.965821
-0.592831
0.592831
-0.118888
1.328536
-2.013974
3.46669
0.023811
0.367853
81
-9.120847
9.120847
-83.18985
83.18985
-0.996136
0.996136
-0.15459
2.0316
-2.580759
7.925409
0.019199
0.481703
82
-4.149065
4.149065
-17.21474
17.21474
-0.889798
0.889798
-0.261886
1.514804
-2.625529
4.680108
-0.00871
0.395315
83
-1.70978
1.70978
-2.923348
2.923348
-0.526694
0.526694
-0.534306
2.560336
-4.637159
11.079505
-0.052266
0.571143
84
-1.639821
1.639821
-2.689013
2.689013
-0.509164
0.509164
0.183814
1.365561
-1.098559
3.802269
0.099361
0.371297
85
-3.753137
3.753137
-14.086037
14.086037
-0.857907
0.857907
-0.458399
2.479102
-3.968591
10.394125
-0.039482
0.561241
86
-0.639821
0.639821
-0.409371
0.409371
-0.215683
0.215683
0.053445
1.458484
-1.57971
4.385541
0.068432
0.385745
87
-1.56318
1.56318
-2.443532
2.443532
-0.489462
0.489462
0.135876
1.325312
-1.316497
3.594666
0.087293
0.364852
88
-5.007017
5.007017
-25.070219
25.070219
-0.937232
0.937232
-0.640761
2.173527
-4.948053
8.726515
-0.074575
0.504473
89
0.642607
0.642607
0.412944
0.412944
0.216592
0.216592
-0.078872
2.064369
-2.630663
7.308899
0.054574
0.508875
90
2.568979
2.568979
6.599655
6.599655
0.706327
0.706327
0.542449
1.350661
0.49873
2.988766
0.179974
0.387201
91
4.05049
4.05049
16.406469
16.406469
0.882553
0.882553
0.348902
1.333077
-0.219766
3.189584
0.129613
0.377526
92
3.834942
3.834942
14.70678
14.70678
0.865127
0.865127
0.258932
1.477542
-0.851741
3.849835
0.119227
0.407876
93
-3.433971
3.433971
-11.792157
11.792157
-0.826203
0.826203
-0.054086
1.775246
-2.604042
5.658209
0.060447
0.459287
94
-1.23206
1.23206
-1.517971
1.517971
-0.398573
0.398573
-0.469013
1.801069
-4.106211
6.375297
-0.03977
0.446719
95
-5.476682
5.476682
-29.994046
29.994046
-0.954102
0.954102
-0.105962
1.844525
-2.280266
6.504483
0.029346
0.458342
96
-0.829985
0.829985
-0.688875
0.688875
-0.276834
0.276834
0.286677
1.314763
-0.005285
3.141186
0.105828
0.368658
97
1.523318
1.523318
2.320498
2.320498
0.479011
0.479011
0.050278
1.696062
-1.675034
5.239411
0.070336
0.443065
98
-1.165058
1.165058
-1.35736
1.35736
-0.379097
0.379097
0.295881
1.23934
0.21252
2.684606
0.100671
0.358077
99
-3.56318
3.56318
-12.696252
12.696252
-0.839744
0.839744
-0.151257
1.285935
-2.747595
3.127987
0.032769
0.363845

Assessors For Regression: Loss Analysis - Assessor Instance Level Results

Instance level results for assessors models trained on the AFRLA - Instance Level Results dataset.

At the moment of upload, results for XGBoost and linear regression models are available, with results from the former in 5 different seeds. Results are available for all 11 tasks described in the original dataset as well as for 6 different types of error (losses):

Loss name
Description
Formula
L1
Difference error with sign
ŷ - y
L1 +
Absolute error
|ŷ - y|
L2
Squared error with sign
(ŷ - y)2
L2 +
Squared error
(ŷ - y)2 · sgn(ŷ - y)
LL
Logistic error with sign parametrised by a value β so that the mean absolute error is 0.5
2 / (1+e-β(ŷ - y)) - 1
LL +
Absolute logistic error parametrised by a value β so that the mean absolute error is 0.5
|2 / (1+e-β(ŷ - y)) - 1|
Downloads last month
1,130
Edit dataset card