url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
2.13B
node_id
stringlengths
18
32
number
int64
1
6.66k
title
stringlengths
1
290
user
dict
labels
list
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
list
comments
sequence
created_at
timestamp[ms]
updated_at
timestamp[ms]
closed_at
timestamp[ms]
author_association
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/6355
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6355/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6355/comments
https://api.github.com/repos/huggingface/datasets/issues/6355/events
https://github.com/huggingface/datasets/pull/6355
1,963,979,896
PR_kwDODunzps5d5B2B
6,355
More hub centric docs
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006941 / 0.011353 (-0.004412) | 0.004255 / 0.011008 (-0.006753) | 0.085237 / 0.038508 (0.046729) | 0.080962 / 0.023109 (0.057853) | 0.312016 / 0.275898 (0.036118) | 0.353161 / 0.323480 (0.029681) | 0.005756 / 0.007986 (-0.002230) | 0.003591 / 0.004328 (-0.000738) | 0.065416 / 0.004250 (0.061166) | 0.057837 / 0.037052 (0.020785) | 0.316169 / 0.258489 (0.057680) | 0.372345 / 0.293841 (0.078504) | 0.031958 / 0.128546 (-0.096588) | 0.008798 / 0.075646 (-0.066848) | 0.294764 / 0.419271 (-0.124507) | 0.053954 / 0.043533 (0.010421) | 0.310961 / 0.255139 (0.055822) | 0.330063 / 0.283200 (0.046864) | 0.025298 / 0.141683 (-0.116385) | 1.454715 / 1.452155 (0.002560) | 1.557915 / 1.492716 (0.065198) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274830 / 0.018006 (0.256824) | 0.565890 / 0.000490 (0.565400) | 0.009242 / 0.000200 (0.009042) | 0.000321 / 0.000054 (0.000266) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031092 / 0.037411 (-0.006320) | 0.087558 / 0.014526 (0.073033) | 0.103395 / 0.176557 (-0.073162) | 0.160078 / 0.737135 (-0.577057) | 0.102356 / 0.296338 (-0.193983) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402912 / 0.215209 (0.187703) | 4.029374 / 2.077655 (1.951719) | 2.048237 / 1.504120 (0.544117) | 1.887470 / 1.541195 (0.346276) | 1.994807 / 1.468490 (0.526316) | 0.491109 / 4.584777 (-4.093668) | 3.645059 / 3.745712 (-0.100653) | 3.516376 / 5.269862 (-1.753486) | 2.103267 / 4.565676 (-2.462409) | 0.058072 / 0.424275 (-0.366203) | 0.007796 / 0.007607 (0.000189) | 0.480544 / 0.226044 (0.254499) | 4.795422 / 2.268929 (2.526494) | 2.507770 / 55.444624 (-52.936854) | 2.187106 / 6.876477 (-4.689371) | 2.271005 / 2.142072 (0.128933) | 0.585376 / 4.805227 (-4.219851) | 0.134741 / 6.500664 (-6.365923) | 0.060684 / 0.075469 (-0.014785) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264349 / 1.841788 (-0.577439) | 19.448735 / 8.074308 (11.374427) | 14.521197 / 10.191392 (4.329805) | 0.167295 / 0.680424 (-0.513129) | 0.018352 / 0.534201 (-0.515849) | 0.396345 / 0.579283 (-0.182938) | 0.418690 / 0.434364 (-0.015674) | 0.469703 / 0.540337 (-0.070635) | 0.637852 / 1.386936 (-0.749084) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006939 / 0.011353 (-0.004414) | 0.004196 / 0.011008 (-0.006812) | 0.064719 / 0.038508 (0.026211) | 0.077517 / 0.023109 (0.054407) | 0.401977 / 0.275898 (0.126079) | 0.431089 / 0.323480 (0.107609) | 0.005624 / 0.007986 (-0.002362) | 0.003680 / 0.004328 (-0.000649) | 0.065817 / 0.004250 (0.061567) | 0.058297 / 0.037052 (0.021245) | 0.399614 / 0.258489 (0.141125) | 0.440089 / 0.293841 (0.146248) | 0.032492 / 0.128546 (-0.096054) | 0.008974 / 0.075646 (-0.066672) | 0.071311 / 0.419271 (-0.347961) | 0.048001 / 0.043533 (0.004468) | 0.394763 / 0.255139 (0.139624) | 0.416754 / 0.283200 (0.133554) | 0.023730 / 0.141683 (-0.117953) | 1.509677 / 1.452155 (0.057522) | 1.605711 / 1.492716 (0.112994) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265490 / 0.018006 (0.247483) | 0.561745 / 0.000490 (0.561255) | 0.004616 / 0.000200 (0.004417) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033371 / 0.037411 (-0.004040) | 0.092763 / 0.014526 (0.078238) | 0.108905 / 0.176557 (-0.067652) | 0.160380 / 0.737135 (-0.576756) | 0.106968 / 0.296338 (-0.189370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430268 / 0.215209 (0.215059) | 4.299313 / 2.077655 (2.221658) | 2.308971 / 1.504120 (0.804851) | 2.155855 / 1.541195 (0.614661) | 2.392698 / 1.468490 (0.924208) | 0.498464 / 4.584777 (-4.086313) | 3.694473 / 3.745712 (-0.051239) | 3.409625 / 5.269862 (-1.860236) | 2.106144 / 4.565676 (-2.459532) | 0.058992 / 0.424275 (-0.365283) | 0.007395 / 0.007607 (-0.000212) | 0.511291 / 0.226044 (0.285247) | 5.101806 / 2.268929 (2.832877) | 2.853100 / 55.444624 (-52.591524) | 2.527216 / 6.876477 (-4.349260) | 2.819380 / 2.142072 (0.677308) | 0.635155 / 4.805227 (-4.170072) | 0.135816 / 6.500664 (-6.364848) | 0.062056 / 0.075469 (-0.013413) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353479 / 1.841788 (-0.488308) | 20.318513 / 8.074308 (12.244205) | 15.105336 / 10.191392 (4.913944) | 0.166186 / 0.680424 (-0.514238) | 0.020742 / 0.534201 (-0.513459) | 0.399286 / 0.579283 (-0.179997) | 0.431785 / 0.434364 (-0.002579) | 0.478667 / 0.540337 (-0.061671) | 0.654683 / 1.386936 (-0.732253) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b39d1ce0b8f231649752f28cb724971f4df1c7ae \"CML watermark\")\n", "Yea I think some of it should be in the Hub docs indeed, let me open a new PR there.\r\n\r\nThen I'll update the `datasets` docs anyway to avoid redundant stuff and add redirects instead" ]
2023-10-26T16:54:46
2024-01-11T06:34:16
2023-10-30T17:32:57
MEMBER
true
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6355", "html_url": "https://github.com/huggingface/datasets/pull/6355", "diff_url": "https://github.com/huggingface/datasets/pull/6355.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6355.patch", "merged_at": null }
Let's have more hub-centric documentation in the datasets docs Tutorials - Add “Configure the dataset viewer” page - Change order: - Overview - and more focused on the Hub rather than the library - Then all the hub related things - and mention how to read/write with other tools like pandas - Then all the datasets lib related things in a subsection Also: - Rename “know your dataset” page to “Explore your dataset” - Remove “Evaluate Predictions” page since it's 'evaluate' stuff (or move to legacy section ?) TODO: - [ ] write the “Configure the dataset viewer” page
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6355/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6355/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6354
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6354/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6354/comments
https://api.github.com/repos/huggingface/datasets/issues/6354/events
https://github.com/huggingface/datasets/issues/6354
1,963,483,324
I_kwDODunzps51CGC8
6,354
`IterableDataset.from_spark` does not support multiple workers in pytorch `Dataloader`
{ "login": "NazyS", "id": 50199774, "node_id": "MDQ6VXNlcjUwMTk5Nzc0", "avatar_url": "https://avatars.githubusercontent.com/u/50199774?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NazyS", "html_url": "https://github.com/NazyS", "followers_url": "https://api.github.com/users/NazyS/followers", "following_url": "https://api.github.com/users/NazyS/following{/other_user}", "gists_url": "https://api.github.com/users/NazyS/gists{/gist_id}", "starred_url": "https://api.github.com/users/NazyS/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NazyS/subscriptions", "organizations_url": "https://api.github.com/users/NazyS/orgs", "repos_url": "https://api.github.com/users/NazyS/repos", "events_url": "https://api.github.com/users/NazyS/events{/privacy}", "received_events_url": "https://api.github.com/users/NazyS/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "I am having issues as well with this. \r\n\r\nHowever, the error I am getting is :\r\n`RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.`\r\n\r\nAlso did not work with pyspark==3.3.0 and py4j==0.10.9.5" ]
2023-10-26T12:43:36
2023-11-14T18:46:03
null
NONE
null
null
### Describe the bug Looks like `IterableDataset.from_spark` does not support multiple workers in pytorch `Dataloader` if I'm not missing anything. Also, returns not consistent error messages, which probably depend on the nondeterministic order of worker executions Some exampes I've encountered: ``` File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__ yield from self.generate_examples_fn() File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id")) File "/databricks/spark/python/pyspark/instrumentation_utils.py", line 54, in wrapper logger.log_failure( File "/databricks/spark/python/pyspark/databricks/usage_logger.py", line 70, in log_failure self.logger.recordFunctionCallFailureEvent( File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1322, in __call__ return_value = get_return_value( File "/databricks/spark/python/pyspark/errors/exceptions/captured.py", line 188, in deco return f(*a, **kw) File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/protocol.py", line 342, in get_return_value return OUTPUT_CONVERTER[type](answer[2:], gateway_client) KeyError: 'c' ``` ``` File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__ yield from self.generate_examples_fn() File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id")) File "/databricks/spark/python/pyspark/sql/utils.py", line 162, in wrapped return f(*args, **kwargs) File "/databricks/spark/python/pyspark/sql/functions.py", line 4893, in spark_partition_id return _invoke_function("spark_partition_id") File "/databricks/spark/python/pyspark/sql/functions.py", line 98, in _invoke_function return Column(jf(*args)) File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1322, in __call__ return_value = get_return_value( File "/databricks/spark/python/pyspark/errors/exceptions/captured.py", line 188, in deco return f(*a, **kw) File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/protocol.py", line 342, in get_return_value return OUTPUT_CONVERTER[type](answer[2:], gateway_client) KeyError: 'm' ``` ``` File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__ yield from self.generate_examples_fn() File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id")) File "/databricks/spark/python/pyspark/sql/utils.py", line 162, in wrapped return f(*args, **kwargs) File "/databricks/spark/python/pyspark/sql/functions.py", line 4893, in spark_partition_id return _invoke_function("spark_partition_id") File "/databricks/spark/python/pyspark/sql/functions.py", line 97, in _invoke_function jf = _get_jvm_function(name, SparkContext._active_spark_context) File "/databricks/spark/python/pyspark/sql/functions.py", line 88, in _get_jvm_function return getattr(sc._jvm.functions, name) File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1725, in __getattr__ raise Py4JError(message) py4j.protocol.Py4JError: functions does not exist in the JVM ``` ### Steps to reproduce the bug ```python import pandas as pd import numpy as np batch_size = 16 pdf = pd.DataFrame({ key: np.random.rand(16*100) for key in ['feature', 'target'] }) test_df = spark.createDataFrame(pdf) from datasets import IterableDataset from torch.utils.data import DataLoader ids = IterableDataset.from_spark(test_df) for batch in DataLoader(ids, batch_size=16, num_workers=4): for k, b in batch.items(): print(k, b.shape, sep='\t') print('\n') ``` ### Expected behavior For `num_workers` equal to 0 or 1 works fine as expected: ``` feature torch.Size([16]) target torch.Size([16]) feature torch.Size([16]) target torch.Size([16]) .... ``` Expected to support workers >1. ### Environment info Databricks 13.3 LTS ML runtime - Spark 3.4.1 pyspark==3.4.1 py4j==0.10.9.7 datasets==2.13.1 and also tested with datasets==2.14.6
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6354/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6354/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6353
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6353/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6353/comments
https://api.github.com/repos/huggingface/datasets/issues/6353/events
https://github.com/huggingface/datasets/issues/6353
1,962,646,450
I_kwDODunzps50-5uy
6,353
load_dataset save_to_disk load_from_disk error
{ "login": "brisker", "id": 13804492, "node_id": "MDQ6VXNlcjEzODA0NDky", "avatar_url": "https://avatars.githubusercontent.com/u/13804492?v=4", "gravatar_id": "", "url": "https://api.github.com/users/brisker", "html_url": "https://github.com/brisker", "followers_url": "https://api.github.com/users/brisker/followers", "following_url": "https://api.github.com/users/brisker/following{/other_user}", "gists_url": "https://api.github.com/users/brisker/gists{/gist_id}", "starred_url": "https://api.github.com/users/brisker/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/brisker/subscriptions", "organizations_url": "https://api.github.com/users/brisker/orgs", "repos_url": "https://api.github.com/users/brisker/repos", "events_url": "https://api.github.com/users/brisker/events{/privacy}", "received_events_url": "https://api.github.com/users/brisker/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "solved.\r\nfsspec version problem", "I'm using the latest datasets and fsspec , but still got this error!\r\n\r\ndatasets : Version: 2.13.0\r\n\r\nfsspec Version: 2023.10.0\r\n\r\n```\r\nFile \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/load.py\", line 1892, in load_from_disk\r\n return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1371, in load_from_disk\r\n dataset_dict[k] = Dataset.load_from_disk(\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1639, in load_from_disk\r\n fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/core.py\", line 610, in get_fs_token_paths\r\n chain = _un_chain(urlpath0, storage_options or {})\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/core.py\", line 325, in _un_chain\r\n cls = get_filesystem_class(protocol)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/registry.py\", line 232, in get_filesystem_class\r\n raise ValueError(f\"Protocol not known: {protocol}\")\r\n```", "These two versions work.\r\n<img width=\"807\" alt=\"截圖 2023-11-22 下午5 55 28\" src=\"https://github.com/huggingface/datasets/assets/77866896/faa8333f-0519-4d69-b243-a8880cd7fc1f\">\r\n", "datasets==2.10.1 and fsspec==2023.6.0 also works for me." ]
2023-10-26T03:47:06
2024-02-02T15:23:14
2023-10-26T10:18:04
NONE
null
null
### Describe the bug datasets version: 2.10.1 I `load_dataset `and `save_to_disk` sucessfully on windows10( **and I `load_from_disk(/LLM/data/wiki)` succcesfully on windows10**), and I copy the dataset `/LLM/data/wiki` into a ubuntu system, but when I `load_from_disk(/LLM/data/wiki)` on ubuntu, something weird happens: ``` load_from_disk('/LLM/data/wiki') File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/load.py", line 1874, in load_from_disk return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options) File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/dataset_dict.py", line 1309, in load_from_disk dataset_dict[k] = Dataset.load_from_disk( File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1543, in load_from_disk fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options) File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/core.py", line 610, in get_fs_token_paths chain = _un_chain(urlpath0, storage_options or {}) File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/core.py", line 325, in _un_chain cls = get_filesystem_class(protocol) File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/registry.py", line 232, in get_filesystem_class raise ValueError(f"Protocol not known: {protocol}") ValueError: Protocol not known: /LLM/data/wiki ``` It seems that something went wrong on the arrow file? How can I solve this , since currently I can not save_to_disk on ubuntu system ### Steps to reproduce the bug datasets version: 2.10.1 ### Expected behavior datasets version: 2.10.1 ### Environment info datasets version: 2.10.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6353/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6353/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6352
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6352/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6352/comments
https://api.github.com/repos/huggingface/datasets/issues/6352/events
https://github.com/huggingface/datasets/issues/6352
1,962,296,057
I_kwDODunzps509kL5
6,352
Error loading wikitext data raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.")
{ "login": "Ahmed-Roushdy", "id": 68569076, "node_id": "MDQ6VXNlcjY4NTY5MDc2", "avatar_url": "https://avatars.githubusercontent.com/u/68569076?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Ahmed-Roushdy", "html_url": "https://github.com/Ahmed-Roushdy", "followers_url": "https://api.github.com/users/Ahmed-Roushdy/followers", "following_url": "https://api.github.com/users/Ahmed-Roushdy/following{/other_user}", "gists_url": "https://api.github.com/users/Ahmed-Roushdy/gists{/gist_id}", "starred_url": "https://api.github.com/users/Ahmed-Roushdy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Ahmed-Roushdy/subscriptions", "organizations_url": "https://api.github.com/users/Ahmed-Roushdy/orgs", "repos_url": "https://api.github.com/users/Ahmed-Roushdy/repos", "events_url": "https://api.github.com/users/Ahmed-Roushdy/events{/privacy}", "received_events_url": "https://api.github.com/users/Ahmed-Roushdy/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "+1 \r\n```\r\nFound cached dataset csv (file:///home/ubuntu/.cache/huggingface/datasets/theSquarePond___csv/theSquarePond--XXXXX-bbf0a8365d693d2c/0.0.0/eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d)\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\nCell In[14], line 4\r\n 1 get_ipython().system('pip install -U datasets')\r\n 3 # Load dataset from the hub\r\n----> 4 dataset = load_dataset(dataset_name)\r\n\r\nFile ~/anaconda3/envs/python38-env/lib/python3.8/site-packages/datasets/load.py:1810, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1806 # Build dataset for splits\r\n 1807 keep_in_memory = (\r\n 1808 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1809 )\r\n-> 1810 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1811 # Rename and cast features to match task schema\r\n 1812 if task is not None:\r\n\r\nFile ~/anaconda3/envs/python38-env/lib/python3.8/site-packages/datasets/builder.py:1128, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1126 is_local = not is_remote_filesystem(self._fs)\r\n 1127 if not is_local:\r\n-> 1128 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1129 if not os.path.exists(self._output_dir):\r\n 1130 raise FileNotFoundError(\r\n 1131 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1132 \"builder.download_and_prepare(), or use \"\r\n 1133 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1134 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```", "+1\r\n\r\n```\r\nFound cached dataset csv ([file://C:/Users/Shady/.cache/huggingface/datasets/knkarthick___csv/knkarthick--dialogsum-cd36827d3490488d/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1](file:///C:/Users/Shady/.cache/huggingface/datasets/knkarthick___csv/knkarthick--dialogsum-cd36827d3490488d/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1))\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\nCell In[38], line 3\r\n 1 huggingface_dataset_name = \"knkarthick/dialogsum\"\r\n----> 3 dataset = load_dataset(huggingface_dataset_name)\r\n\r\nFile D:\\Desktop\\Workspace\\GenAI\\genai\\lib\\site-packages\\datasets\\load.py:1804, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1800 # Build dataset for splits\r\n 1801 keep_in_memory = (\r\n 1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1803 )\r\n-> 1804 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1805 # Rename and cast features to match task schema\r\n 1806 if task is not None:\r\n\r\nFile D:\\Desktop\\Workspace\\GenAI\\genai\\lib\\site-packages\\datasets\\builder.py:1108, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1106 is_local = not is_remote_filesystem(self._fs)\r\n 1107 if not is_local:\r\n-> 1108 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1109 if not os.path.exists(self._output_dir):\r\n 1110 raise FileNotFoundError(\r\n 1111 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1112 \"builder.download_and_prepare(), or use \"\r\n 1113 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1114 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```", "This error stems from a breaking change in `fsspec`. It has been fixed in the latest `datasets` release (`2.14.6`). Updating the installation with `pip install -U datasets` should fix the issue.\r\n", "> 此错误源于 中的重大更改。此问题已在最新版本 () 中修复。更新安装应该可以解决此问题。`fsspec``datasets``2.14.6``pip install -U datasets`\r\n\r\nthanks , 太好啦,刚好解决了我的问题,GPT都没解决了,终于被你搞定了", "https://stackoverflow.com/questions/77433096/notimplementederror-loading-a-dataset-cached-in-a-localfilesystem-is-not-suppor/77433141#77433141", "Fixed by:\r\n- https://github.com/huggingface/datasets/pull/6334\r\n\r\nThe fix was released in `datasets-2.14.6`." ]
2023-10-25T21:55:31
2023-11-07T07:26:54
2023-11-07T07:26:54
NONE
null
null
I was trying to load the wiki dataset, but i got this error traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train') File "/home/aelkordy/.conda/envs/prune_llm/lib/python3.9/site-packages/datasets/load.py", line 1804, in load_dataset ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) File "/home/aelkordy/.conda/envs/prune_llm/lib/python3.9/site-packages/datasets/builder.py", line 1108, in as_dataset raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6352/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6352/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6351
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6351/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6351/comments
https://api.github.com/repos/huggingface/datasets/issues/6351/events
https://github.com/huggingface/datasets/pull/6351
1,961,982,988
PR_kwDODunzps5dyMvh
6,351
Fix use_dataset.mdx
{ "login": "angel-luis", "id": 17672548, "node_id": "MDQ6VXNlcjE3NjcyNTQ4", "avatar_url": "https://avatars.githubusercontent.com/u/17672548?v=4", "gravatar_id": "", "url": "https://api.github.com/users/angel-luis", "html_url": "https://github.com/angel-luis", "followers_url": "https://api.github.com/users/angel-luis/followers", "following_url": "https://api.github.com/users/angel-luis/following{/other_user}", "gists_url": "https://api.github.com/users/angel-luis/gists{/gist_id}", "starred_url": "https://api.github.com/users/angel-luis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/angel-luis/subscriptions", "organizations_url": "https://api.github.com/users/angel-luis/orgs", "repos_url": "https://api.github.com/users/angel-luis/repos", "events_url": "https://api.github.com/users/angel-luis/events{/privacy}", "received_events_url": "https://api.github.com/users/angel-luis/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007718 / 0.011353 (-0.003635) | 0.004730 / 0.011008 (-0.006278) | 0.097262 / 0.038508 (0.058754) | 0.077880 / 0.023109 (0.054771) | 0.363855 / 0.275898 (0.087957) | 0.394470 / 0.323480 (0.070990) | 0.006416 / 0.007986 (-0.001570) | 0.003596 / 0.004328 (-0.000732) | 0.076494 / 0.004250 (0.072243) | 0.062656 / 0.037052 (0.025603) | 0.366160 / 0.258489 (0.107671) | 0.421383 / 0.293841 (0.127542) | 0.035756 / 0.128546 (-0.092791) | 0.009430 / 0.075646 (-0.066217) | 0.327722 / 0.419271 (-0.091550) | 0.061252 / 0.043533 (0.017719) | 0.352167 / 0.255139 (0.097028) | 0.385166 / 0.283200 (0.101966) | 0.026656 / 0.141683 (-0.115027) | 1.718533 / 1.452155 (0.266378) | 1.886646 / 1.492716 (0.393930) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254564 / 0.018006 (0.236558) | 0.490942 / 0.000490 (0.490452) | 0.011656 / 0.000200 (0.011456) | 0.000313 / 0.000054 (0.000259) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028753 / 0.037411 (-0.008659) | 0.093076 / 0.014526 (0.078550) | 0.096441 / 0.176557 (-0.080116) | 0.154848 / 0.737135 (-0.582287) | 0.092903 / 0.296338 (-0.203435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395611 / 0.215209 (0.180402) | 3.860736 / 2.077655 (1.783082) | 1.908808 / 1.504120 (0.404688) | 1.708975 / 1.541195 (0.167781) | 1.848173 / 1.468490 (0.379683) | 0.527022 / 4.584777 (-4.057755) | 3.815171 / 3.745712 (0.069459) | 3.621132 / 5.269862 (-1.648730) | 2.220238 / 4.565676 (-2.345439) | 0.063169 / 0.424275 (-0.361106) | 0.008906 / 0.007607 (0.001299) | 0.510478 / 0.226044 (0.284433) | 4.828116 / 2.268929 (2.559187) | 2.340801 / 55.444624 (-53.103824) | 2.040834 / 6.876477 (-4.835642) | 2.092316 / 2.142072 (-0.049757) | 0.579194 / 4.805227 (-4.226033) | 0.135525 / 6.500664 (-6.365139) | 0.062720 / 0.075469 (-0.012749) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.393091 / 1.841788 (-0.448697) | 19.751526 / 8.074308 (11.677218) | 14.161795 / 10.191392 (3.970403) | 0.163340 / 0.680424 (-0.517084) | 0.021504 / 0.534201 (-0.512697) | 0.393183 / 0.579283 (-0.186100) | 0.448407 / 0.434364 (0.014043) | 0.504169 / 0.540337 (-0.036169) | 0.663698 / 1.386936 (-0.723238) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007390 / 0.011353 (-0.003962) | 0.004381 / 0.011008 (-0.006628) | 0.074501 / 0.038508 (0.035993) | 0.078242 / 0.023109 (0.055133) | 0.481108 / 0.275898 (0.205210) | 0.512111 / 0.323480 (0.188631) | 0.006280 / 0.007986 (-0.001705) | 0.003820 / 0.004328 (-0.000509) | 0.071602 / 0.004250 (0.067351) | 0.068359 / 0.037052 (0.031307) | 0.478484 / 0.258489 (0.219995) | 0.519543 / 0.293841 (0.225702) | 0.036211 / 0.128546 (-0.092335) | 0.009433 / 0.075646 (-0.066213) | 0.086140 / 0.419271 (-0.333132) | 0.054177 / 0.043533 (0.010644) | 0.466726 / 0.255139 (0.211587) | 0.514085 / 0.283200 (0.230885) | 0.026729 / 0.141683 (-0.114954) | 1.743770 / 1.452155 (0.291615) | 1.833469 / 1.492716 (0.340753) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251339 / 0.018006 (0.233333) | 0.472294 / 0.000490 (0.471804) | 0.013381 / 0.000200 (0.013181) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037845 / 0.037411 (0.000433) | 0.105977 / 0.014526 (0.091451) | 0.124446 / 0.176557 (-0.052111) | 0.180432 / 0.737135 (-0.556703) | 0.120844 / 0.296338 (-0.175495) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470928 / 0.215209 (0.255719) | 4.738154 / 2.077655 (2.660499) | 2.558618 / 1.504120 (1.054498) | 2.359745 / 1.541195 (0.818550) | 2.458438 / 1.468490 (0.989948) | 0.548580 / 4.584777 (-4.036197) | 3.912145 / 3.745712 (0.166433) | 3.764174 / 5.269862 (-1.505687) | 2.325265 / 4.565676 (-2.240411) | 0.078022 / 0.424275 (-0.346254) | 0.008279 / 0.007607 (0.000672) | 0.571635 / 0.226044 (0.345590) | 5.672445 / 2.268929 (3.403517) | 2.760577 / 55.444624 (-52.684047) | 2.544229 / 6.876477 (-4.332248) | 2.537509 / 2.142072 (0.395436) | 0.609858 / 4.805227 (-4.195369) | 0.131053 / 6.500664 (-6.369611) | 0.056433 / 0.075469 (-0.019036) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.567231 / 1.841788 (-0.274556) | 21.415586 / 8.074308 (13.341278) | 15.982328 / 10.191392 (5.790936) | 0.167648 / 0.680424 (-0.512776) | 0.023562 / 0.534201 (-0.510639) | 0.477307 / 0.579283 (-0.101976) | 0.471929 / 0.434364 (0.037566) | 0.549996 / 0.540337 (0.009659) | 0.753927 / 1.386936 (-0.633009) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1fb2785be9198997e8b9006225b0e231f4d8ed31 \"CML watermark\")\n" ]
2023-10-25T18:21:08
2023-10-26T17:19:49
2023-10-26T17:10:27
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6351", "html_url": "https://github.com/huggingface/datasets/pull/6351", "diff_url": "https://github.com/huggingface/datasets/pull/6351.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6351.patch", "merged_at": "2023-10-26T17:10:27" }
The current example isn't working because it can't find `labels` inside the Dataset object. So I've added an extra step to the process. Tested and working in Colab.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6351/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6351/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6350
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6350/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6350/comments
https://api.github.com/repos/huggingface/datasets/issues/6350/events
https://github.com/huggingface/datasets/issues/6350
1,961,869,203
I_kwDODunzps5077-T
6,350
Different objects are returned from calls that should be returning the same kind of object.
{ "login": "phalexo", "id": 4603365, "node_id": "MDQ6VXNlcjQ2MDMzNjU=", "avatar_url": "https://avatars.githubusercontent.com/u/4603365?v=4", "gravatar_id": "", "url": "https://api.github.com/users/phalexo", "html_url": "https://github.com/phalexo", "followers_url": "https://api.github.com/users/phalexo/followers", "following_url": "https://api.github.com/users/phalexo/following{/other_user}", "gists_url": "https://api.github.com/users/phalexo/gists{/gist_id}", "starred_url": "https://api.github.com/users/phalexo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/phalexo/subscriptions", "organizations_url": "https://api.github.com/users/phalexo/orgs", "repos_url": "https://api.github.com/users/phalexo/repos", "events_url": "https://api.github.com/users/phalexo/events{/privacy}", "received_events_url": "https://api.github.com/users/phalexo/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "`load_dataset` returns a `DatasetDict` object unless `split` is defined, in which case it returns a `Dataset` (or a list of datasets if `split` is a list). We've discussed dropping `DatasetDict` from the API in https://github.com/huggingface/datasets/issues/5189 to always return the same type in `load_dataset` and support datasets without (explicit) splits. IIRC the main discussion point is deciding what to return when loading a dataset with multiple splits, but `split` is not specified. What would you expect as a return value in that scenario?", "> `load_dataset` returns a `DatasetDict` object unless `split` is defined, in which case it returns a `Dataset` (or a list of datasets if `split` is a list). We've discussed dropping `DatasetDict` from the API in #5189 to always return the same type in `load_dataset` and support datasets without (explicit) splits. IIRC the main discussion point is deciding what to return when loading a dataset with multiple splits, but `split` is not specified. What would you expect as a return value in that scenario?\r\n\r\nWouldn't a dataset with multiple splits already have keys and their related data arrays?\r\n\r\nLets say the dataset has \"train\" : trainset, \"valid\": validset and \"test\": testset\r\n\r\nSo a dictionary can be returned,, i.e.\r\n\r\n{ \r\n\"train\": trainset,\r\n\"valid\": validset,\r\n\"test\": testset\r\n}\r\n\r\nif a split is provided split=['train[:80%]', 'valid[80%:90%]', 'test[90%:100%]']\r\n\r\nwould also return the same dictionary as above.\r\n\r\nsplit='train[:10%]' should return the same value as split=['train[:10%]']\r\n\r\n{\r\n\"train\": trainset\r\n}\r\n " ]
2023-10-25T17:08:39
2023-10-26T21:03:06
null
NONE
null
null
### Describe the bug 1. dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=training_args.cache_dir, split='train[:1%]') 2. dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=training_args.cache_dir) The only difference I would expect these calls to have is the size of the dataset. But, while 2. returns a dictionary with "train" key in it, 1. returns a dataset WITHOUT any initial "train" keyword. Both calls are to be used within exactly the same context. They should return identically structured datasets of different size. ### Steps to reproduce the bug See above. ### Expected behavior Expect both calls to return the same structured Dataset structure but with different number of elements, i.e. call 1. should have 1% of the data of the call 2.0 ### Environment info Ubuntu 20.04 gcc 9.x.x. It is really irrelevant.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6350/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6350/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6349
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6349/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6349/comments
https://api.github.com/repos/huggingface/datasets/issues/6349/events
https://github.com/huggingface/datasets/issues/6349
1,961,435,673
I_kwDODunzps506SIZ
6,349
Can't load ds = load_dataset("imdb")
{ "login": "vivianc2", "id": 86415736, "node_id": "MDQ6VXNlcjg2NDE1NzM2", "avatar_url": "https://avatars.githubusercontent.com/u/86415736?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vivianc2", "html_url": "https://github.com/vivianc2", "followers_url": "https://api.github.com/users/vivianc2/followers", "following_url": "https://api.github.com/users/vivianc2/following{/other_user}", "gists_url": "https://api.github.com/users/vivianc2/gists{/gist_id}", "starred_url": "https://api.github.com/users/vivianc2/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vivianc2/subscriptions", "organizations_url": "https://api.github.com/users/vivianc2/orgs", "repos_url": "https://api.github.com/users/vivianc2/repos", "events_url": "https://api.github.com/users/vivianc2/events{/privacy}", "received_events_url": "https://api.github.com/users/vivianc2/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "I'm unable to reproduce this error. The server hosting the files may have been down temporarily, so try again.", "getting the same error" ]
2023-10-25T13:29:51
2024-01-26T15:31:36
2023-10-31T19:59:35
NONE
null
null
### Describe the bug I did `from datasets import load_dataset, load_metric` and then `ds = load_dataset("imdb")` and it gave me the error: ExpectedMoreDownloadedFiles: {'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'} I tried doing `ds = load_dataset("imdb",download_mode="force_redownload")` as well as reinstalling dataset. I still face this problem. ### Steps to reproduce the bug 1. from datasets import load_dataset, load_metric 2. ds = load_dataset("imdb") ### Expected behavior It should load and give me this when I run `ds` DatasetDict({ train: Dataset({ features: ['text', 'label'], num_rows: 25000 }) test: Dataset({ features: ['text', 'label'], num_rows: 25000 }) unsupervised: Dataset({ features: ['text', 'label'], num_rows: 50000 }) }) ### Environment info - `datasets` version: 2.14.6 - Platform: Linux-5.4.0-164-generic-x86_64-with-glibc2.17 - Python version: 3.8.18 - Huggingface_hub version: 0.16.2 - PyArrow version: 13.0.0 - Pandas version: 2.0.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6349/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6349/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6348
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6348/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6348/comments
https://api.github.com/repos/huggingface/datasets/issues/6348/events
https://github.com/huggingface/datasets/issues/6348
1,961,268,504
I_kwDODunzps505pUY
6,348
Parquet stream-conversion fails to embed images/audio files from gated repos
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
null
[]
[]
2023-10-25T12:12:44
2023-10-25T12:13:07
null
CONTRIBUTOR
null
null
it seems to be an issue with datasets not passing the token to embed_table_storage when generating a dataset See https://github.com/huggingface/datasets-server/issues/2010
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6348/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6348/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6347
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6347/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6347/comments
https://api.github.com/repos/huggingface/datasets/issues/6347/events
https://github.com/huggingface/datasets/issues/6347
1,959,004,835
I_kwDODunzps50xAqj
6,347
Incorrect example code in 'Create a dataset' docs
{ "login": "rwood-97", "id": 72076688, "node_id": "MDQ6VXNlcjcyMDc2Njg4", "avatar_url": "https://avatars.githubusercontent.com/u/72076688?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rwood-97", "html_url": "https://github.com/rwood-97", "followers_url": "https://api.github.com/users/rwood-97/followers", "following_url": "https://api.github.com/users/rwood-97/following{/other_user}", "gists_url": "https://api.github.com/users/rwood-97/gists{/gist_id}", "starred_url": "https://api.github.com/users/rwood-97/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rwood-97/subscriptions", "organizations_url": "https://api.github.com/users/rwood-97/orgs", "repos_url": "https://api.github.com/users/rwood-97/repos", "events_url": "https://api.github.com/users/rwood-97/events{/privacy}", "received_events_url": "https://api.github.com/users/rwood-97/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "This was fixed in https://github.com/huggingface/datasets/pull/6247. You can find the fix in the `main` version of the docs", "Ah great, thanks :)" ]
2023-10-24T11:01:21
2023-10-25T13:05:21
2023-10-25T13:05:21
NONE
null
null
### Describe the bug On [this](https://huggingface.co/docs/datasets/create_dataset) page, the example code for loading in images and audio is incorrect. Currently, examples are: ``` python from datasets import ImageFolder dataset = load_dataset("imagefolder", data_dir="/path/to/pokemon") ``` and ``` python from datasets import AudioFolder dataset = load_dataset("audiofolder", data_dir="/path/to/folder") ``` I'm pretty sure the imports are wrong and should be: ``` python from datasets import load_dataset dataset = load_dataset("audiofolder", data_dir="/path/to/folder") ``` I am happy to update this if this is right but just wanted to check before making any changes. ### Steps to reproduce the bug Go to https://huggingface.co/docs/datasets/create_dataset ### Expected behavior N/A ### Environment info N/A
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6347/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6347/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6346
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6346/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6346/comments
https://api.github.com/repos/huggingface/datasets/issues/6346/events
https://github.com/huggingface/datasets/pull/6346
1,958,777,076
PR_kwDODunzps5dnZM_
6,346
Fix UnboundLocalError if preprocessing returns an empty list
{ "login": "cwallenwein", "id": 40916592, "node_id": "MDQ6VXNlcjQwOTE2NTky", "avatar_url": "https://avatars.githubusercontent.com/u/40916592?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cwallenwein", "html_url": "https://github.com/cwallenwein", "followers_url": "https://api.github.com/users/cwallenwein/followers", "following_url": "https://api.github.com/users/cwallenwein/following{/other_user}", "gists_url": "https://api.github.com/users/cwallenwein/gists{/gist_id}", "starred_url": "https://api.github.com/users/cwallenwein/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cwallenwein/subscriptions", "organizations_url": "https://api.github.com/users/cwallenwein/orgs", "repos_url": "https://api.github.com/users/cwallenwein/repos", "events_url": "https://api.github.com/users/cwallenwein/events{/privacy}", "received_events_url": "https://api.github.com/users/cwallenwein/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009286 / 0.011353 (-0.002067) | 0.005478 / 0.011008 (-0.005530) | 0.109768 / 0.038508 (0.071260) | 0.088460 / 0.023109 (0.065351) | 0.387664 / 0.275898 (0.111766) | 0.457379 / 0.323480 (0.133899) | 0.006517 / 0.007986 (-0.001469) | 0.004037 / 0.004328 (-0.000292) | 0.083911 / 0.004250 (0.079661) | 0.071658 / 0.037052 (0.034605) | 0.385065 / 0.258489 (0.126576) | 0.460928 / 0.293841 (0.167087) | 0.048062 / 0.128546 (-0.080484) | 0.016343 / 0.075646 (-0.059303) | 0.373675 / 0.419271 (-0.045597) | 0.067640 / 0.043533 (0.024108) | 0.391730 / 0.255139 (0.136591) | 0.432908 / 0.283200 (0.149708) | 0.035748 / 0.141683 (-0.105935) | 1.767625 / 1.452155 (0.315471) | 1.965606 / 1.492716 (0.472889) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277405 / 0.018006 (0.259399) | 0.538448 / 0.000490 (0.537958) | 0.013795 / 0.000200 (0.013595) | 0.000518 / 0.000054 (0.000464) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.043962 / 0.037411 (0.006550) | 0.115305 / 0.014526 (0.100780) | 0.117572 / 0.176557 (-0.058985) | 0.182168 / 0.737135 (-0.554968) | 0.114833 / 0.296338 (-0.181505) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.604209 / 0.215209 (0.389000) | 6.186113 / 2.077655 (4.108458) | 2.771067 / 1.504120 (1.266947) | 2.425420 / 1.541195 (0.884226) | 2.475200 / 1.468490 (1.006710) | 0.887096 / 4.584777 (-3.697681) | 5.214349 / 3.745712 (1.468637) | 4.989606 / 5.269862 (-0.280256) | 3.092135 / 4.565676 (-1.473541) | 0.104464 / 0.424275 (-0.319811) | 0.008994 / 0.007607 (0.001387) | 0.732819 / 0.226044 (0.506775) | 7.396007 / 2.268929 (5.127078) | 3.371167 / 55.444624 (-52.073457) | 2.645475 / 6.876477 (-4.231001) | 2.704215 / 2.142072 (0.562143) | 1.034724 / 4.805227 (-3.770504) | 0.219063 / 6.500664 (-6.281601) | 0.073863 / 0.075469 (-0.001606) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625020 / 1.841788 (-0.216768) | 23.369980 / 8.074308 (15.295671) | 22.480951 / 10.191392 (12.289559) | 0.228219 / 0.680424 (-0.452204) | 0.026981 / 0.534201 (-0.507220) | 0.487670 / 0.579283 (-0.091613) | 0.582310 / 0.434364 (0.147946) | 0.539182 / 0.540337 (-0.001156) | 0.791962 / 1.386936 (-0.594974) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008657 / 0.011353 (-0.002696) | 0.004971 / 0.011008 (-0.006037) | 0.089499 / 0.038508 (0.050991) | 0.075963 / 0.023109 (0.052854) | 0.497719 / 0.275898 (0.221821) | 0.507912 / 0.323480 (0.184432) | 0.006067 / 0.007986 (-0.001919) | 0.004118 / 0.004328 (-0.000210) | 0.079397 / 0.004250 (0.075146) | 0.059181 / 0.037052 (0.022129) | 0.501108 / 0.258489 (0.242619) | 0.565792 / 0.293841 (0.271951) | 0.048818 / 0.128546 (-0.079729) | 0.014813 / 0.075646 (-0.060833) | 0.093863 / 0.419271 (-0.325409) | 0.060824 / 0.043533 (0.017292) | 0.489289 / 0.255139 (0.234150) | 0.533624 / 0.283200 (0.250425) | 0.034997 / 0.141683 (-0.106685) | 1.770574 / 1.452155 (0.318419) | 1.837213 / 1.492716 (0.344496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237319 / 0.018006 (0.219313) | 0.594976 / 0.000490 (0.594486) | 0.008888 / 0.000200 (0.008688) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036955 / 0.037411 (-0.000456) | 0.097825 / 0.014526 (0.083299) | 0.111139 / 0.176557 (-0.065418) | 0.174776 / 0.737135 (-0.562359) | 0.117755 / 0.296338 (-0.178584) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.606498 / 0.215209 (0.391289) | 6.089874 / 2.077655 (4.012219) | 2.811135 / 1.504120 (1.307015) | 2.428486 / 1.541195 (0.887292) | 2.399512 / 1.468490 (0.931022) | 0.823492 / 4.584777 (-3.761285) | 4.897107 / 3.745712 (1.151395) | 4.407589 / 5.269862 (-0.862272) | 2.868442 / 4.565676 (-1.697235) | 0.098774 / 0.424275 (-0.325502) | 0.007998 / 0.007607 (0.000391) | 0.699489 / 0.226044 (0.473445) | 7.139214 / 2.268929 (4.870285) | 3.511158 / 55.444624 (-51.933466) | 2.775459 / 6.876477 (-4.101018) | 2.951549 / 2.142072 (0.809477) | 1.006921 / 4.805227 (-3.798306) | 0.200105 / 6.500664 (-6.300559) | 0.071064 / 0.075469 (-0.004405) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.680599 / 1.841788 (-0.161189) | 23.399777 / 8.074308 (15.325469) | 21.776357 / 10.191392 (11.584965) | 0.264697 / 0.680424 (-0.415726) | 0.034272 / 0.534201 (-0.499929) | 0.506984 / 0.579283 (-0.072299) | 0.609556 / 0.434364 (0.175192) | 0.599014 / 0.540337 (0.058677) | 0.824068 / 1.386936 (-0.562868) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3ab9de69420de8bd5d057579d71d07187b3a2c60 \"CML watermark\")\n" ]
2023-10-24T08:38:43
2023-10-25T17:39:17
2023-10-25T16:36:38
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6346", "html_url": "https://github.com/huggingface/datasets/pull/6346", "diff_url": "https://github.com/huggingface/datasets/pull/6346.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6346.patch", "merged_at": "2023-10-25T16:36:38" }
If this tokenization function is used with IterableDatasets and no sample is as big as the context length, `input_batch` will be an empty list. ``` def tokenize(batch, tokenizer, context_length): outputs = tokenizer( batch["text"], truncation=True, max_length=context_length, return_overflowing_tokens=True, return_length=True ) input_batch = [] for length, input_ids in zip(outputs["length"], outputs["input_ids"]): if length == context_length: input_batch.append(input_ids) return {"input_ids": input_batch} dataset.map(tokenize, batched=True, batch_size=batch_size, fn_kwargs={"context_length": context_length, "tokenizer": tokenizer}, remove_columns=dataset.column_names) ``` This will throw the following error: UnboundLocalError: local variable 'batch_idx' referenced before assignment, because the for loop was not executed a single time ``` for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)): yield new_key, example current_idx += batch_idx + 1 ``` Some of the possible solutions ``` for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)): yield new_key, example try: current_idx += batch_idx + 1 except: current_idx += 1 ``` or ``` batch_idx = 0 for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)): yield new_key, example current_idx += batch_idx + 1 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6346/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6346/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6345
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6345/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6345/comments
https://api.github.com/repos/huggingface/datasets/issues/6345/events
https://github.com/huggingface/datasets/issues/6345
1,957,707,870
I_kwDODunzps50sEBe
6,345
support squad structure datasets using a YAML parameter
{ "login": "MajdTannous1", "id": 138524319, "node_id": "U_kgDOCEG2nw", "avatar_url": "https://avatars.githubusercontent.com/u/138524319?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MajdTannous1", "html_url": "https://github.com/MajdTannous1", "followers_url": "https://api.github.com/users/MajdTannous1/followers", "following_url": "https://api.github.com/users/MajdTannous1/following{/other_user}", "gists_url": "https://api.github.com/users/MajdTannous1/gists{/gist_id}", "starred_url": "https://api.github.com/users/MajdTannous1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MajdTannous1/subscriptions", "organizations_url": "https://api.github.com/users/MajdTannous1/orgs", "repos_url": "https://api.github.com/users/MajdTannous1/repos", "events_url": "https://api.github.com/users/MajdTannous1/events{/privacy}", "received_events_url": "https://api.github.com/users/MajdTannous1/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[]
2023-10-23T17:55:37
2023-10-23T17:55:37
null
NONE
null
null
### Feature request Since the squad structure is widely used, I think it could be beneficial to support it using a YAML parameter. could you implement automatic data loading of squad-like data using squad JSON format, to read it from JSON files and view it in the correct squad structure. The dataset structure should be like this: https://huggingface.co/datasets/squad Columns:id,title,context,question,answers ### Motivation Dataset repo requires arbitrary Python code execution ### Your contribution The dataset structure should be like this: https://huggingface.co/datasets/squad Columns:id,title,context,question,answers train and dev sets in squad structure JSON files
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6345/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 }
https://api.github.com/repos/huggingface/datasets/issues/6345/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6344
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6344/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6344/comments
https://api.github.com/repos/huggingface/datasets/issues/6344/events
https://github.com/huggingface/datasets/pull/6344
1,957,412,169
PR_kwDODunzps5diyd5
6,344
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6344). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008237 / 0.011353 (-0.003116) | 0.004658 / 0.011008 (-0.006351) | 0.105902 / 0.038508 (0.067394) | 0.082690 / 0.023109 (0.059581) | 0.471745 / 0.275898 (0.195847) | 0.464772 / 0.323480 (0.141292) | 0.006373 / 0.007986 (-0.001613) | 0.003823 / 0.004328 (-0.000505) | 0.077721 / 0.004250 (0.073471) | 0.068371 / 0.037052 (0.031318) | 0.457004 / 0.258489 (0.198515) | 0.500989 / 0.293841 (0.207148) | 0.036688 / 0.128546 (-0.091858) | 0.010004 / 0.075646 (-0.065643) | 0.363398 / 0.419271 (-0.055874) | 0.065354 / 0.043533 (0.021821) | 0.440326 / 0.255139 (0.185187) | 0.475314 / 0.283200 (0.192115) | 0.029024 / 0.141683 (-0.112659) | 1.851005 / 1.452155 (0.398851) | 1.939997 / 1.492716 (0.447281) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269739 / 0.018006 (0.251732) | 0.510411 / 0.000490 (0.509922) | 0.013423 / 0.000200 (0.013223) | 0.000513 / 0.000054 (0.000458) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032912 / 0.037411 (-0.004499) | 0.097497 / 0.014526 (0.082971) | 0.111945 / 0.176557 (-0.064612) | 0.179264 / 0.737135 (-0.557871) | 0.111901 / 0.296338 (-0.184437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480994 / 0.215209 (0.265785) | 4.800969 / 2.077655 (2.723314) | 2.467390 / 1.504120 (0.963270) | 2.283219 / 1.541195 (0.742024) | 2.407735 / 1.468490 (0.939245) | 0.573862 / 4.584777 (-4.010915) | 4.213394 / 3.745712 (0.467682) | 4.120092 / 5.269862 (-1.149770) | 2.479549 / 4.565676 (-2.086128) | 0.077204 / 0.424275 (-0.347071) | 0.009165 / 0.007607 (0.001558) | 0.583887 / 0.226044 (0.357842) | 5.760759 / 2.268929 (3.491830) | 3.089220 / 55.444624 (-52.355404) | 2.652330 / 6.876477 (-4.224146) | 2.746255 / 2.142072 (0.604182) | 0.689010 / 4.805227 (-4.116217) | 0.158042 / 6.500664 (-6.342622) | 0.072789 / 0.075469 (-0.002680) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.658877 / 1.841788 (-0.182911) | 22.928756 / 8.074308 (14.854448) | 17.231823 / 10.191392 (7.040431) | 0.201475 / 0.680424 (-0.478949) | 0.025533 / 0.534201 (-0.508668) | 0.467023 / 0.579283 (-0.112260) | 0.470779 / 0.434364 (0.036415) | 0.643192 / 0.540337 (0.102855) | 0.822006 / 1.386936 (-0.564930) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008096 / 0.011353 (-0.003257) | 0.004708 / 0.011008 (-0.006300) | 0.076607 / 0.038508 (0.038099) | 0.086278 / 0.023109 (0.063168) | 0.478027 / 0.275898 (0.202129) | 0.533121 / 0.323480 (0.209641) | 0.006331 / 0.007986 (-0.001654) | 0.004005 / 0.004328 (-0.000324) | 0.076018 / 0.004250 (0.071767) | 0.067240 / 0.037052 (0.030188) | 0.484882 / 0.258489 (0.226393) | 0.536924 / 0.293841 (0.243083) | 0.045064 / 0.128546 (-0.083482) | 0.010071 / 0.075646 (-0.065575) | 0.084319 / 0.419271 (-0.334953) | 0.066267 / 0.043533 (0.022734) | 0.479283 / 0.255139 (0.224144) | 0.507832 / 0.283200 (0.224633) | 0.026436 / 0.141683 (-0.115247) | 1.820043 / 1.452155 (0.367889) | 1.954663 / 1.492716 (0.461947) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292672 / 0.018006 (0.274666) | 0.495523 / 0.000490 (0.495033) | 0.020836 / 0.000200 (0.020636) | 0.000143 / 0.000054 (0.000088) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038326 / 0.037411 (0.000915) | 0.114629 / 0.014526 (0.100103) | 0.126036 / 0.176557 (-0.050521) | 0.191498 / 0.737135 (-0.545638) | 0.128763 / 0.296338 (-0.167575) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507657 / 0.215209 (0.292448) | 5.062056 / 2.077655 (2.984401) | 2.765895 / 1.504120 (1.261775) | 2.590335 / 1.541195 (1.049141) | 2.790912 / 1.468490 (1.322422) | 0.582819 / 4.584777 (-4.001958) | 4.350034 / 3.745712 (0.604322) | 3.899466 / 5.269862 (-1.370396) | 2.499655 / 4.565676 (-2.066021) | 0.068909 / 0.424275 (-0.355366) | 0.008633 / 0.007607 (0.001026) | 0.593597 / 0.226044 (0.367553) | 5.934398 / 2.268929 (3.665470) | 3.358549 / 55.444624 (-52.086075) | 3.145686 / 6.876477 (-3.730791) | 3.232153 / 2.142072 (1.090080) | 0.753039 / 4.805227 (-4.052188) | 0.164043 / 6.500664 (-6.336621) | 0.072084 / 0.075469 (-0.003385) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.632702 / 1.841788 (-0.209086) | 23.411084 / 8.074308 (15.336776) | 17.035726 / 10.191392 (6.844334) | 0.223460 / 0.680424 (-0.456964) | 0.023723 / 0.534201 (-0.510478) | 0.474160 / 0.579283 (-0.105124) | 0.538638 / 0.434364 (0.104274) | 0.595591 / 0.540337 (0.055254) | 0.803324 / 1.386936 (-0.583612) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#84855c8ddc8d3e33b516f04b687e01d498d0906e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008300 / 0.011353 (-0.003053) | 0.004667 / 0.011008 (-0.006341) | 0.101028 / 0.038508 (0.062520) | 0.100269 / 0.023109 (0.077160) | 0.418651 / 0.275898 (0.142752) | 0.459061 / 0.323480 (0.135581) | 0.006786 / 0.007986 (-0.001199) | 0.003926 / 0.004328 (-0.000403) | 0.076682 / 0.004250 (0.072432) | 0.066173 / 0.037052 (0.029120) | 0.430644 / 0.258489 (0.172155) | 0.466244 / 0.293841 (0.172403) | 0.040601 / 0.128546 (-0.087946) | 0.009856 / 0.075646 (-0.065790) | 0.351467 / 0.419271 (-0.067805) | 0.068727 / 0.043533 (0.025194) | 0.419527 / 0.255139 (0.164388) | 0.431245 / 0.283200 (0.148045) | 0.028933 / 0.141683 (-0.112750) | 1.749540 / 1.452155 (0.297386) | 1.829076 / 1.492716 (0.336360) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282248 / 0.018006 (0.264242) | 0.587293 / 0.000490 (0.586803) | 0.014497 / 0.000200 (0.014297) | 0.000383 / 0.000054 (0.000329) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031861 / 0.037411 (-0.005550) | 0.097395 / 0.014526 (0.082869) | 0.113610 / 0.176557 (-0.062946) | 0.181208 / 0.737135 (-0.555927) | 0.115340 / 0.296338 (-0.180999) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459746 / 0.215209 (0.244537) | 4.582387 / 2.077655 (2.504733) | 2.247968 / 1.504120 (0.743848) | 2.032340 / 1.541195 (0.491145) | 2.151766 / 1.468490 (0.683276) | 0.567664 / 4.584777 (-4.017113) | 4.491732 / 3.745712 (0.746020) | 4.000651 / 5.269862 (-1.269211) | 2.429113 / 4.565676 (-2.136564) | 0.067052 / 0.424275 (-0.357223) | 0.009095 / 0.007607 (0.001488) | 0.546461 / 0.226044 (0.320417) | 5.473524 / 2.268929 (3.204595) | 2.902091 / 55.444624 (-52.542533) | 2.517510 / 6.876477 (-4.358966) | 2.572537 / 2.142072 (0.430464) | 0.683499 / 4.805227 (-4.121728) | 0.154863 / 6.500664 (-6.345801) | 0.071298 / 0.075469 (-0.004171) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625236 / 1.841788 (-0.216552) | 23.531541 / 8.074308 (15.457233) | 16.762514 / 10.191392 (6.571122) | 0.215922 / 0.680424 (-0.464502) | 0.021928 / 0.534201 (-0.512273) | 0.466055 / 0.579283 (-0.113228) | 0.553036 / 0.434364 (0.118672) | 0.590063 / 0.540337 (0.049725) | 0.789959 / 1.386936 (-0.596977) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008240 / 0.011353 (-0.003113) | 0.004151 / 0.011008 (-0.006858) | 0.077988 / 0.038508 (0.039479) | 0.092865 / 0.023109 (0.069756) | 0.468238 / 0.275898 (0.192340) | 0.512882 / 0.323480 (0.189402) | 0.006632 / 0.007986 (-0.001354) | 0.003879 / 0.004328 (-0.000450) | 0.076238 / 0.004250 (0.071988) | 0.069372 / 0.037052 (0.032319) | 0.481040 / 0.258489 (0.222550) | 0.526332 / 0.293841 (0.232491) | 0.036768 / 0.128546 (-0.091778) | 0.009891 / 0.075646 (-0.065756) | 0.084426 / 0.419271 (-0.334846) | 0.062382 / 0.043533 (0.018849) | 0.480667 / 0.255139 (0.225528) | 0.509001 / 0.283200 (0.225802) | 0.029215 / 0.141683 (-0.112468) | 1.776075 / 1.452155 (0.323920) | 1.948558 / 1.492716 (0.455841) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257879 / 0.018006 (0.239873) | 0.471038 / 0.000490 (0.470548) | 0.009273 / 0.000200 (0.009073) | 0.000208 / 0.000054 (0.000154) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039249 / 0.037411 (0.001838) | 0.133281 / 0.014526 (0.118755) | 0.138261 / 0.176557 (-0.038296) | 0.191051 / 0.737135 (-0.546084) | 0.134493 / 0.296338 (-0.161845) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507165 / 0.215209 (0.291955) | 5.081018 / 2.077655 (3.003364) | 2.747633 / 1.504120 (1.243513) | 2.558265 / 1.541195 (1.017070) | 2.710839 / 1.468490 (1.242348) | 0.579913 / 4.584777 (-4.004864) | 4.843657 / 3.745712 (1.097945) | 3.942503 / 5.269862 (-1.327358) | 2.529641 / 4.565676 (-2.036036) | 0.068826 / 0.424275 (-0.355449) | 0.008847 / 0.007607 (0.001240) | 0.605332 / 0.226044 (0.379287) | 6.039574 / 2.268929 (3.770646) | 3.437291 / 55.444624 (-52.007333) | 3.086631 / 6.876477 (-3.789846) | 3.189340 / 2.142072 (1.047267) | 0.702650 / 4.805227 (-4.102578) | 0.157403 / 6.500664 (-6.343261) | 0.074637 / 0.075469 (-0.000832) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.816532 / 1.841788 (-0.025256) | 24.526675 / 8.074308 (16.452367) | 17.371691 / 10.191392 (7.180299) | 0.236044 / 0.680424 (-0.444380) | 0.024759 / 0.534201 (-0.509442) | 0.530578 / 0.579283 (-0.048705) | 0.527424 / 0.434364 (0.093060) | 0.620267 / 0.540337 (0.079929) | 0.791159 / 1.386936 (-0.595777) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#78cfce823b98b6cce79a9297fe6fa9e8f80a869c \"CML watermark\")\n" ]
2023-10-23T15:13:28
2023-10-23T15:24:31
2023-10-23T15:13:38
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6344", "html_url": "https://github.com/huggingface/datasets/pull/6344", "diff_url": "https://github.com/huggingface/datasets/pull/6344.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6344.patch", "merged_at": "2023-10-23T15:13:38" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6344/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6344/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6343
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6343/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6343/comments
https://api.github.com/repos/huggingface/datasets/issues/6343/events
https://github.com/huggingface/datasets/pull/6343
1,957,370,711
PR_kwDODunzps5dipeb
6,343
Remove unused argument in `_get_data_files_patterns`
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006584 / 0.011353 (-0.004769) | 0.004197 / 0.011008 (-0.006812) | 0.083598 / 0.038508 (0.045090) | 0.075502 / 0.023109 (0.052392) | 0.312986 / 0.275898 (0.037088) | 0.344630 / 0.323480 (0.021150) | 0.005394 / 0.007986 (-0.002591) | 0.003485 / 0.004328 (-0.000843) | 0.064529 / 0.004250 (0.060279) | 0.055003 / 0.037052 (0.017950) | 0.320522 / 0.258489 (0.062033) | 0.362623 / 0.293841 (0.068782) | 0.030900 / 0.128546 (-0.097646) | 0.008459 / 0.075646 (-0.067187) | 0.286986 / 0.419271 (-0.132285) | 0.052310 / 0.043533 (0.008777) | 0.315873 / 0.255139 (0.060734) | 0.333962 / 0.283200 (0.050762) | 0.023836 / 0.141683 (-0.117847) | 1.481806 / 1.452155 (0.029651) | 1.567926 / 1.492716 (0.075209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268188 / 0.018006 (0.250182) | 0.520542 / 0.000490 (0.520052) | 0.017617 / 0.000200 (0.017417) | 0.000631 / 0.000054 (0.000577) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028828 / 0.037411 (-0.008584) | 0.083028 / 0.014526 (0.068502) | 0.099808 / 0.176557 (-0.076748) | 0.154282 / 0.737135 (-0.582853) | 0.098590 / 0.296338 (-0.197748) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407548 / 0.215209 (0.192339) | 4.066128 / 2.077655 (1.988474) | 2.036757 / 1.504120 (0.532637) | 1.870130 / 1.541195 (0.328935) | 1.949031 / 1.468490 (0.480541) | 0.489263 / 4.584777 (-4.095514) | 3.506269 / 3.745712 (-0.239443) | 3.457232 / 5.269862 (-1.812629) | 2.060097 / 4.565676 (-2.505580) | 0.057252 / 0.424275 (-0.367024) | 0.007727 / 0.007607 (0.000120) | 0.480229 / 0.226044 (0.254185) | 4.807064 / 2.268929 (2.538135) | 2.495438 / 55.444624 (-52.949186) | 2.186194 / 6.876477 (-4.690283) | 2.243372 / 2.142072 (0.101300) | 0.580550 / 4.805227 (-4.224678) | 0.135398 / 6.500664 (-6.365266) | 0.061878 / 0.075469 (-0.013591) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.305635 / 1.841788 (-0.536152) | 19.194421 / 8.074308 (11.120113) | 14.531699 / 10.191392 (4.340307) | 0.167144 / 0.680424 (-0.513280) | 0.018270 / 0.534201 (-0.515931) | 0.393702 / 0.579283 (-0.185581) | 0.406518 / 0.434364 (-0.027846) | 0.458126 / 0.540337 (-0.082211) | 0.639839 / 1.386936 (-0.747097) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006742 / 0.011353 (-0.004611) | 0.004092 / 0.011008 (-0.006916) | 0.065547 / 0.038508 (0.027039) | 0.076293 / 0.023109 (0.053184) | 0.389701 / 0.275898 (0.113803) | 0.429158 / 0.323480 (0.105678) | 0.005606 / 0.007986 (-0.002380) | 0.003491 / 0.004328 (-0.000837) | 0.065903 / 0.004250 (0.061653) | 0.057346 / 0.037052 (0.020293) | 0.393233 / 0.258489 (0.134744) | 0.433106 / 0.293841 (0.139265) | 0.032612 / 0.128546 (-0.095934) | 0.008777 / 0.075646 (-0.066869) | 0.073135 / 0.419271 (-0.346137) | 0.048167 / 0.043533 (0.004635) | 0.389309 / 0.255139 (0.134170) | 0.416442 / 0.283200 (0.133242) | 0.022839 / 0.141683 (-0.118844) | 1.531607 / 1.452155 (0.079453) | 1.598950 / 1.492716 (0.106234) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254856 / 0.018006 (0.236850) | 0.528186 / 0.000490 (0.527697) | 0.006975 / 0.000200 (0.006775) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032377 / 0.037411 (-0.005034) | 0.092706 / 0.014526 (0.078180) | 0.107618 / 0.176557 (-0.068939) | 0.160103 / 0.737135 (-0.577032) | 0.107226 / 0.296338 (-0.189112) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430922 / 0.215209 (0.215713) | 4.312556 / 2.077655 (2.234901) | 2.287686 / 1.504120 (0.783567) | 2.111103 / 1.541195 (0.569908) | 2.284105 / 1.468490 (0.815614) | 0.485987 / 4.584777 (-4.098790) | 3.557320 / 3.745712 (-0.188392) | 3.341150 / 5.269862 (-1.928711) | 2.056705 / 4.565676 (-2.508972) | 0.057265 / 0.424275 (-0.367010) | 0.007264 / 0.007607 (-0.000344) | 0.505191 / 0.226044 (0.279146) | 5.045379 / 2.268929 (2.776450) | 2.732357 / 55.444624 (-52.712267) | 2.390256 / 6.876477 (-4.486220) | 2.643676 / 2.142072 (0.501604) | 0.584630 / 4.805227 (-4.220597) | 0.132402 / 6.500664 (-6.368262) | 0.061387 / 0.075469 (-0.014082) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340721 / 1.841788 (-0.501066) | 19.744145 / 8.074308 (11.669837) | 14.694482 / 10.191392 (4.503090) | 0.166294 / 0.680424 (-0.514129) | 0.020691 / 0.534201 (-0.513510) | 0.398359 / 0.579283 (-0.180924) | 0.423831 / 0.434364 (-0.010533) | 0.474365 / 0.540337 (-0.065972) | 0.649410 / 1.386936 (-0.737526) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b29bc9cef6237eb0d18f77c56686705f468bed25 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004369 / 0.011353 (-0.006984) | 0.002728 / 0.011008 (-0.008280) | 0.063754 / 0.038508 (0.025246) | 0.029396 / 0.023109 (0.006287) | 0.269409 / 0.275898 (-0.006489) | 0.287654 / 0.323480 (-0.035826) | 0.003926 / 0.007986 (-0.004060) | 0.002366 / 0.004328 (-0.001963) | 0.048910 / 0.004250 (0.044660) | 0.043126 / 0.037052 (0.006074) | 0.260774 / 0.258489 (0.002285) | 0.299996 / 0.293841 (0.006155) | 0.023359 / 0.128546 (-0.105187) | 0.007259 / 0.075646 (-0.068388) | 0.211412 / 0.419271 (-0.207860) | 0.053883 / 0.043533 (0.010350) | 0.268946 / 0.255139 (0.013807) | 0.287664 / 0.283200 (0.004465) | 0.017600 / 0.141683 (-0.124083) | 1.096478 / 1.452155 (-0.355676) | 1.193063 / 1.492716 (-0.299653) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090985 / 0.018006 (0.072979) | 0.287168 / 0.000490 (0.286678) | 0.000208 / 0.000200 (0.000009) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019238 / 0.037411 (-0.018173) | 0.062660 / 0.014526 (0.048134) | 0.073414 / 0.176557 (-0.103143) | 0.120842 / 0.737135 (-0.616294) | 0.077658 / 0.296338 (-0.218681) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280285 / 0.215209 (0.065076) | 2.729807 / 2.077655 (0.652152) | 1.430686 / 1.504120 (-0.073434) | 1.307260 / 1.541195 (-0.233935) | 1.321013 / 1.468490 (-0.147477) | 0.387253 / 4.584777 (-4.197524) | 2.415635 / 3.745712 (-1.330077) | 2.557206 / 5.269862 (-2.712656) | 1.553224 / 4.565676 (-3.012453) | 0.045402 / 0.424275 (-0.378873) | 0.004798 / 0.007607 (-0.002809) | 0.330493 / 0.226044 (0.104449) | 3.226835 / 2.268929 (0.957906) | 1.739068 / 55.444624 (-53.705557) | 1.494841 / 6.876477 (-5.381636) | 1.528253 / 2.142072 (-0.613820) | 0.451525 / 4.805227 (-4.353702) | 0.096620 / 6.500664 (-6.404044) | 0.041176 / 0.075469 (-0.034293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.930892 / 1.841788 (-0.910896) | 11.343351 / 8.074308 (3.269043) | 10.420327 / 10.191392 (0.228935) | 0.137629 / 0.680424 (-0.542795) | 0.013907 / 0.534201 (-0.520293) | 0.267778 / 0.579283 (-0.311505) | 0.260774 / 0.434364 (-0.173590) | 0.308213 / 0.540337 (-0.232124) | 0.419659 / 1.386936 (-0.967277) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004867 / 0.011353 (-0.006486) | 0.002830 / 0.011008 (-0.008178) | 0.048506 / 0.038508 (0.009998) | 0.048190 / 0.023109 (0.025080) | 0.279995 / 0.275898 (0.004097) | 0.296396 / 0.323480 (-0.027083) | 0.004700 / 0.007986 (-0.003285) | 0.003546 / 0.004328 (-0.000782) | 0.048237 / 0.004250 (0.043987) | 0.037102 / 0.037052 (0.000050) | 0.284582 / 0.258489 (0.026093) | 0.315896 / 0.293841 (0.022055) | 0.024699 / 0.128546 (-0.103848) | 0.007077 / 0.075646 (-0.068569) | 0.054471 / 0.419271 (-0.364800) | 0.032537 / 0.043533 (-0.010996) | 0.276761 / 0.255139 (0.021622) | 0.294741 / 0.283200 (0.011542) | 0.017766 / 0.141683 (-0.123917) | 1.118377 / 1.452155 (-0.333778) | 1.186617 / 1.492716 (-0.306100) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088981 / 0.018006 (0.070975) | 0.297793 / 0.000490 (0.297303) | 0.000220 / 0.000200 (0.000020) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021300 / 0.037411 (-0.016111) | 0.070059 / 0.014526 (0.055533) | 0.080452 / 0.176557 (-0.096104) | 0.118461 / 0.737135 (-0.618674) | 0.081099 / 0.296338 (-0.215240) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300560 / 0.215209 (0.085351) | 2.951461 / 2.077655 (0.873806) | 1.621978 / 1.504120 (0.117858) | 1.478871 / 1.541195 (-0.062324) | 1.520732 / 1.468490 (0.052242) | 0.408625 / 4.584777 (-4.176152) | 2.407253 / 3.745712 (-1.338459) | 2.546000 / 5.269862 (-2.723861) | 1.525920 / 4.565676 (-3.039757) | 0.046817 / 0.424275 (-0.377458) | 0.004880 / 0.007607 (-0.002727) | 0.350866 / 0.226044 (0.124821) | 3.489379 / 2.268929 (1.220451) | 1.967197 / 55.444624 (-53.477427) | 1.686083 / 6.876477 (-5.190394) | 1.699307 / 2.142072 (-0.442766) | 0.479659 / 4.805227 (-4.325568) | 0.098853 / 6.500664 (-6.401811) | 0.040718 / 0.075469 (-0.034751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.018352 / 1.841788 (-0.823436) | 12.022551 / 8.074308 (3.948243) | 10.841890 / 10.191392 (0.650498) | 0.130732 / 0.680424 (-0.549692) | 0.016334 / 0.534201 (-0.517867) | 0.271984 / 0.579283 (-0.307299) | 0.276733 / 0.434364 (-0.157631) | 0.308049 / 0.540337 (-0.232289) | 0.415428 / 1.386936 (-0.971508) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#31d95717e4e5fc6dd7699878720f063d51f1d595 \"CML watermark\")\n" ]
2023-10-23T14:54:18
2023-11-16T09:09:42
2023-11-16T09:03:39
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6343", "html_url": "https://github.com/huggingface/datasets/pull/6343", "diff_url": "https://github.com/huggingface/datasets/pull/6343.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6343.patch", "merged_at": "2023-11-16T09:03:39" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6343/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6343/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6342
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6342/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6342/comments
https://api.github.com/repos/huggingface/datasets/issues/6342/events
https://github.com/huggingface/datasets/pull/6342
1,957,344,445
PR_kwDODunzps5dijxt
6,342
Release: 2.14.6
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007051 / 0.011353 (-0.004302) | 0.004291 / 0.011008 (-0.006717) | 0.085557 / 0.038508 (0.047048) | 0.087919 / 0.023109 (0.064810) | 0.356912 / 0.275898 (0.081014) | 0.394835 / 0.323480 (0.071355) | 0.004464 / 0.007986 (-0.003522) | 0.003688 / 0.004328 (-0.000640) | 0.065437 / 0.004250 (0.061186) | 0.060156 / 0.037052 (0.023103) | 0.361807 / 0.258489 (0.103318) | 0.420917 / 0.293841 (0.127076) | 0.031704 / 0.128546 (-0.096842) | 0.008921 / 0.075646 (-0.066726) | 0.287828 / 0.419271 (-0.131443) | 0.053600 / 0.043533 (0.010067) | 0.361833 / 0.255139 (0.106694) | 0.396732 / 0.283200 (0.113532) | 0.025874 / 0.141683 (-0.115809) | 1.474926 / 1.452155 (0.022771) | 1.563186 / 1.492716 (0.070469) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316823 / 0.018006 (0.298817) | 0.604085 / 0.000490 (0.603595) | 0.020828 / 0.000200 (0.020628) | 0.000351 / 0.000054 (0.000297) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030468 / 0.037411 (-0.006943) | 0.083904 / 0.014526 (0.069378) | 0.103019 / 0.176557 (-0.073537) | 0.159018 / 0.737135 (-0.578117) | 0.102737 / 0.296338 (-0.193602) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405311 / 0.215209 (0.190102) | 4.029060 / 2.077655 (1.951406) | 2.046590 / 1.504120 (0.542470) | 1.919335 / 1.541195 (0.378140) | 2.030371 / 1.468490 (0.561881) | 0.484209 / 4.584777 (-4.100568) | 3.486888 / 3.745712 (-0.258824) | 3.390777 / 5.269862 (-1.879084) | 2.110744 / 4.565676 (-2.454933) | 0.056587 / 0.424275 (-0.367688) | 0.007766 / 0.007607 (0.000159) | 0.488217 / 0.226044 (0.262173) | 4.853904 / 2.268929 (2.584976) | 2.595122 / 55.444624 (-52.849502) | 2.217712 / 6.876477 (-4.658765) | 2.500368 / 2.142072 (0.358296) | 0.580843 / 4.805227 (-4.224384) | 0.132719 / 6.500664 (-6.367945) | 0.060202 / 0.075469 (-0.015267) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260748 / 1.841788 (-0.581040) | 20.148848 / 8.074308 (12.074540) | 14.738779 / 10.191392 (4.547387) | 0.167562 / 0.680424 (-0.512862) | 0.018944 / 0.534201 (-0.515257) | 0.394314 / 0.579283 (-0.184969) | 0.409345 / 0.434364 (-0.025019) | 0.458743 / 0.540337 (-0.081594) | 0.638175 / 1.386936 (-0.748761) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007097 / 0.011353 (-0.004256) | 0.004304 / 0.011008 (-0.006705) | 0.065539 / 0.038508 (0.027030) | 0.094078 / 0.023109 (0.070969) | 0.412411 / 0.275898 (0.136513) | 0.441900 / 0.323480 (0.118420) | 0.006038 / 0.007986 (-0.001948) | 0.003647 / 0.004328 (-0.000682) | 0.065298 / 0.004250 (0.061048) | 0.062571 / 0.037052 (0.025518) | 0.405156 / 0.258489 (0.146667) | 0.443779 / 0.293841 (0.149938) | 0.034470 / 0.128546 (-0.094077) | 0.008858 / 0.075646 (-0.066789) | 0.071840 / 0.419271 (-0.347431) | 0.050468 / 0.043533 (0.006935) | 0.404198 / 0.255139 (0.149059) | 0.430196 / 0.283200 (0.146997) | 0.025710 / 0.141683 (-0.115973) | 1.525374 / 1.452155 (0.073219) | 1.591830 / 1.492716 (0.099114) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.294330 / 0.018006 (0.276324) | 0.516943 / 0.000490 (0.516453) | 0.004807 / 0.000200 (0.004607) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034505 / 0.037411 (-0.002907) | 0.096645 / 0.014526 (0.082119) | 0.111926 / 0.176557 (-0.064630) | 0.165241 / 0.737135 (-0.571894) | 0.111834 / 0.296338 (-0.184504) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436370 / 0.215209 (0.221161) | 4.357568 / 2.077655 (2.279913) | 2.360529 / 1.504120 (0.856409) | 2.196375 / 1.541195 (0.655180) | 2.307481 / 1.468490 (0.838991) | 0.494072 / 4.584777 (-4.090705) | 3.565078 / 3.745712 (-0.180634) | 3.405174 / 5.269862 (-1.864688) | 2.203307 / 4.565676 (-2.362369) | 0.058582 / 0.424275 (-0.365693) | 0.007410 / 0.007607 (-0.000197) | 0.514323 / 0.226044 (0.288279) | 5.139834 / 2.268929 (2.870905) | 2.884111 / 55.444624 (-52.560513) | 2.589021 / 6.876477 (-4.287456) | 2.787577 / 2.142072 (0.645504) | 0.590765 / 4.805227 (-4.214462) | 0.135237 / 6.500664 (-6.365427) | 0.061078 / 0.075469 (-0.014391) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346938 / 1.841788 (-0.494850) | 21.009948 / 8.074308 (12.935640) | 15.203281 / 10.191392 (5.011889) | 0.166208 / 0.680424 (-0.514216) | 0.020634 / 0.534201 (-0.513567) | 0.413825 / 0.579283 (-0.165458) | 0.416477 / 0.434364 (-0.017887) | 0.485888 / 0.540337 (-0.054449) | 0.664941 / 1.386936 (-0.721995) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#395b30ee2c0f6088e28fe78a3e61b591e40a4668 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005927 / 0.011353 (-0.005425) | 0.003622 / 0.011008 (-0.007386) | 0.081414 / 0.038508 (0.042906) | 0.061031 / 0.023109 (0.037922) | 0.358323 / 0.275898 (0.082425) | 0.394192 / 0.323480 (0.070712) | 0.003471 / 0.007986 (-0.004515) | 0.002930 / 0.004328 (-0.001399) | 0.064215 / 0.004250 (0.059964) | 0.048678 / 0.037052 (0.011625) | 0.367966 / 0.258489 (0.109477) | 0.412618 / 0.293841 (0.118777) | 0.027192 / 0.128546 (-0.101355) | 0.007921 / 0.075646 (-0.067725) | 0.262213 / 0.419271 (-0.157059) | 0.044750 / 0.043533 (0.001217) | 0.351573 / 0.255139 (0.096434) | 0.389000 / 0.283200 (0.105800) | 0.020842 / 0.141683 (-0.120840) | 1.448925 / 1.452155 (-0.003229) | 1.530478 / 1.492716 (0.037761) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227787 / 0.018006 (0.209780) | 0.423161 / 0.000490 (0.422671) | 0.007557 / 0.000200 (0.007357) | 0.000205 / 0.000054 (0.000150) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024703 / 0.037411 (-0.012709) | 0.074044 / 0.014526 (0.059518) | 0.085520 / 0.176557 (-0.091037) | 0.146132 / 0.737135 (-0.591003) | 0.085637 / 0.296338 (-0.210701) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393177 / 0.215209 (0.177968) | 3.926740 / 2.077655 (1.849085) | 1.892420 / 1.504120 (0.388300) | 1.716844 / 1.541195 (0.175650) | 1.784040 / 1.468490 (0.315550) | 0.499570 / 4.584777 (-4.085207) | 3.057764 / 3.745712 (-0.687948) | 2.885463 / 5.269862 (-2.384399) | 1.905206 / 4.565676 (-2.660471) | 0.058216 / 0.424275 (-0.366059) | 0.006805 / 0.007607 (-0.000802) | 0.465406 / 0.226044 (0.239361) | 4.658569 / 2.268929 (2.389641) | 2.461737 / 55.444624 (-52.982887) | 2.170620 / 6.876477 (-4.705856) | 2.373715 / 2.142072 (0.231643) | 0.592818 / 4.805227 (-4.212409) | 0.127960 / 6.500664 (-6.372704) | 0.061696 / 0.075469 (-0.013773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.229073 / 1.841788 (-0.612715) | 17.832087 / 8.074308 (9.757778) | 13.889485 / 10.191392 (3.698093) | 0.142237 / 0.680424 (-0.538187) | 0.016752 / 0.534201 (-0.517449) | 0.338342 / 0.579283 (-0.240941) | 0.383933 / 0.434364 (-0.050431) | 0.393017 / 0.540337 (-0.147320) | 0.557621 / 1.386936 (-0.829315) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006218 / 0.011353 (-0.005135) | 0.003679 / 0.011008 (-0.007329) | 0.062934 / 0.038508 (0.024426) | 0.066764 / 0.023109 (0.043655) | 0.482737 / 0.275898 (0.206839) | 0.483241 / 0.323480 (0.159761) | 0.004828 / 0.007986 (-0.003158) | 0.002880 / 0.004328 (-0.001448) | 0.063111 / 0.004250 (0.058861) | 0.049500 / 0.037052 (0.012448) | 0.453155 / 0.258489 (0.194666) | 0.488776 / 0.293841 (0.194935) | 0.028568 / 0.128546 (-0.099978) | 0.008490 / 0.075646 (-0.067157) | 0.068202 / 0.419271 (-0.351069) | 0.040695 / 0.043533 (-0.002838) | 0.457473 / 0.255139 (0.202334) | 0.471968 / 0.283200 (0.188768) | 0.021261 / 0.141683 (-0.120422) | 1.476304 / 1.452155 (0.024150) | 1.503433 / 1.492716 (0.010716) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227108 / 0.018006 (0.209102) | 0.428330 / 0.000490 (0.427840) | 0.004637 / 0.000200 (0.004437) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027253 / 0.037411 (-0.010158) | 0.081990 / 0.014526 (0.067464) | 0.092763 / 0.176557 (-0.083794) | 0.146155 / 0.737135 (-0.590981) | 0.093175 / 0.296338 (-0.203164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.464585 / 0.215209 (0.249376) | 4.630704 / 2.077655 (2.553050) | 2.583272 / 1.504120 (1.079152) | 2.393810 / 1.541195 (0.852615) | 2.463255 / 1.468490 (0.994765) | 0.507045 / 4.584777 (-4.077732) | 3.181972 / 3.745712 (-0.563740) | 2.902321 / 5.269862 (-2.367541) | 1.905431 / 4.565676 (-2.660246) | 0.059427 / 0.424275 (-0.364848) | 0.006387 / 0.007607 (-0.001220) | 0.542247 / 0.226044 (0.316203) | 5.426868 / 2.268929 (3.157939) | 3.073489 / 55.444624 (-52.371136) | 2.719620 / 6.876477 (-4.156857) | 2.861865 / 2.142072 (0.719793) | 0.593757 / 4.805227 (-4.211471) | 0.125439 / 6.500664 (-6.375225) | 0.060901 / 0.075469 (-0.014568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.359938 / 1.841788 (-0.481850) | 18.484867 / 8.074308 (10.410559) | 14.685645 / 10.191392 (4.494253) | 0.164098 / 0.680424 (-0.516325) | 0.018090 / 0.534201 (-0.516111) | 0.339760 / 0.579283 (-0.239523) | 0.376668 / 0.434364 (-0.057696) | 0.396963 / 0.540337 (-0.143374) | 0.549305 / 1.386936 (-0.837631) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0c896f4195ec8a91e09f8bb9a57950bcec8b8450 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006052 / 0.011353 (-0.005301) | 0.003715 / 0.011008 (-0.007293) | 0.079646 / 0.038508 (0.041138) | 0.059053 / 0.023109 (0.035944) | 0.393016 / 0.275898 (0.117118) | 0.424758 / 0.323480 (0.101278) | 0.005407 / 0.007986 (-0.002578) | 0.002920 / 0.004328 (-0.001408) | 0.062145 / 0.004250 (0.057894) | 0.047289 / 0.037052 (0.010237) | 0.399848 / 0.258489 (0.141359) | 0.434239 / 0.293841 (0.140398) | 0.027388 / 0.128546 (-0.101158) | 0.007967 / 0.075646 (-0.067680) | 0.262546 / 0.419271 (-0.156725) | 0.045014 / 0.043533 (0.001482) | 0.398086 / 0.255139 (0.142947) | 0.414615 / 0.283200 (0.131415) | 0.020410 / 0.141683 (-0.121272) | 1.447276 / 1.452155 (-0.004879) | 1.512390 / 1.492716 (0.019673) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224854 / 0.018006 (0.206847) | 0.434173 / 0.000490 (0.433683) | 0.010091 / 0.000200 (0.009891) | 0.000259 / 0.000054 (0.000205) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025316 / 0.037411 (-0.012095) | 0.073284 / 0.014526 (0.058758) | 0.085177 / 0.176557 (-0.091379) | 0.148905 / 0.737135 (-0.588230) | 0.084696 / 0.296338 (-0.211642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438259 / 0.215209 (0.223050) | 4.380679 / 2.077655 (2.303025) | 2.310329 / 1.504120 (0.806209) | 2.144002 / 1.541195 (0.602807) | 2.203761 / 1.468490 (0.735270) | 0.500559 / 4.584777 (-4.084218) | 3.031172 / 3.745712 (-0.714540) | 2.839425 / 5.269862 (-2.430436) | 1.878391 / 4.565676 (-2.687285) | 0.057325 / 0.424275 (-0.366950) | 0.006719 / 0.007607 (-0.000888) | 0.510122 / 0.226044 (0.284078) | 5.108632 / 2.268929 (2.839704) | 2.805716 / 55.444624 (-52.638909) | 2.422183 / 6.876477 (-4.454293) | 2.635280 / 2.142072 (0.493207) | 0.589351 / 4.805227 (-4.215876) | 0.125416 / 6.500664 (-6.375248) | 0.061142 / 0.075469 (-0.014327) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234997 / 1.841788 (-0.606791) | 17.731828 / 8.074308 (9.657520) | 13.858081 / 10.191392 (3.666689) | 0.145975 / 0.680424 (-0.534449) | 0.016827 / 0.534201 (-0.517374) | 0.335701 / 0.579283 (-0.243582) | 0.361867 / 0.434364 (-0.072497) | 0.394620 / 0.540337 (-0.145718) | 0.532146 / 1.386936 (-0.854790) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006091 / 0.011353 (-0.005262) | 0.003663 / 0.011008 (-0.007345) | 0.062596 / 0.038508 (0.024088) | 0.061649 / 0.023109 (0.038539) | 0.440647 / 0.275898 (0.164749) | 0.472974 / 0.323480 (0.149494) | 0.005009 / 0.007986 (-0.002976) | 0.002879 / 0.004328 (-0.001449) | 0.062815 / 0.004250 (0.058565) | 0.049000 / 0.037052 (0.011947) | 0.442990 / 0.258489 (0.184501) | 0.477622 / 0.293841 (0.183781) | 0.028512 / 0.128546 (-0.100034) | 0.008031 / 0.075646 (-0.067615) | 0.067853 / 0.419271 (-0.351418) | 0.040823 / 0.043533 (-0.002710) | 0.437811 / 0.255139 (0.182672) | 0.464615 / 0.283200 (0.181416) | 0.021348 / 0.141683 (-0.120334) | 1.479230 / 1.452155 (0.027075) | 1.544053 / 1.492716 (0.051337) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210697 / 0.018006 (0.192691) | 0.436450 / 0.000490 (0.435960) | 0.003413 / 0.000200 (0.003213) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027190 / 0.037411 (-0.010222) | 0.083254 / 0.014526 (0.068728) | 0.092936 / 0.176557 (-0.083620) | 0.147261 / 0.737135 (-0.589874) | 0.092910 / 0.296338 (-0.203429) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.454195 / 0.215209 (0.238986) | 4.569122 / 2.077655 (2.491468) | 2.497198 / 1.504120 (0.993079) | 2.314337 / 1.541195 (0.773142) | 2.378471 / 1.468490 (0.909981) | 0.515402 / 4.584777 (-4.069375) | 3.199374 / 3.745712 (-0.546338) | 2.899300 / 5.269862 (-2.370562) | 1.873314 / 4.565676 (-2.692362) | 0.058820 / 0.424275 (-0.365455) | 0.006651 / 0.007607 (-0.000957) | 0.526681 / 0.226044 (0.300636) | 5.275232 / 2.268929 (3.006303) | 2.969107 / 55.444624 (-52.475517) | 2.600959 / 6.876477 (-4.275518) | 2.762930 / 2.142072 (0.620858) | 0.605726 / 4.805227 (-4.199501) | 0.127618 / 6.500664 (-6.373046) | 0.062840 / 0.075469 (-0.012629) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.367276 / 1.841788 (-0.474512) | 18.069385 / 8.074308 (9.995077) | 14.691945 / 10.191392 (4.500553) | 0.147203 / 0.680424 (-0.533221) | 0.018484 / 0.534201 (-0.515717) | 0.333759 / 0.579283 (-0.245524) | 0.395503 / 0.434364 (-0.038861) | 0.387031 / 0.540337 (-0.153306) | 0.550428 / 1.386936 (-0.836508) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c8f7eb79dff66dd03211321dcb55f7a7a05ef38 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007675 / 0.011353 (-0.003678) | 0.004532 / 0.011008 (-0.006476) | 0.088176 / 0.038508 (0.049668) | 0.103257 / 0.023109 (0.080148) | 0.314785 / 0.275898 (0.038887) | 0.354280 / 0.323480 (0.030800) | 0.004638 / 0.007986 (-0.003348) | 0.003736 / 0.004328 (-0.000592) | 0.066744 / 0.004250 (0.062493) | 0.064647 / 0.037052 (0.027595) | 0.320227 / 0.258489 (0.061738) | 0.369581 / 0.293841 (0.075740) | 0.032347 / 0.128546 (-0.096199) | 0.009226 / 0.075646 (-0.066421) | 0.292966 / 0.419271 (-0.126306) | 0.055738 / 0.043533 (0.012206) | 0.316537 / 0.255139 (0.061398) | 0.334699 / 0.283200 (0.051499) | 0.027401 / 0.141683 (-0.114282) | 1.482390 / 1.452155 (0.030236) | 1.594771 / 1.492716 (0.102055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322181 / 0.018006 (0.304175) | 0.577701 / 0.000490 (0.577212) | 0.014565 / 0.000200 (0.014365) | 0.000393 / 0.000054 (0.000338) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033255 / 0.037411 (-0.004156) | 0.094271 / 0.014526 (0.079745) | 0.105360 / 0.176557 (-0.071197) | 0.163699 / 0.737135 (-0.573436) | 0.105620 / 0.296338 (-0.190719) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383449 / 0.215209 (0.168240) | 3.824292 / 2.077655 (1.746637) | 1.861809 / 1.504120 (0.357689) | 1.698153 / 1.541195 (0.156958) | 1.819460 / 1.468490 (0.350970) | 0.488277 / 4.584777 (-4.096500) | 3.622772 / 3.745712 (-0.122940) | 3.486041 / 5.269862 (-1.783821) | 2.211679 / 4.565676 (-2.353998) | 0.057637 / 0.424275 (-0.366638) | 0.008028 / 0.007607 (0.000421) | 0.461917 / 0.226044 (0.235873) | 4.626493 / 2.268929 (2.357565) | 2.374846 / 55.444624 (-53.069779) | 1.976003 / 6.876477 (-4.900473) | 2.325342 / 2.142072 (0.183269) | 0.582538 / 4.805227 (-4.222689) | 0.133575 / 6.500664 (-6.367089) | 0.061696 / 0.075469 (-0.013773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271846 / 1.841788 (-0.569941) | 20.944702 / 8.074308 (12.870394) | 15.438119 / 10.191392 (5.246727) | 0.167334 / 0.680424 (-0.513090) | 0.019538 / 0.534201 (-0.514663) | 0.401467 / 0.579283 (-0.177816) | 0.428222 / 0.434364 (-0.006142) | 0.466108 / 0.540337 (-0.074229) | 0.645326 / 1.386936 (-0.741610) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007096 / 0.011353 (-0.004257) | 0.004398 / 0.011008 (-0.006610) | 0.066253 / 0.038508 (0.027745) | 0.089415 / 0.023109 (0.066306) | 0.395760 / 0.275898 (0.119862) | 0.436058 / 0.323480 (0.112579) | 0.005944 / 0.007986 (-0.002042) | 0.003821 / 0.004328 (-0.000507) | 0.065286 / 0.004250 (0.061036) | 0.060990 / 0.037052 (0.023937) | 0.394674 / 0.258489 (0.136185) | 0.437672 / 0.293841 (0.143831) | 0.032370 / 0.128546 (-0.096177) | 0.009025 / 0.075646 (-0.066622) | 0.071365 / 0.419271 (-0.347906) | 0.048232 / 0.043533 (0.004699) | 0.395677 / 0.255139 (0.140538) | 0.415869 / 0.283200 (0.132669) | 0.024632 / 0.141683 (-0.117051) | 1.511386 / 1.452155 (0.059231) | 1.604475 / 1.492716 (0.111759) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.312864 / 0.018006 (0.294858) | 0.535432 / 0.000490 (0.534943) | 0.005195 / 0.000200 (0.004995) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035827 / 0.037411 (-0.001584) | 0.099353 / 0.014526 (0.084827) | 0.110796 / 0.176557 (-0.065761) | 0.165224 / 0.737135 (-0.571911) | 0.112111 / 0.296338 (-0.184228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428873 / 0.215209 (0.213664) | 4.284264 / 2.077655 (2.206609) | 2.303966 / 1.504120 (0.799847) | 2.153868 / 1.541195 (0.612674) | 2.275669 / 1.468490 (0.807179) | 0.495452 / 4.584777 (-4.089325) | 3.706773 / 3.745712 (-0.038939) | 3.471988 / 5.269862 (-1.797874) | 2.194851 / 4.565676 (-2.370825) | 0.058998 / 0.424275 (-0.365277) | 0.007522 / 0.007607 (-0.000085) | 0.511222 / 0.226044 (0.285177) | 5.097058 / 2.268929 (2.828130) | 2.856793 / 55.444624 (-52.587832) | 2.521907 / 6.876477 (-4.354569) | 2.783133 / 2.142072 (0.641060) | 0.600511 / 4.805227 (-4.204717) | 0.134130 / 6.500664 (-6.366534) | 0.061726 / 0.075469 (-0.013743) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.385272 / 1.841788 (-0.456516) | 21.149260 / 8.074308 (13.074952) | 15.548746 / 10.191392 (5.357354) | 0.167506 / 0.680424 (-0.512918) | 0.020494 / 0.534201 (-0.513707) | 0.400697 / 0.579283 (-0.178586) | 0.427386 / 0.434364 (-0.006978) | 0.478514 / 0.540337 (-0.061824) | 0.655753 / 1.386936 (-0.731183) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c8f7eb79dff66dd03211321dcb55f7a7a05ef38 \"CML watermark\")\n" ]
2023-10-23T14:43:26
2023-10-23T15:21:54
2023-10-23T15:07:25
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6342", "html_url": "https://github.com/huggingface/datasets/pull/6342", "diff_url": "https://github.com/huggingface/datasets/pull/6342.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6342.patch", "merged_at": "2023-10-23T15:07:25" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6342/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6342/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6340
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6340/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6340/comments
https://api.github.com/repos/huggingface/datasets/issues/6340/events
https://github.com/huggingface/datasets/pull/6340
1,956,917,893
PR_kwDODunzps5dhGpW
6,340
Release 2.14.5
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6340). All of your documentation changes will be reflected on that endpoint." ]
2023-10-23T11:10:22
2023-10-23T14:20:46
2023-10-23T11:12:40
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6340", "html_url": "https://github.com/huggingface/datasets/pull/6340", "diff_url": "https://github.com/huggingface/datasets/pull/6340.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6340.patch", "merged_at": null }
(wrong release number - I was continuing the 2.14 branch but 2.14.5 was released from `main`)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6340/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6340/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6339
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6339/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6339/comments
https://api.github.com/repos/huggingface/datasets/issues/6339/events
https://github.com/huggingface/datasets/pull/6339
1,956,912,627
PR_kwDODunzps5dhFfg
6,339
minor release step improvement
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006572 / 0.011353 (-0.004780) | 0.004019 / 0.011008 (-0.006989) | 0.084080 / 0.038508 (0.045572) | 0.070111 / 0.023109 (0.047002) | 0.340440 / 0.275898 (0.064542) | 0.358839 / 0.323480 (0.035359) | 0.005254 / 0.007986 (-0.002732) | 0.003296 / 0.004328 (-0.001032) | 0.064368 / 0.004250 (0.060117) | 0.054549 / 0.037052 (0.017497) | 0.343817 / 0.258489 (0.085328) | 0.369871 / 0.293841 (0.076030) | 0.030621 / 0.128546 (-0.097925) | 0.008457 / 0.075646 (-0.067189) | 0.287839 / 0.419271 (-0.131432) | 0.051700 / 0.043533 (0.008167) | 0.331602 / 0.255139 (0.076463) | 0.339836 / 0.283200 (0.056636) | 0.023224 / 0.141683 (-0.118459) | 1.494597 / 1.452155 (0.042443) | 1.578640 / 1.492716 (0.085924) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236985 / 0.018006 (0.218979) | 0.506153 / 0.000490 (0.505664) | 0.009753 / 0.000200 (0.009553) | 0.000345 / 0.000054 (0.000291) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028355 / 0.037411 (-0.009056) | 0.082104 / 0.014526 (0.067578) | 0.095141 / 0.176557 (-0.081415) | 0.151054 / 0.737135 (-0.586081) | 0.095139 / 0.296338 (-0.201200) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403773 / 0.215209 (0.188564) | 4.025567 / 2.077655 (1.947912) | 2.024641 / 1.504120 (0.520521) | 1.857039 / 1.541195 (0.315845) | 1.957346 / 1.468490 (0.488856) | 0.481486 / 4.584777 (-4.103291) | 3.574463 / 3.745712 (-0.171249) | 3.399311 / 5.269862 (-1.870551) | 1.996806 / 4.565676 (-2.568870) | 0.056644 / 0.424275 (-0.367631) | 0.007503 / 0.007607 (-0.000104) | 0.479480 / 0.226044 (0.253435) | 4.793686 / 2.268929 (2.524757) | 2.481011 / 55.444624 (-52.963613) | 2.176473 / 6.876477 (-4.700004) | 2.203192 / 2.142072 (0.061120) | 0.574071 / 4.805227 (-4.231156) | 0.131852 / 6.500664 (-6.368812) | 0.058883 / 0.075469 (-0.016586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249945 / 1.841788 (-0.591842) | 18.439267 / 8.074308 (10.364959) | 14.100934 / 10.191392 (3.909542) | 0.164191 / 0.680424 (-0.516233) | 0.018086 / 0.534201 (-0.516115) | 0.390821 / 0.579283 (-0.188462) | 0.414166 / 0.434364 (-0.020198) | 0.460073 / 0.540337 (-0.080265) | 0.636299 / 1.386936 (-0.750637) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006606 / 0.011353 (-0.004747) | 0.003987 / 0.011008 (-0.007021) | 0.064616 / 0.038508 (0.026108) | 0.070830 / 0.023109 (0.047721) | 0.397340 / 0.275898 (0.121442) | 0.426823 / 0.323480 (0.103343) | 0.005345 / 0.007986 (-0.002641) | 0.003264 / 0.004328 (-0.001065) | 0.064728 / 0.004250 (0.060477) | 0.055763 / 0.037052 (0.018711) | 0.405347 / 0.258489 (0.146858) | 0.433163 / 0.293841 (0.139322) | 0.032394 / 0.128546 (-0.096153) | 0.008474 / 0.075646 (-0.067172) | 0.071583 / 0.419271 (-0.347689) | 0.048424 / 0.043533 (0.004892) | 0.400582 / 0.255139 (0.145443) | 0.418111 / 0.283200 (0.134911) | 0.022257 / 0.141683 (-0.119426) | 1.495521 / 1.452155 (0.043366) | 1.554626 / 1.492716 (0.061910) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218249 / 0.018006 (0.200242) | 0.438527 / 0.000490 (0.438037) | 0.005406 / 0.000200 (0.005206) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031600 / 0.037411 (-0.005812) | 0.090836 / 0.014526 (0.076310) | 0.105000 / 0.176557 (-0.071556) | 0.157648 / 0.737135 (-0.579487) | 0.103827 / 0.296338 (-0.192512) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426428 / 0.215209 (0.211219) | 4.259435 / 2.077655 (2.181780) | 2.300795 / 1.504120 (0.796675) | 2.121302 / 1.541195 (0.580108) | 2.145602 / 1.468490 (0.677112) | 0.486856 / 4.584777 (-4.097921) | 3.673568 / 3.745712 (-0.072144) | 3.278619 / 5.269862 (-1.991243) | 2.037760 / 4.565676 (-2.527917) | 0.057699 / 0.424275 (-0.366576) | 0.007269 / 0.007607 (-0.000338) | 0.499549 / 0.226044 (0.273505) | 4.996214 / 2.268929 (2.727285) | 2.766480 / 55.444624 (-52.678144) | 2.417308 / 6.876477 (-4.459168) | 2.581026 / 2.142072 (0.438953) | 0.589463 / 4.805227 (-4.215765) | 0.134820 / 6.500664 (-6.365844) | 0.061699 / 0.075469 (-0.013770) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353704 / 1.841788 (-0.488084) | 19.104167 / 8.074308 (11.029859) | 14.652166 / 10.191392 (4.460774) | 0.171885 / 0.680424 (-0.508539) | 0.020222 / 0.534201 (-0.513978) | 0.396777 / 0.579283 (-0.182506) | 0.426304 / 0.434364 (-0.008060) | 0.471347 / 0.540337 (-0.068991) | 0.635887 / 1.386936 (-0.751049) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce19ec527c581eddec306a03ad1db554223cc94a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004686 / 0.011353 (-0.006667) | 0.002998 / 0.011008 (-0.008010) | 0.063604 / 0.038508 (0.025096) | 0.048927 / 0.023109 (0.025818) | 0.247238 / 0.275898 (-0.028660) | 0.272409 / 0.323480 (-0.051071) | 0.003909 / 0.007986 (-0.004077) | 0.002469 / 0.004328 (-0.001859) | 0.048473 / 0.004250 (0.044223) | 0.037514 / 0.037052 (0.000462) | 0.257292 / 0.258489 (-0.001197) | 0.285203 / 0.293841 (-0.008638) | 0.023131 / 0.128546 (-0.105415) | 0.006803 / 0.075646 (-0.068843) | 0.202920 / 0.419271 (-0.216351) | 0.035653 / 0.043533 (-0.007880) | 0.254791 / 0.255139 (-0.000348) | 0.272973 / 0.283200 (-0.010226) | 0.017707 / 0.141683 (-0.123976) | 1.091606 / 1.452155 (-0.360549) | 1.151453 / 1.492716 (-0.341263) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093701 / 0.018006 (0.075695) | 0.304199 / 0.000490 (0.303709) | 0.000223 / 0.000200 (0.000023) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019291 / 0.037411 (-0.018120) | 0.062168 / 0.014526 (0.047642) | 0.073273 / 0.176557 (-0.103284) | 0.119497 / 0.737135 (-0.617638) | 0.075008 / 0.296338 (-0.221331) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279983 / 0.215209 (0.064774) | 2.774413 / 2.077655 (0.696758) | 1.476678 / 1.504120 (-0.027441) | 1.336273 / 1.541195 (-0.204922) | 1.332349 / 1.468490 (-0.136142) | 0.403150 / 4.584777 (-4.181627) | 2.390026 / 3.745712 (-1.355686) | 2.619151 / 5.269862 (-2.650711) | 1.578607 / 4.565676 (-2.987069) | 0.046632 / 0.424275 (-0.377643) | 0.007352 / 0.007607 (-0.000255) | 0.333419 / 0.226044 (0.107375) | 3.288734 / 2.268929 (1.019805) | 1.843677 / 55.444624 (-53.600947) | 1.536746 / 6.876477 (-5.339731) | 1.573005 / 2.142072 (-0.569067) | 0.475699 / 4.805227 (-4.329529) | 0.104742 / 6.500664 (-6.395922) | 0.042450 / 0.075469 (-0.033019) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.949039 / 1.841788 (-0.892749) | 11.895928 / 8.074308 (3.821620) | 10.650521 / 10.191392 (0.459129) | 0.142308 / 0.680424 (-0.538116) | 0.014207 / 0.534201 (-0.519994) | 0.274011 / 0.579283 (-0.305272) | 0.288259 / 0.434364 (-0.146105) | 0.327729 / 0.540337 (-0.212609) | 0.395728 / 1.386936 (-0.991208) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004830 / 0.011353 (-0.006523) | 0.002978 / 0.011008 (-0.008030) | 0.048623 / 0.038508 (0.010114) | 0.055040 / 0.023109 (0.031930) | 0.276436 / 0.275898 (0.000538) | 0.302403 / 0.323480 (-0.021076) | 0.004080 / 0.007986 (-0.003905) | 0.002479 / 0.004328 (-0.001849) | 0.048078 / 0.004250 (0.043827) | 0.039680 / 0.037052 (0.002627) | 0.279095 / 0.258489 (0.020606) | 0.307399 / 0.293841 (0.013558) | 0.024533 / 0.128546 (-0.104013) | 0.007196 / 0.075646 (-0.068450) | 0.053879 / 0.419271 (-0.365393) | 0.032545 / 0.043533 (-0.010988) | 0.275501 / 0.255139 (0.020362) | 0.298530 / 0.283200 (0.015330) | 0.017992 / 0.141683 (-0.123691) | 1.144191 / 1.452155 (-0.307963) | 1.208309 / 1.492716 (-0.284408) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095690 / 0.018006 (0.077684) | 0.304932 / 0.000490 (0.304442) | 0.000223 / 0.000200 (0.000023) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021409 / 0.037411 (-0.016003) | 0.069861 / 0.014526 (0.055335) | 0.080959 / 0.176557 (-0.095597) | 0.119432 / 0.737135 (-0.617703) | 0.083649 / 0.296338 (-0.212690) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297243 / 0.215209 (0.082034) | 2.909288 / 2.077655 (0.831634) | 1.571512 / 1.504120 (0.067392) | 1.452403 / 1.541195 (-0.088792) | 1.481290 / 1.468490 (0.012800) | 0.405795 / 4.584777 (-4.178982) | 2.452923 / 3.745712 (-1.292789) | 2.513371 / 5.269862 (-2.756490) | 1.593216 / 4.565676 (-2.972460) | 0.048073 / 0.424275 (-0.376202) | 0.005312 / 0.007607 (-0.002296) | 0.355783 / 0.226044 (0.129738) | 3.494062 / 2.268929 (1.225133) | 1.947388 / 55.444624 (-53.497236) | 1.651724 / 6.876477 (-5.224753) | 1.789007 / 2.142072 (-0.353065) | 0.487073 / 4.805227 (-4.318154) | 0.100271 / 6.500664 (-6.400393) | 0.041571 / 0.075469 (-0.033898) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983766 / 1.841788 (-0.858021) | 12.384778 / 8.074308 (4.310469) | 10.669519 / 10.191392 (0.478127) | 0.133105 / 0.680424 (-0.547318) | 0.016665 / 0.534201 (-0.517536) | 0.269479 / 0.579283 (-0.309804) | 0.276498 / 0.434364 (-0.157866) | 0.302105 / 0.540337 (-0.238233) | 0.391204 / 1.386936 (-0.995732) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12ebe695b4748c5a26e08b44ed51955f74f5801d \"CML watermark\")\n" ]
2023-10-23T11:07:04
2023-11-07T10:38:54
2023-11-07T10:32:41
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6339", "html_url": "https://github.com/huggingface/datasets/pull/6339", "diff_url": "https://github.com/huggingface/datasets/pull/6339.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6339.patch", "merged_at": "2023-11-07T10:32:41" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6339/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6339/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6338
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6338/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6338/comments
https://api.github.com/repos/huggingface/datasets/issues/6338/events
https://github.com/huggingface/datasets/pull/6338
1,956,886,072
PR_kwDODunzps5dg_sb
6,338
pin fsspec before it switches to glob.glob
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "closing in favor of https://github.com/huggingface/datasets/pull/6337", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6338). All of your documentation changes will be reflected on that endpoint." ]
2023-10-23T10:50:54
2024-01-11T06:32:56
2023-10-23T10:51:52
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6338", "html_url": "https://github.com/huggingface/datasets/pull/6338", "diff_url": "https://github.com/huggingface/datasets/pull/6338.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6338.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6338/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6338/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6337
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6337/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6337/comments
https://api.github.com/repos/huggingface/datasets/issues/6337/events
https://github.com/huggingface/datasets/pull/6337
1,956,875,259
PR_kwDODunzps5dg9Uu
6,337
Pin supported upper version of fsspec
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006915 / 0.011353 (-0.004438) | 0.004110 / 0.011008 (-0.006898) | 0.084392 / 0.038508 (0.045884) | 0.079649 / 0.023109 (0.056540) | 0.305760 / 0.275898 (0.029862) | 0.343968 / 0.323480 (0.020488) | 0.005402 / 0.007986 (-0.002584) | 0.003342 / 0.004328 (-0.000986) | 0.064774 / 0.004250 (0.060523) | 0.055919 / 0.037052 (0.018866) | 0.315194 / 0.258489 (0.056705) | 0.355014 / 0.293841 (0.061173) | 0.032140 / 0.128546 (-0.096406) | 0.008865 / 0.075646 (-0.066781) | 0.287684 / 0.419271 (-0.131588) | 0.053504 / 0.043533 (0.009971) | 0.306852 / 0.255139 (0.051713) | 0.331125 / 0.283200 (0.047925) | 0.023476 / 0.141683 (-0.118207) | 1.506590 / 1.452155 (0.054435) | 1.574508 / 1.492716 (0.081792) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239987 / 0.018006 (0.221981) | 0.459144 / 0.000490 (0.458654) | 0.008509 / 0.000200 (0.008309) | 0.000335 / 0.000054 (0.000280) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028353 / 0.037411 (-0.009058) | 0.082345 / 0.014526 (0.067819) | 0.499524 / 0.176557 (0.322967) | 0.152896 / 0.737135 (-0.584239) | 0.096978 / 0.296338 (-0.199360) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404855 / 0.215209 (0.189646) | 4.053103 / 2.077655 (1.975448) | 2.069638 / 1.504120 (0.565518) | 1.917354 / 1.541195 (0.376159) | 2.035816 / 1.468490 (0.567326) | 0.480358 / 4.584777 (-4.104419) | 3.594316 / 3.745712 (-0.151396) | 3.582952 / 5.269862 (-1.686910) | 2.101142 / 4.565676 (-2.464535) | 0.057004 / 0.424275 (-0.367271) | 0.007715 / 0.007607 (0.000108) | 0.487417 / 0.226044 (0.261372) | 4.863100 / 2.268929 (2.594172) | 2.569038 / 55.444624 (-52.875587) | 2.187167 / 6.876477 (-4.689310) | 2.270034 / 2.142072 (0.127962) | 0.578095 / 4.805227 (-4.227132) | 0.133283 / 6.500664 (-6.367381) | 0.060164 / 0.075469 (-0.015305) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269120 / 1.841788 (-0.572667) | 19.493072 / 8.074308 (11.418764) | 14.560576 / 10.191392 (4.369184) | 0.167440 / 0.680424 (-0.512984) | 0.018493 / 0.534201 (-0.515708) | 0.392774 / 0.579283 (-0.186509) | 0.420903 / 0.434364 (-0.013461) | 0.461904 / 0.540337 (-0.078433) | 0.643104 / 1.386936 (-0.743832) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006985 / 0.011353 (-0.004368) | 0.004246 / 0.011008 (-0.006762) | 0.066246 / 0.038508 (0.027738) | 0.080757 / 0.023109 (0.057648) | 0.391774 / 0.275898 (0.115876) | 0.424957 / 0.323480 (0.101478) | 0.005575 / 0.007986 (-0.002411) | 0.003447 / 0.004328 (-0.000881) | 0.066565 / 0.004250 (0.062315) | 0.057597 / 0.037052 (0.020544) | 0.394663 / 0.258489 (0.136174) | 0.430310 / 0.293841 (0.136469) | 0.032746 / 0.128546 (-0.095800) | 0.008783 / 0.075646 (-0.066863) | 0.071940 / 0.419271 (-0.347331) | 0.048877 / 0.043533 (0.005344) | 0.390269 / 0.255139 (0.135130) | 0.411867 / 0.283200 (0.128668) | 0.024101 / 0.141683 (-0.117582) | 1.507370 / 1.452155 (0.055215) | 1.585810 / 1.492716 (0.093093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222796 / 0.018006 (0.204790) | 0.459035 / 0.000490 (0.458546) | 0.005322 / 0.000200 (0.005122) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033237 / 0.037411 (-0.004174) | 0.098244 / 0.014526 (0.083718) | 0.106654 / 0.176557 (-0.069903) | 0.159675 / 0.737135 (-0.577460) | 0.108470 / 0.296338 (-0.187869) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429085 / 0.215209 (0.213876) | 4.281206 / 2.077655 (2.203551) | 2.320492 / 1.504120 (0.816372) | 2.153218 / 1.541195 (0.612024) | 2.287122 / 1.468490 (0.818632) | 0.497307 / 4.584777 (-4.087470) | 3.799541 / 3.745712 (0.053828) | 3.380053 / 5.269862 (-1.889809) | 2.100009 / 4.565676 (-2.465667) | 0.057988 / 0.424275 (-0.366287) | 0.007381 / 0.007607 (-0.000226) | 0.506843 / 0.226044 (0.280798) | 5.071286 / 2.268929 (2.802357) | 2.750487 / 55.444624 (-52.694137) | 2.415613 / 6.876477 (-4.460864) | 2.667144 / 2.142072 (0.525072) | 0.624889 / 4.805227 (-4.180338) | 0.134191 / 6.500664 (-6.366473) | 0.060704 / 0.075469 (-0.014765) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353074 / 1.841788 (-0.488714) | 20.507074 / 8.074308 (12.432766) | 14.911788 / 10.191392 (4.720396) | 0.149248 / 0.680424 (-0.531176) | 0.020593 / 0.534201 (-0.513608) | 0.398458 / 0.579283 (-0.180825) | 0.434846 / 0.434364 (0.000482) | 0.478853 / 0.540337 (-0.061484) | 0.648072 / 1.386936 (-0.738864) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b30c72a2d3d9c191a590e0f0a6b3a6363ab15e8f \"CML watermark\")\n", "In particular I expect fsspec to do another breaking change in the next release (switch to glob.glob)", "_The documentation is not available anymore as the PR was closed or merged._", "see https://github.com/huggingface/datasets/pull/6338", "Yes, unfortunately breaking changes are quite usual from their part.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006099 / 0.011353 (-0.005253) | 0.003672 / 0.011008 (-0.007336) | 0.083095 / 0.038508 (0.044587) | 0.059607 / 0.023109 (0.036498) | 0.319591 / 0.275898 (0.043693) | 0.351945 / 0.323480 (0.028465) | 0.004785 / 0.007986 (-0.003201) | 0.002965 / 0.004328 (-0.001364) | 0.062907 / 0.004250 (0.058657) | 0.049122 / 0.037052 (0.012070) | 0.344641 / 0.258489 (0.086152) | 0.361519 / 0.293841 (0.067678) | 0.027254 / 0.128546 (-0.101292) | 0.008081 / 0.075646 (-0.067565) | 0.261569 / 0.419271 (-0.157702) | 0.045101 / 0.043533 (0.001568) | 0.313645 / 0.255139 (0.058506) | 0.337843 / 0.283200 (0.054644) | 0.020968 / 0.141683 (-0.120715) | 1.438450 / 1.452155 (-0.013705) | 1.507567 / 1.492716 (0.014850) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230826 / 0.018006 (0.212820) | 0.434363 / 0.000490 (0.433873) | 0.008210 / 0.000200 (0.008010) | 0.000212 / 0.000054 (0.000157) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025278 / 0.037411 (-0.012133) | 0.073659 / 0.014526 (0.059133) | 0.085147 / 0.176557 (-0.091409) | 0.145451 / 0.737135 (-0.591684) | 0.086400 / 0.296338 (-0.209939) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429887 / 0.215209 (0.214678) | 4.292626 / 2.077655 (2.214971) | 2.266824 / 1.504120 (0.762704) | 2.090472 / 1.541195 (0.549277) | 2.186477 / 1.468490 (0.717987) | 0.503684 / 4.584777 (-4.081093) | 3.100791 / 3.745712 (-0.644921) | 3.008938 / 5.269862 (-2.260923) | 1.885559 / 4.565676 (-2.680118) | 0.057434 / 0.424275 (-0.366841) | 0.006639 / 0.007607 (-0.000969) | 0.506579 / 0.226044 (0.280535) | 5.058905 / 2.268929 (2.789977) | 2.708321 / 55.444624 (-52.736304) | 2.367388 / 6.876477 (-4.509089) | 2.422660 / 2.142072 (0.280587) | 0.587562 / 4.805227 (-4.217665) | 0.125260 / 6.500664 (-6.375404) | 0.061856 / 0.075469 (-0.013613) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280495 / 1.841788 (-0.561292) | 17.968873 / 8.074308 (9.894565) | 13.922838 / 10.191392 (3.731446) | 0.149907 / 0.680424 (-0.530517) | 0.016736 / 0.534201 (-0.517465) | 0.333417 / 0.579283 (-0.245866) | 0.367710 / 0.434364 (-0.066654) | 0.389648 / 0.540337 (-0.150690) | 0.535625 / 1.386936 (-0.851311) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006237 / 0.011353 (-0.005116) | 0.003787 / 0.011008 (-0.007221) | 0.062536 / 0.038508 (0.024028) | 0.062335 / 0.023109 (0.039226) | 0.455209 / 0.275898 (0.179311) | 0.488961 / 0.323480 (0.165482) | 0.004875 / 0.007986 (-0.003111) | 0.002961 / 0.004328 (-0.001368) | 0.063045 / 0.004250 (0.058795) | 0.048624 / 0.037052 (0.011571) | 0.455743 / 0.258489 (0.197254) | 0.494024 / 0.293841 (0.200183) | 0.028690 / 0.128546 (-0.099856) | 0.008147 / 0.075646 (-0.067499) | 0.069479 / 0.419271 (-0.349792) | 0.041613 / 0.043533 (-0.001919) | 0.460472 / 0.255139 (0.205333) | 0.475606 / 0.283200 (0.192406) | 0.020600 / 0.141683 (-0.121083) | 1.464960 / 1.452155 (0.012805) | 1.540942 / 1.492716 (0.048226) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214558 / 0.018006 (0.196552) | 0.410482 / 0.000490 (0.409992) | 0.005539 / 0.000200 (0.005339) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027044 / 0.037411 (-0.010367) | 0.081512 / 0.014526 (0.066986) | 0.101963 / 0.176557 (-0.074593) | 0.146686 / 0.737135 (-0.590449) | 0.092676 / 0.296338 (-0.203663) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468766 / 0.215209 (0.253557) | 4.680514 / 2.077655 (2.602859) | 2.562454 / 1.504120 (1.058334) | 2.383692 / 1.541195 (0.842497) | 2.481820 / 1.468490 (1.013330) | 0.509122 / 4.584777 (-4.075655) | 3.201597 / 3.745712 (-0.544115) | 2.853539 / 5.269862 (-2.416323) | 1.891535 / 4.565676 (-2.674141) | 0.058594 / 0.424275 (-0.365681) | 0.006448 / 0.007607 (-0.001159) | 0.535950 / 0.226044 (0.309906) | 5.388239 / 2.268929 (3.119311) | 2.999986 / 55.444624 (-52.444638) | 2.733291 / 6.876477 (-4.143186) | 2.841548 / 2.142072 (0.699475) | 0.602388 / 4.805227 (-4.202840) | 0.126369 / 6.500664 (-6.374295) | 0.061519 / 0.075469 (-0.013951) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322746 / 1.841788 (-0.519042) | 17.940825 / 8.074308 (9.866517) | 14.679559 / 10.191392 (4.488167) | 0.146481 / 0.680424 (-0.533943) | 0.018060 / 0.534201 (-0.516141) | 0.334924 / 0.579283 (-0.244359) | 0.384735 / 0.434364 (-0.049629) | 0.391834 / 0.540337 (-0.148503) | 0.540011 / 1.386936 (-0.846925) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d82f3c2264436ef60fac8c397fb11c80175c5132 \"CML watermark\")\n" ]
2023-10-23T10:44:16
2023-10-23T12:13:20
2023-10-23T12:04:36
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6337", "html_url": "https://github.com/huggingface/datasets/pull/6337", "diff_url": "https://github.com/huggingface/datasets/pull/6337.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6337.patch", "merged_at": "2023-10-23T12:04:36" }
Pin upper version of `fsspec` to avoid disruptions introduced by breaking changes (and the need of urgent patch releases with hotfixes) on each release on their side. See: - #6331 - #6210 - #5731 - #5617 - #5447 I propose that we explicitly test, introduce fixes and support each new `fsspec` version release. CC: @LysandreJik
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6337/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6337/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6336
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6336/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6336/comments
https://api.github.com/repos/huggingface/datasets/issues/6336/events
https://github.com/huggingface/datasets/pull/6336
1,956,827,232
PR_kwDODunzps5dgy0w
6,336
unpin-fsspec
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6336). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006202 / 0.011353 (-0.005151) | 0.003627 / 0.011008 (-0.007381) | 0.080643 / 0.038508 (0.042135) | 0.057135 / 0.023109 (0.034026) | 0.315853 / 0.275898 (0.039955) | 0.348503 / 0.323480 (0.025023) | 0.004762 / 0.007986 (-0.003224) | 0.002884 / 0.004328 (-0.001445) | 0.063208 / 0.004250 (0.058958) | 0.046777 / 0.037052 (0.009725) | 0.321426 / 0.258489 (0.062937) | 0.362128 / 0.293841 (0.068287) | 0.027494 / 0.128546 (-0.101052) | 0.007931 / 0.075646 (-0.067715) | 0.262262 / 0.419271 (-0.157009) | 0.044330 / 0.043533 (0.000797) | 0.310504 / 0.255139 (0.055366) | 0.339409 / 0.283200 (0.056209) | 0.021030 / 0.141683 (-0.120652) | 1.405333 / 1.452155 (-0.046822) | 1.493497 / 1.492716 (0.000781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225431 / 0.018006 (0.207425) | 0.451723 / 0.000490 (0.451233) | 0.007763 / 0.000200 (0.007563) | 0.000310 / 0.000054 (0.000256) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023381 / 0.037411 (-0.014031) | 0.074183 / 0.014526 (0.059657) | 0.084003 / 0.176557 (-0.092553) | 0.143628 / 0.737135 (-0.593507) | 0.084543 / 0.296338 (-0.211796) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393062 / 0.215209 (0.177853) | 3.905649 / 2.077655 (1.827994) | 1.923155 / 1.504120 (0.419035) | 1.751554 / 1.541195 (0.210359) | 1.816141 / 1.468490 (0.347651) | 0.502789 / 4.584777 (-4.081988) | 3.006149 / 3.745712 (-0.739564) | 2.979645 / 5.269862 (-2.290216) | 1.877408 / 4.565676 (-2.688269) | 0.057544 / 0.424275 (-0.366731) | 0.006733 / 0.007607 (-0.000874) | 0.468469 / 0.226044 (0.242425) | 4.695595 / 2.268929 (2.426667) | 2.367238 / 55.444624 (-53.077387) | 2.041035 / 6.876477 (-4.835442) | 2.087396 / 2.142072 (-0.054676) | 0.586866 / 4.805227 (-4.218361) | 0.125616 / 6.500664 (-6.375049) | 0.060535 / 0.075469 (-0.014934) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244753 / 1.841788 (-0.597035) | 17.652902 / 8.074308 (9.578594) | 13.733195 / 10.191392 (3.541803) | 0.143741 / 0.680424 (-0.536683) | 0.016775 / 0.534201 (-0.517426) | 0.335487 / 0.579283 (-0.243797) | 0.350292 / 0.434364 (-0.084072) | 0.388744 / 0.540337 (-0.151594) | 0.536630 / 1.386936 (-0.850306) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006008 / 0.011353 (-0.005345) | 0.003708 / 0.011008 (-0.007301) | 0.062504 / 0.038508 (0.023996) | 0.058570 / 0.023109 (0.035461) | 0.450549 / 0.275898 (0.174651) | 0.467768 / 0.323480 (0.144288) | 0.004955 / 0.007986 (-0.003031) | 0.002903 / 0.004328 (-0.001426) | 0.062778 / 0.004250 (0.058528) | 0.048750 / 0.037052 (0.011698) | 0.439848 / 0.258489 (0.181359) | 0.471780 / 0.293841 (0.177939) | 0.028472 / 0.128546 (-0.100074) | 0.008221 / 0.075646 (-0.067425) | 0.068325 / 0.419271 (-0.350946) | 0.040612 / 0.043533 (-0.002921) | 0.435530 / 0.255139 (0.180391) | 0.458992 / 0.283200 (0.175792) | 0.020143 / 0.141683 (-0.121539) | 1.479101 / 1.452155 (0.026947) | 1.507408 / 1.492716 (0.014692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207723 / 0.018006 (0.189717) | 0.406596 / 0.000490 (0.406106) | 0.004431 / 0.000200 (0.004231) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027037 / 0.037411 (-0.010374) | 0.081576 / 0.014526 (0.067050) | 0.091177 / 0.176557 (-0.085379) | 0.146191 / 0.737135 (-0.590944) | 0.092485 / 0.296338 (-0.203854) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456676 / 0.215209 (0.241467) | 4.556214 / 2.077655 (2.478559) | 2.500146 / 1.504120 (0.996026) | 2.325175 / 1.541195 (0.783981) | 2.421023 / 1.468490 (0.952533) | 0.512135 / 4.584777 (-4.072641) | 3.167070 / 3.745712 (-0.578642) | 2.897697 / 5.269862 (-2.372165) | 1.881974 / 4.565676 (-2.683702) | 0.058453 / 0.424275 (-0.365823) | 0.006515 / 0.007607 (-0.001092) | 0.530742 / 0.226044 (0.304698) | 5.304943 / 2.268929 (3.036014) | 2.928824 / 55.444624 (-52.515800) | 2.598023 / 6.876477 (-4.278454) | 2.758496 / 2.142072 (0.616423) | 0.601777 / 4.805227 (-4.203450) | 0.126701 / 6.500664 (-6.373964) | 0.061808 / 0.075469 (-0.013661) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.357844 / 1.841788 (-0.483943) | 17.887666 / 8.074308 (9.813358) | 14.561904 / 10.191392 (4.370512) | 0.146788 / 0.680424 (-0.533636) | 0.018277 / 0.534201 (-0.515924) | 0.343168 / 0.579283 (-0.236115) | 0.382220 / 0.434364 (-0.052144) | 0.401234 / 0.540337 (-0.139104) | 0.546246 / 1.386936 (-0.840690) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b0980a74d58098b8b1738e2411f1212161a211b8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008919 / 0.011353 (-0.002434) | 0.006110 / 0.011008 (-0.004898) | 0.110554 / 0.038508 (0.072046) | 0.075705 / 0.023109 (0.052596) | 0.391235 / 0.275898 (0.115336) | 0.458331 / 0.323480 (0.134851) | 0.007489 / 0.007986 (-0.000497) | 0.003744 / 0.004328 (-0.000585) | 0.078124 / 0.004250 (0.073874) | 0.057244 / 0.037052 (0.020192) | 0.393251 / 0.258489 (0.134762) | 0.460153 / 0.293841 (0.166312) | 0.047245 / 0.128546 (-0.081301) | 0.014086 / 0.075646 (-0.061560) | 0.421272 / 0.419271 (0.002001) | 0.067668 / 0.043533 (0.024135) | 0.397325 / 0.255139 (0.142186) | 0.432683 / 0.283200 (0.149483) | 0.039086 / 0.141683 (-0.102596) | 1.764898 / 1.452155 (0.312744) | 1.848820 / 1.492716 (0.356104) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258163 / 0.018006 (0.240156) | 0.498655 / 0.000490 (0.498165) | 0.014959 / 0.000200 (0.014759) | 0.000465 / 0.000054 (0.000410) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028889 / 0.037411 (-0.008522) | 0.091568 / 0.014526 (0.077042) | 0.102700 / 0.176557 (-0.073857) | 0.173580 / 0.737135 (-0.563555) | 0.108763 / 0.296338 (-0.187576) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.610147 / 0.215209 (0.394938) | 5.851239 / 2.077655 (3.773584) | 2.467471 / 1.504120 (0.963351) | 2.117189 / 1.541195 (0.575995) | 2.197947 / 1.468490 (0.729457) | 0.851736 / 4.584777 (-3.733041) | 5.163183 / 3.745712 (1.417471) | 5.039564 / 5.269862 (-0.230297) | 3.067215 / 4.565676 (-1.498462) | 0.098593 / 0.424275 (-0.325682) | 0.008646 / 0.007607 (0.001038) | 0.788397 / 0.226044 (0.562352) | 7.340837 / 2.268929 (5.071909) | 3.511611 / 55.444624 (-51.933013) | 2.767479 / 6.876477 (-4.108998) | 2.687368 / 2.142072 (0.545296) | 1.046387 / 4.805227 (-3.758841) | 0.215902 / 6.500664 (-6.284763) | 0.072939 / 0.075469 (-0.002530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.512795 / 1.841788 (-0.328992) | 22.086131 / 8.074308 (14.011823) | 20.235550 / 10.191392 (10.044158) | 0.240381 / 0.680424 (-0.440043) | 0.029171 / 0.534201 (-0.505030) | 0.465123 / 0.579283 (-0.114160) | 0.569260 / 0.434364 (0.134896) | 0.540967 / 0.540337 (0.000629) | 0.764006 / 1.386936 (-0.622930) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011024 / 0.011353 (-0.000329) | 0.005915 / 0.011008 (-0.005094) | 0.076455 / 0.038508 (0.037947) | 0.087842 / 0.023109 (0.064733) | 0.471732 / 0.275898 (0.195834) | 0.513666 / 0.323480 (0.190186) | 0.007062 / 0.007986 (-0.000924) | 0.004013 / 0.004328 (-0.000315) | 0.076016 / 0.004250 (0.071766) | 0.061296 / 0.037052 (0.024244) | 0.487277 / 0.258489 (0.228788) | 0.508185 / 0.293841 (0.214344) | 0.049963 / 0.128546 (-0.078583) | 0.013774 / 0.075646 (-0.061873) | 0.089376 / 0.419271 (-0.329895) | 0.067502 / 0.043533 (0.023969) | 0.471283 / 0.255139 (0.216144) | 0.507365 / 0.283200 (0.224165) | 0.033638 / 0.141683 (-0.108045) | 1.785544 / 1.452155 (0.333390) | 1.878765 / 1.492716 (0.386048) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230462 / 0.018006 (0.212456) | 0.502458 / 0.000490 (0.501968) | 0.005987 / 0.000200 (0.005787) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031588 / 0.037411 (-0.005824) | 0.113566 / 0.014526 (0.099040) | 0.115734 / 0.176557 (-0.060822) | 0.174162 / 0.737135 (-0.562974) | 0.121574 / 0.296338 (-0.174764) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.662837 / 0.215209 (0.447628) | 6.420327 / 2.077655 (4.342672) | 3.033522 / 1.504120 (1.529402) | 2.728294 / 1.541195 (1.187099) | 2.790621 / 1.468490 (1.322131) | 0.852478 / 4.584777 (-3.732299) | 5.033637 / 3.745712 (1.287925) | 4.543152 / 5.269862 (-0.726709) | 2.980261 / 4.565676 (-1.585415) | 0.102444 / 0.424275 (-0.321831) | 0.008362 / 0.007607 (0.000755) | 0.786868 / 0.226044 (0.560823) | 7.887665 / 2.268929 (5.618737) | 4.010614 / 55.444624 (-51.434010) | 3.220715 / 6.876477 (-3.655762) | 3.317316 / 2.142072 (1.175244) | 1.098137 / 4.805227 (-3.707090) | 0.218309 / 6.500664 (-6.282355) | 0.078182 / 0.075469 (0.002713) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.696740 / 1.841788 (-0.145047) | 23.762454 / 8.074308 (15.688146) | 21.802645 / 10.191392 (11.611253) | 0.233654 / 0.680424 (-0.446770) | 0.032911 / 0.534201 (-0.501290) | 0.511760 / 0.579283 (-0.067524) | 0.586299 / 0.434364 (0.151935) | 0.583704 / 0.540337 (0.043367) | 0.780762 / 1.386936 (-0.606174) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0a94aa2f738075bbc08291583f1b153220d5e6e7 \"CML watermark\")\n" ]
2023-10-23T10:16:46
2024-02-07T12:41:35
2023-10-23T10:17:48
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6336", "html_url": "https://github.com/huggingface/datasets/pull/6336", "diff_url": "https://github.com/huggingface/datasets/pull/6336.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6336.patch", "merged_at": "2023-10-23T10:17:48" }
Close #6333.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6336/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6336/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6335
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6335/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6335/comments
https://api.github.com/repos/huggingface/datasets/issues/6335/events
https://github.com/huggingface/datasets/pull/6335
1,956,740,818
PR_kwDODunzps5dggIV
6,335
Support fsspec 2023.10.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006013 / 0.011353 (-0.005340) | 0.003647 / 0.011008 (-0.007362) | 0.081781 / 0.038508 (0.043273) | 0.059020 / 0.023109 (0.035911) | 0.321823 / 0.275898 (0.045925) | 0.350159 / 0.323480 (0.026679) | 0.003599 / 0.007986 (-0.004386) | 0.002877 / 0.004328 (-0.001452) | 0.063941 / 0.004250 (0.059690) | 0.049460 / 0.037052 (0.012408) | 0.330185 / 0.258489 (0.071696) | 0.362220 / 0.293841 (0.068379) | 0.027613 / 0.128546 (-0.100934) | 0.007976 / 0.075646 (-0.067670) | 0.263386 / 0.419271 (-0.155885) | 0.045504 / 0.043533 (0.001971) | 0.321172 / 0.255139 (0.066033) | 0.345291 / 0.283200 (0.062091) | 0.023133 / 0.141683 (-0.118550) | 1.435816 / 1.452155 (-0.016339) | 1.557241 / 1.492716 (0.064524) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222228 / 0.018006 (0.204222) | 0.420008 / 0.000490 (0.419518) | 0.008598 / 0.000200 (0.008398) | 0.000343 / 0.000054 (0.000288) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023725 / 0.037411 (-0.013686) | 0.073023 / 0.014526 (0.058497) | 0.814888 / 0.176557 (0.638332) | 0.294122 / 0.737135 (-0.443013) | 0.088945 / 0.296338 (-0.207393) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393561 / 0.215209 (0.178352) | 3.946544 / 2.077655 (1.868890) | 1.916476 / 1.504120 (0.412356) | 1.721544 / 1.541195 (0.180349) | 1.768583 / 1.468490 (0.300093) | 0.508067 / 4.584777 (-4.076710) | 3.047832 / 3.745712 (-0.697880) | 2.952842 / 5.269862 (-2.317020) | 1.869337 / 4.565676 (-2.696339) | 0.057812 / 0.424275 (-0.366463) | 0.006694 / 0.007607 (-0.000913) | 0.463007 / 0.226044 (0.236963) | 4.635087 / 2.268929 (2.366158) | 2.419833 / 55.444624 (-53.024792) | 2.018519 / 6.876477 (-4.857958) | 2.043430 / 2.142072 (-0.098643) | 0.590895 / 4.805227 (-4.214333) | 0.126113 / 6.500664 (-6.374552) | 0.061045 / 0.075469 (-0.014424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226850 / 1.841788 (-0.614937) | 17.336630 / 8.074308 (9.262322) | 13.651049 / 10.191392 (3.459656) | 0.143308 / 0.680424 (-0.537116) | 0.016938 / 0.534201 (-0.517263) | 0.332829 / 0.579283 (-0.246454) | 0.368684 / 0.434364 (-0.065680) | 0.385848 / 0.540337 (-0.154489) | 0.546391 / 1.386936 (-0.840545) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006149 / 0.011353 (-0.005204) | 0.003818 / 0.011008 (-0.007191) | 0.064012 / 0.038508 (0.025504) | 0.059846 / 0.023109 (0.036737) | 0.455928 / 0.275898 (0.180030) | 0.480736 / 0.323480 (0.157256) | 0.004874 / 0.007986 (-0.003111) | 0.002877 / 0.004328 (-0.001451) | 0.064195 / 0.004250 (0.059944) | 0.048146 / 0.037052 (0.011094) | 0.452638 / 0.258489 (0.194149) | 0.484339 / 0.293841 (0.190499) | 0.028832 / 0.128546 (-0.099715) | 0.008162 / 0.075646 (-0.067485) | 0.069855 / 0.419271 (-0.349417) | 0.041429 / 0.043533 (-0.002104) | 0.453282 / 0.255139 (0.198143) | 0.473812 / 0.283200 (0.190613) | 0.021186 / 0.141683 (-0.120497) | 1.465207 / 1.452155 (0.013052) | 1.508216 / 1.492716 (0.015500) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242491 / 0.018006 (0.224485) | 0.421219 / 0.000490 (0.420730) | 0.011201 / 0.000200 (0.011001) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027015 / 0.037411 (-0.010396) | 0.080465 / 0.014526 (0.065939) | 0.092622 / 0.176557 (-0.083934) | 0.146111 / 0.737135 (-0.591024) | 0.091546 / 0.296338 (-0.204793) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458351 / 0.215209 (0.243142) | 4.591454 / 2.077655 (2.513799) | 2.508156 / 1.504120 (1.004037) | 2.328771 / 1.541195 (0.787576) | 2.423251 / 1.468490 (0.954761) | 0.508504 / 4.584777 (-4.076273) | 3.133789 / 3.745712 (-0.611923) | 2.862777 / 5.269862 (-2.407084) | 1.886327 / 4.565676 (-2.679350) | 0.058017 / 0.424275 (-0.366258) | 0.006496 / 0.007607 (-0.001111) | 0.529629 / 0.226044 (0.303585) | 5.310338 / 2.268929 (3.041409) | 2.973075 / 55.444624 (-52.471549) | 2.601313 / 6.876477 (-4.275163) | 2.777348 / 2.142072 (0.635275) | 0.593711 / 4.805227 (-4.211516) | 0.125453 / 6.500664 (-6.375211) | 0.061034 / 0.075469 (-0.014435) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.374391 / 1.841788 (-0.467397) | 18.768026 / 8.074308 (10.693718) | 15.053637 / 10.191392 (4.862245) | 0.158253 / 0.680424 (-0.522171) | 0.018126 / 0.534201 (-0.516075) | 0.337427 / 0.579283 (-0.241856) | 0.391678 / 0.434364 (-0.042686) | 0.398524 / 0.540337 (-0.141813) | 0.558629 / 1.386936 (-0.828307) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e0b79660f180c88517884f831eca620bc46a0957 \"CML watermark\")\n", "I think https://github.com/huggingface/datasets/pull/6334 fixes it already no ?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006432 / 0.011353 (-0.004921) | 0.003861 / 0.011008 (-0.007147) | 0.084132 / 0.038508 (0.045624) | 0.069391 / 0.023109 (0.046282) | 0.341081 / 0.275898 (0.065183) | 0.375975 / 0.323480 (0.052495) | 0.003962 / 0.007986 (-0.004024) | 0.003235 / 0.004328 (-0.001094) | 0.064927 / 0.004250 (0.060677) | 0.054190 / 0.037052 (0.017137) | 0.350719 / 0.258489 (0.092230) | 0.393216 / 0.293841 (0.099375) | 0.031002 / 0.128546 (-0.097544) | 0.008416 / 0.075646 (-0.067230) | 0.289268 / 0.419271 (-0.130003) | 0.052167 / 0.043533 (0.008634) | 0.347559 / 0.255139 (0.092420) | 0.370908 / 0.283200 (0.087709) | 0.022540 / 0.141683 (-0.119142) | 1.486297 / 1.452155 (0.034143) | 1.576968 / 1.492716 (0.084252) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237048 / 0.018006 (0.219042) | 0.452065 / 0.000490 (0.451575) | 0.013963 / 0.000200 (0.013763) | 0.000242 / 0.000054 (0.000188) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028084 / 0.037411 (-0.009327) | 0.081271 / 0.014526 (0.066745) | 0.096490 / 0.176557 (-0.080067) | 0.152106 / 0.737135 (-0.585030) | 0.096174 / 0.296338 (-0.200164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386585 / 0.215209 (0.171375) | 3.854996 / 2.077655 (1.777342) | 1.832898 / 1.504120 (0.328778) | 1.662832 / 1.541195 (0.121638) | 1.730753 / 1.468490 (0.262263) | 0.485286 / 4.584777 (-4.099491) | 3.571410 / 3.745712 (-0.174302) | 3.373035 / 5.269862 (-1.896826) | 1.995570 / 4.565676 (-2.570107) | 0.056711 / 0.424275 (-0.367564) | 0.007447 / 0.007607 (-0.000160) | 0.462985 / 0.226044 (0.236941) | 4.617186 / 2.268929 (2.348257) | 2.313915 / 55.444624 (-53.130709) | 1.961697 / 6.876477 (-4.914780) | 1.990410 / 2.142072 (-0.151662) | 0.580536 / 4.805227 (-4.224692) | 0.146275 / 6.500664 (-6.354389) | 0.059458 / 0.075469 (-0.016011) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274841 / 1.841788 (-0.566947) | 18.641853 / 8.074308 (10.567545) | 13.977525 / 10.191392 (3.786133) | 0.151469 / 0.680424 (-0.528955) | 0.018111 / 0.534201 (-0.516090) | 0.393243 / 0.579283 (-0.186040) | 0.412310 / 0.434364 (-0.022054) | 0.461646 / 0.540337 (-0.078692) | 0.633016 / 1.386936 (-0.753920) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006496 / 0.011353 (-0.004857) | 0.003973 / 0.011008 (-0.007035) | 0.064527 / 0.038508 (0.026019) | 0.069390 / 0.023109 (0.046281) | 0.401162 / 0.275898 (0.125264) | 0.431031 / 0.323480 (0.107551) | 0.005244 / 0.007986 (-0.002741) | 0.003283 / 0.004328 (-0.001046) | 0.064931 / 0.004250 (0.060680) | 0.054402 / 0.037052 (0.017350) | 0.397917 / 0.258489 (0.139428) | 0.436728 / 0.293841 (0.142887) | 0.031932 / 0.128546 (-0.096614) | 0.008557 / 0.075646 (-0.067089) | 0.073336 / 0.419271 (-0.345935) | 0.047559 / 0.043533 (0.004026) | 0.395825 / 0.255139 (0.140686) | 0.423002 / 0.283200 (0.139802) | 0.021708 / 0.141683 (-0.119975) | 1.501140 / 1.452155 (0.048985) | 1.558376 / 1.492716 (0.065660) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289522 / 0.018006 (0.271516) | 0.449078 / 0.000490 (0.448589) | 0.034174 / 0.000200 (0.033974) | 0.000396 / 0.000054 (0.000342) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032533 / 0.037411 (-0.004878) | 0.093398 / 0.014526 (0.078872) | 0.106930 / 0.176557 (-0.069626) | 0.158743 / 0.737135 (-0.578393) | 0.106904 / 0.296338 (-0.189435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427479 / 0.215209 (0.212270) | 4.271758 / 2.077655 (2.194103) | 2.298770 / 1.504120 (0.794650) | 2.134906 / 1.541195 (0.593712) | 2.220487 / 1.468490 (0.751996) | 0.490506 / 4.584777 (-4.094270) | 3.593876 / 3.745712 (-0.151836) | 3.225656 / 5.269862 (-2.044205) | 2.004434 / 4.565676 (-2.561243) | 0.058015 / 0.424275 (-0.366260) | 0.007221 / 0.007607 (-0.000387) | 0.504928 / 0.226044 (0.278884) | 5.049547 / 2.268929 (2.780618) | 2.743843 / 55.444624 (-52.700781) | 2.398399 / 6.876477 (-4.478078) | 2.562939 / 2.142072 (0.420867) | 0.597229 / 4.805227 (-4.207998) | 0.134664 / 6.500664 (-6.366001) | 0.059612 / 0.075469 (-0.015857) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369692 / 1.841788 (-0.472095) | 19.065326 / 8.074308 (10.991018) | 14.404508 / 10.191392 (4.213116) | 0.175809 / 0.680424 (-0.504615) | 0.020137 / 0.534201 (-0.514064) | 0.394043 / 0.579283 (-0.185240) | 0.424772 / 0.434364 (-0.009592) | 0.475587 / 0.540337 (-0.064751) | 0.644275 / 1.386936 (-0.742661) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#224977971accd63d97ba0a90cc108c4754055ebb \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007259 / 0.011353 (-0.004094) | 0.004396 / 0.011008 (-0.006612) | 0.096456 / 0.038508 (0.057948) | 0.078752 / 0.023109 (0.055643) | 0.359215 / 0.275898 (0.083317) | 0.396927 / 0.323480 (0.073448) | 0.005611 / 0.007986 (-0.002375) | 0.003687 / 0.004328 (-0.000641) | 0.072794 / 0.004250 (0.068544) | 0.059794 / 0.037052 (0.022741) | 0.372352 / 0.258489 (0.113863) | 0.414038 / 0.293841 (0.120197) | 0.034490 / 0.128546 (-0.094056) | 0.009790 / 0.075646 (-0.065857) | 0.326338 / 0.419271 (-0.092934) | 0.058582 / 0.043533 (0.015049) | 0.354221 / 0.255139 (0.099082) | 0.386669 / 0.283200 (0.103469) | 0.025356 / 0.141683 (-0.116327) | 1.664104 / 1.452155 (0.211950) | 1.766825 / 1.492716 (0.274108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251107 / 0.018006 (0.233101) | 0.478833 / 0.000490 (0.478344) | 0.010776 / 0.000200 (0.010577) | 0.000292 / 0.000054 (0.000238) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032869 / 0.037411 (-0.004543) | 0.098449 / 0.014526 (0.083923) | 0.109954 / 0.176557 (-0.066602) | 0.176786 / 0.737135 (-0.560350) | 0.113477 / 0.296338 (-0.182862) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431169 / 0.215209 (0.215960) | 4.303239 / 2.077655 (2.225585) | 2.088885 / 1.504120 (0.584765) | 1.895900 / 1.541195 (0.354706) | 1.997442 / 1.468490 (0.528952) | 0.541840 / 4.584777 (-4.042937) | 3.991982 / 3.745712 (0.246270) | 3.842421 / 5.269862 (-1.427440) | 2.281150 / 4.565676 (-2.284526) | 0.063851 / 0.424275 (-0.360425) | 0.008470 / 0.007607 (0.000863) | 0.515886 / 0.226044 (0.289841) | 5.202908 / 2.268929 (2.933980) | 2.662789 / 55.444624 (-52.781835) | 2.266731 / 6.876477 (-4.609746) | 2.343760 / 2.142072 (0.201688) | 0.641050 / 4.805227 (-4.164177) | 0.148236 / 6.500664 (-6.352428) | 0.067422 / 0.075469 (-0.008047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.475729 / 1.841788 (-0.366059) | 22.401583 / 8.074308 (14.327274) | 15.886237 / 10.191392 (5.694845) | 0.171828 / 0.680424 (-0.508595) | 0.022161 / 0.534201 (-0.512040) | 0.465873 / 0.579283 (-0.113411) | 0.476386 / 0.434364 (0.042022) | 0.538317 / 0.540337 (-0.002020) | 0.754375 / 1.386936 (-0.632561) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007429 / 0.011353 (-0.003924) | 0.004592 / 0.011008 (-0.006416) | 0.072315 / 0.038508 (0.033807) | 0.080806 / 0.023109 (0.057697) | 0.444607 / 0.275898 (0.168709) | 0.476970 / 0.323480 (0.153490) | 0.006030 / 0.007986 (-0.001956) | 0.003755 / 0.004328 (-0.000573) | 0.074602 / 0.004250 (0.070352) | 0.061846 / 0.037052 (0.024794) | 0.450928 / 0.258489 (0.192439) | 0.493932 / 0.293841 (0.200091) | 0.037398 / 0.128546 (-0.091148) | 0.009807 / 0.075646 (-0.065840) | 0.080531 / 0.419271 (-0.338741) | 0.054052 / 0.043533 (0.010519) | 0.453034 / 0.255139 (0.197895) | 0.464959 / 0.283200 (0.181760) | 0.024718 / 0.141683 (-0.116965) | 1.687552 / 1.452155 (0.235397) | 1.765746 / 1.492716 (0.273029) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266998 / 0.018006 (0.248992) | 0.479832 / 0.000490 (0.479342) | 0.005429 / 0.000200 (0.005229) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038885 / 0.037411 (0.001474) | 0.105931 / 0.014526 (0.091405) | 0.120880 / 0.176557 (-0.055677) | 0.184006 / 0.737135 (-0.553130) | 0.120750 / 0.296338 (-0.175589) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478626 / 0.215209 (0.263417) | 4.797355 / 2.077655 (2.719700) | 2.582758 / 1.504120 (1.078638) | 2.396488 / 1.541195 (0.855293) | 2.515597 / 1.468490 (1.047107) | 0.544541 / 4.584777 (-4.040236) | 4.150702 / 3.745712 (0.404990) | 3.676837 / 5.269862 (-1.593024) | 2.287275 / 4.565676 (-2.278402) | 0.064602 / 0.424275 (-0.359673) | 0.008253 / 0.007607 (0.000646) | 0.576201 / 0.226044 (0.350157) | 5.859839 / 2.268929 (3.590910) | 3.248603 / 55.444624 (-52.196021) | 2.841959 / 6.876477 (-4.034518) | 2.991120 / 2.142072 (0.849047) | 0.667755 / 4.805227 (-4.137472) | 0.151219 / 6.500664 (-6.349445) | 0.068990 / 0.075469 (-0.006479) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.572359 / 1.841788 (-0.269429) | 21.890279 / 8.074308 (13.815971) | 15.927473 / 10.191392 (5.736081) | 0.170388 / 0.680424 (-0.510036) | 0.023282 / 0.534201 (-0.510919) | 0.459371 / 0.579283 (-0.119912) | 0.468838 / 0.434364 (0.034475) | 0.546438 / 0.540337 (0.006101) | 0.746912 / 1.386936 (-0.640024) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8197ce872d2e24bd1ffbb07213faea25078f1386 \"CML watermark\")\n", "Yes, @lhoestq, you are right. I think we cross-send fixing PRs in a 15 minute interval... :sweat_smile: \r\n\r\nI would say the code in this PR is simpler and easier to understand, but feel free to ignore it.", "I think the correct way it to check if \"file\" in in the tuple if it's a tuple (in case someone adds another protocol name for the local filesystem)" ]
2023-10-23T09:29:17
2024-01-11T06:33:35
2023-11-14T14:17:40
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6335", "html_url": "https://github.com/huggingface/datasets/pull/6335", "diff_url": "https://github.com/huggingface/datasets/pull/6335.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6335.patch", "merged_at": null }
Fix #6333.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6335/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6335/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6334
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6334/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6334/comments
https://api.github.com/repos/huggingface/datasets/issues/6334/events
https://github.com/huggingface/datasets/pull/6334
1,956,719,774
PR_kwDODunzps5dgbpR
6,334
datasets.filesystems: fix is_remote_filesystems
{ "login": "ap--", "id": 1463443, "node_id": "MDQ6VXNlcjE0NjM0NDM=", "avatar_url": "https://avatars.githubusercontent.com/u/1463443?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ap--", "html_url": "https://github.com/ap--", "followers_url": "https://api.github.com/users/ap--/followers", "following_url": "https://api.github.com/users/ap--/following{/other_user}", "gists_url": "https://api.github.com/users/ap--/gists{/gist_id}", "starred_url": "https://api.github.com/users/ap--/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ap--/subscriptions", "organizations_url": "https://api.github.com/users/ap--/orgs", "repos_url": "https://api.github.com/users/ap--/repos", "events_url": "https://api.github.com/users/ap--/events{/privacy}", "received_events_url": "https://api.github.com/users/ap--/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006648 / 0.011353 (-0.004705) | 0.004104 / 0.011008 (-0.006904) | 0.084718 / 0.038508 (0.046210) | 0.075342 / 0.023109 (0.052232) | 0.332624 / 0.275898 (0.056726) | 0.376758 / 0.323480 (0.053278) | 0.005371 / 0.007986 (-0.002614) | 0.003317 / 0.004328 (-0.001011) | 0.065153 / 0.004250 (0.060902) | 0.055270 / 0.037052 (0.018218) | 0.342410 / 0.258489 (0.083920) | 0.397484 / 0.293841 (0.103643) | 0.031168 / 0.128546 (-0.097379) | 0.008545 / 0.075646 (-0.067101) | 0.297641 / 0.419271 (-0.121631) | 0.052404 / 0.043533 (0.008871) | 0.327633 / 0.255139 (0.072494) | 0.362177 / 0.283200 (0.078977) | 0.025056 / 0.141683 (-0.116627) | 1.459023 / 1.452155 (0.006868) | 1.529651 / 1.492716 (0.036935) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242838 / 0.018006 (0.224832) | 0.451007 / 0.000490 (0.450517) | 0.013732 / 0.000200 (0.013532) | 0.000345 / 0.000054 (0.000290) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028068 / 0.037411 (-0.009343) | 0.081970 / 0.014526 (0.067444) | 0.096148 / 0.176557 (-0.080409) | 0.151758 / 0.737135 (-0.585377) | 0.095617 / 0.296338 (-0.200721) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.389188 / 0.215209 (0.173979) | 3.867506 / 2.077655 (1.789852) | 1.941912 / 1.504120 (0.437792) | 1.759270 / 1.541195 (0.218076) | 1.774714 / 1.468490 (0.306224) | 0.476587 / 4.584777 (-4.108190) | 3.539342 / 3.745712 (-0.206370) | 3.434389 / 5.269862 (-1.835472) | 2.047581 / 4.565676 (-2.518096) | 0.056322 / 0.424275 (-0.367954) | 0.007286 / 0.007607 (-0.000321) | 0.461826 / 0.226044 (0.235781) | 4.604179 / 2.268929 (2.335251) | 2.405267 / 55.444624 (-53.039357) | 2.133998 / 6.876477 (-4.742479) | 2.187724 / 2.142072 (0.045652) | 0.566578 / 4.805227 (-4.238650) | 0.130007 / 6.500664 (-6.370657) | 0.059685 / 0.075469 (-0.015784) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256204 / 1.841788 (-0.585584) | 18.829475 / 8.074308 (10.755167) | 13.937879 / 10.191392 (3.746487) | 0.163948 / 0.680424 (-0.516475) | 0.018118 / 0.534201 (-0.516083) | 0.389369 / 0.579283 (-0.189914) | 0.399988 / 0.434364 (-0.034376) | 0.459504 / 0.540337 (-0.080834) | 0.674696 / 1.386936 (-0.712240) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006806 / 0.011353 (-0.004547) | 0.004103 / 0.011008 (-0.006905) | 0.064477 / 0.038508 (0.025969) | 0.079514 / 0.023109 (0.056405) | 0.391657 / 0.275898 (0.115759) | 0.422997 / 0.323480 (0.099517) | 0.005485 / 0.007986 (-0.002501) | 0.003461 / 0.004328 (-0.000868) | 0.064621 / 0.004250 (0.060371) | 0.057686 / 0.037052 (0.020633) | 0.396885 / 0.258489 (0.138396) | 0.431508 / 0.293841 (0.137667) | 0.032305 / 0.128546 (-0.096241) | 0.008617 / 0.075646 (-0.067030) | 0.071577 / 0.419271 (-0.347694) | 0.047769 / 0.043533 (0.004236) | 0.394037 / 0.255139 (0.138898) | 0.412593 / 0.283200 (0.129393) | 0.023800 / 0.141683 (-0.117883) | 1.479114 / 1.452155 (0.026959) | 1.562422 / 1.492716 (0.069706) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229822 / 0.018006 (0.211816) | 0.452465 / 0.000490 (0.451975) | 0.005877 / 0.000200 (0.005677) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033528 / 0.037411 (-0.003884) | 0.091819 / 0.014526 (0.077294) | 0.106188 / 0.176557 (-0.070368) | 0.159480 / 0.737135 (-0.577655) | 0.106326 / 0.296338 (-0.190013) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427396 / 0.215209 (0.212187) | 4.275196 / 2.077655 (2.197541) | 2.287446 / 1.504120 (0.783326) | 2.137089 / 1.541195 (0.595894) | 2.198439 / 1.468490 (0.729949) | 0.491006 / 4.584777 (-4.093771) | 3.531067 / 3.745712 (-0.214645) | 3.264357 / 5.269862 (-2.005505) | 2.047760 / 4.565676 (-2.517916) | 0.057982 / 0.424275 (-0.366293) | 0.007278 / 0.007607 (-0.000329) | 0.507471 / 0.226044 (0.281426) | 5.073901 / 2.268929 (2.804973) | 2.781799 / 55.444624 (-52.662825) | 2.410759 / 6.876477 (-4.465718) | 2.623331 / 2.142072 (0.481258) | 0.601601 / 4.805227 (-4.203626) | 0.131461 / 6.500664 (-6.369204) | 0.060045 / 0.075469 (-0.015424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.372946 / 1.841788 (-0.468842) | 19.560818 / 8.074308 (11.486509) | 14.388468 / 10.191392 (4.197076) | 0.177310 / 0.680424 (-0.503114) | 0.020233 / 0.534201 (-0.513967) | 0.395938 / 0.579283 (-0.183345) | 0.418336 / 0.434364 (-0.016028) | 0.471731 / 0.540337 (-0.068607) | 0.684679 / 1.386936 (-0.702257) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4bedb7dcbaedd292ae5764f0fe6d44c16e1c2c10 \"CML watermark\")\n", "We did a patch release containing your fix @ap-- !" ]
2023-10-23T09:17:54
2024-02-07T12:41:15
2023-10-23T10:14:10
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6334", "html_url": "https://github.com/huggingface/datasets/pull/6334", "diff_url": "https://github.com/huggingface/datasets/pull/6334.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6334.patch", "merged_at": "2023-10-23T10:14:10" }
Close #6330, close #6333. `fsspec.implementations.LocalFilesystem.protocol` was changed from `str` "file" to `tuple[str,...]` ("file", "local") in `fsspec>=2023.10.0` This commit supports both styles.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6334/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6334/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6333
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6333/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6333/comments
https://api.github.com/repos/huggingface/datasets/issues/6333/events
https://github.com/huggingface/datasets/issues/6333
1,956,714,423
I_kwDODunzps50oRe3
6,333
Support fsspec 2023.10.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[ "Hi @albertvillanova @lhoestq \r\n\r\nI believe the pull request that pins the fsspec version (https://github.com/huggingface/datasets/pull/6331) was merged by mistake. Another fix for the issue was merged on the same day an hour apart. See https://github.com/huggingface/datasets/pull/6334\r\n\r\nI'm now having an issue in my project where I can't use newer versions of fsspec.\r\n\r\nCan we remove the pin?\r\n\r\nHave a nice day! :)", "Hi @tomscholz,\r\n\r\nThanks for pointing this out. I think you are right.\r\n\r\nI am doing some cross-checks and fixing it. ", "Hi again, @tomscholz.\r\n\r\nAfter a more cautious investigation, I think the pin is OK because there are other reasons for it. Chronologically:\r\n- #6331 \r\n- #6334\r\n- #6336 \r\n- #6337 \r\n\r\nThe reason is that after version 2023.10.0, they changed again the behavior of their `glob` function. See: https://github.com/huggingface/datasets/pull/6337#issuecomment-1774930135\r\nWe are working on our side to support both previous and new glob behavior.\r\n\r\nNote:\r\n- First pin was < 2023.10.0\r\n- Last pin is <= 2023.10.0", "Fixed by #6334 and #6336." ]
2023-10-23T09:14:53
2024-02-07T12:39:58
2024-02-07T12:39:58
MEMBER
null
null
Once root issue is fixed, remove temporary pin of fsspec < 2023.10.0 introduced by: - #6331 Related to issue: - #6330 As @ZachNagengast suggested, the issue might be related to: - https://github.com/fsspec/filesystem_spec/pull/1381
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6333/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6333/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6332
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6332/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6332/comments
https://api.github.com/repos/huggingface/datasets/issues/6332/events
https://github.com/huggingface/datasets/pull/6332
1,956,697,328
PR_kwDODunzps5dgW3w
6,332
Replace deprecated license_file in setup.cfg
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006884 / 0.011353 (-0.004469) | 0.004132 / 0.011008 (-0.006877) | 0.085993 / 0.038508 (0.047485) | 0.084049 / 0.023109 (0.060940) | 0.346194 / 0.275898 (0.070296) | 0.386999 / 0.323480 (0.063519) | 0.004185 / 0.007986 (-0.003801) | 0.004354 / 0.004328 (0.000026) | 0.065137 / 0.004250 (0.060886) | 0.057629 / 0.037052 (0.020577) | 0.353639 / 0.258489 (0.095150) | 0.400815 / 0.293841 (0.106974) | 0.031370 / 0.128546 (-0.097176) | 0.008719 / 0.075646 (-0.066927) | 0.289579 / 0.419271 (-0.129693) | 0.052826 / 0.043533 (0.009293) | 0.351110 / 0.255139 (0.095971) | 0.375663 / 0.283200 (0.092464) | 0.025892 / 0.141683 (-0.115791) | 1.481943 / 1.452155 (0.029789) | 1.541494 / 1.492716 (0.048778) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240007 / 0.018006 (0.222000) | 0.456216 / 0.000490 (0.455726) | 0.009348 / 0.000200 (0.009148) | 0.000370 / 0.000054 (0.000315) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029541 / 0.037411 (-0.007870) | 0.088394 / 0.014526 (0.073868) | 0.098460 / 0.176557 (-0.078096) | 0.154053 / 0.737135 (-0.583083) | 0.098821 / 0.296338 (-0.197518) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386751 / 0.215209 (0.171542) | 3.809818 / 2.077655 (1.732164) | 1.833439 / 1.504120 (0.329319) | 1.686924 / 1.541195 (0.145729) | 1.796882 / 1.468490 (0.328392) | 0.488853 / 4.584777 (-4.095924) | 3.606369 / 3.745712 (-0.139343) | 3.460003 / 5.269862 (-1.809858) | 2.087493 / 4.565676 (-2.478184) | 0.056838 / 0.424275 (-0.367437) | 0.007679 / 0.007607 (0.000072) | 0.455080 / 0.226044 (0.229036) | 4.539227 / 2.268929 (2.270299) | 2.337245 / 55.444624 (-53.107379) | 1.988195 / 6.876477 (-4.888281) | 2.067473 / 2.142072 (-0.074600) | 0.576640 / 4.805227 (-4.228587) | 0.132140 / 6.500664 (-6.368525) | 0.060737 / 0.075469 (-0.014732) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268866 / 1.841788 (-0.572922) | 19.695296 / 8.074308 (11.620988) | 14.431254 / 10.191392 (4.239862) | 0.166779 / 0.680424 (-0.513645) | 0.018262 / 0.534201 (-0.515939) | 0.390406 / 0.579283 (-0.188877) | 0.411284 / 0.434364 (-0.023080) | 0.456696 / 0.540337 (-0.083642) | 0.629660 / 1.386936 (-0.757276) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007210 / 0.011353 (-0.004143) | 0.004124 / 0.011008 (-0.006884) | 0.065877 / 0.038508 (0.027368) | 0.086242 / 0.023109 (0.063133) | 0.420087 / 0.275898 (0.144189) | 0.454327 / 0.323480 (0.130847) | 0.005586 / 0.007986 (-0.002399) | 0.003465 / 0.004328 (-0.000863) | 0.065153 / 0.004250 (0.060902) | 0.059337 / 0.037052 (0.022285) | 0.420913 / 0.258489 (0.162424) | 0.458552 / 0.293841 (0.164711) | 0.032335 / 0.128546 (-0.096211) | 0.008672 / 0.075646 (-0.066974) | 0.072029 / 0.419271 (-0.347242) | 0.048148 / 0.043533 (0.004615) | 0.423334 / 0.255139 (0.168196) | 0.440616 / 0.283200 (0.157416) | 0.023761 / 0.141683 (-0.117922) | 1.487022 / 1.452155 (0.034868) | 1.554028 / 1.492716 (0.061312) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216693 / 0.018006 (0.198687) | 0.446359 / 0.000490 (0.445869) | 0.005294 / 0.000200 (0.005094) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034655 / 0.037411 (-0.002756) | 0.099479 / 0.014526 (0.084953) | 0.111822 / 0.176557 (-0.064735) | 0.160675 / 0.737135 (-0.576461) | 0.108718 / 0.296338 (-0.187621) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440270 / 0.215209 (0.225061) | 4.389013 / 2.077655 (2.311358) | 2.408007 / 1.504120 (0.903887) | 2.237233 / 1.541195 (0.696038) | 2.344131 / 1.468490 (0.875641) | 0.493143 / 4.584777 (-4.091634) | 3.620024 / 3.745712 (-0.125688) | 3.335810 / 5.269862 (-1.934052) | 2.079256 / 4.565676 (-2.486420) | 0.058324 / 0.424275 (-0.365951) | 0.007410 / 0.007607 (-0.000197) | 0.512057 / 0.226044 (0.286013) | 5.120629 / 2.268929 (2.851701) | 2.913268 / 55.444624 (-52.531356) | 2.558214 / 6.876477 (-4.318262) | 2.784146 / 2.142072 (0.642074) | 0.593308 / 4.805227 (-4.211920) | 0.134941 / 6.500664 (-6.365723) | 0.062292 / 0.075469 (-0.013177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351795 / 1.841788 (-0.489993) | 20.489559 / 8.074308 (12.415251) | 15.046116 / 10.191392 (4.854724) | 0.166339 / 0.680424 (-0.514085) | 0.020449 / 0.534201 (-0.513752) | 0.406570 / 0.579283 (-0.172713) | 0.423405 / 0.434364 (-0.010959) | 0.474541 / 0.540337 (-0.065796) | 0.653280 / 1.386936 (-0.733656) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3bde0f0f0e556e55b95c72b0f83bdcf7145c813c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006362 / 0.011353 (-0.004991) | 0.003990 / 0.011008 (-0.007018) | 0.084020 / 0.038508 (0.045512) | 0.072198 / 0.023109 (0.049089) | 0.335992 / 0.275898 (0.060094) | 0.362056 / 0.323480 (0.038576) | 0.005298 / 0.007986 (-0.002688) | 0.003421 / 0.004328 (-0.000908) | 0.065343 / 0.004250 (0.061092) | 0.053310 / 0.037052 (0.016258) | 0.344855 / 0.258489 (0.086366) | 0.385524 / 0.293841 (0.091683) | 0.030209 / 0.128546 (-0.098337) | 0.008465 / 0.075646 (-0.067181) | 0.287359 / 0.419271 (-0.131912) | 0.051371 / 0.043533 (0.007838) | 0.338716 / 0.255139 (0.083577) | 0.351730 / 0.283200 (0.068530) | 0.023581 / 0.141683 (-0.118102) | 1.473772 / 1.452155 (0.021617) | 1.560594 / 1.492716 (0.067878) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.309019 / 0.018006 (0.291013) | 0.561428 / 0.000490 (0.560939) | 0.007237 / 0.000200 (0.007038) | 0.000266 / 0.000054 (0.000212) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028172 / 0.037411 (-0.009239) | 0.081050 / 0.014526 (0.066524) | 0.095952 / 0.176557 (-0.080604) | 0.151796 / 0.737135 (-0.585340) | 0.096132 / 0.296338 (-0.200206) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384287 / 0.215209 (0.169078) | 3.840797 / 2.077655 (1.763142) | 1.891120 / 1.504120 (0.387000) | 1.743498 / 1.541195 (0.202303) | 1.821037 / 1.468490 (0.352547) | 0.484946 / 4.584777 (-4.099831) | 3.586053 / 3.745712 (-0.159659) | 3.446215 / 5.269862 (-1.823647) | 2.054352 / 4.565676 (-2.511325) | 0.057315 / 0.424275 (-0.366960) | 0.007541 / 0.007607 (-0.000066) | 0.464088 / 0.226044 (0.238044) | 4.634005 / 2.268929 (2.365076) | 2.355818 / 55.444624 (-53.088806) | 2.045584 / 6.876477 (-4.830893) | 2.039455 / 2.142072 (-0.102617) | 0.576137 / 4.805227 (-4.229090) | 0.132071 / 6.500664 (-6.368593) | 0.059611 / 0.075469 (-0.015858) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280078 / 1.841788 (-0.561710) | 19.054079 / 8.074308 (10.979771) | 14.291090 / 10.191392 (4.099698) | 0.170607 / 0.680424 (-0.509817) | 0.018489 / 0.534201 (-0.515712) | 0.391802 / 0.579283 (-0.187481) | 0.418945 / 0.434364 (-0.015419) | 0.464084 / 0.540337 (-0.076254) | 0.638099 / 1.386936 (-0.748837) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006735 / 0.011353 (-0.004618) | 0.004133 / 0.011008 (-0.006876) | 0.064620 / 0.038508 (0.026112) | 0.076395 / 0.023109 (0.053286) | 0.399659 / 0.275898 (0.123761) | 0.426821 / 0.323480 (0.103341) | 0.006407 / 0.007986 (-0.001578) | 0.003472 / 0.004328 (-0.000857) | 0.064922 / 0.004250 (0.060671) | 0.058312 / 0.037052 (0.021260) | 0.403286 / 0.258489 (0.144797) | 0.437772 / 0.293841 (0.143931) | 0.032323 / 0.128546 (-0.096223) | 0.008727 / 0.075646 (-0.066919) | 0.071344 / 0.419271 (-0.347927) | 0.048673 / 0.043533 (0.005141) | 0.400693 / 0.255139 (0.145554) | 0.418668 / 0.283200 (0.135468) | 0.022871 / 0.141683 (-0.118812) | 1.517691 / 1.452155 (0.065536) | 1.552021 / 1.492716 (0.059305) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305279 / 0.018006 (0.287272) | 0.520054 / 0.000490 (0.519564) | 0.007247 / 0.000200 (0.007047) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032001 / 0.037411 (-0.005410) | 0.091273 / 0.014526 (0.076747) | 0.106480 / 0.176557 (-0.070077) | 0.163122 / 0.737135 (-0.574014) | 0.105244 / 0.296338 (-0.191094) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432207 / 0.215209 (0.216998) | 4.304856 / 2.077655 (2.227202) | 2.326790 / 1.504120 (0.822670) | 2.150081 / 1.541195 (0.608886) | 2.150558 / 1.468490 (0.682068) | 0.488808 / 4.584777 (-4.095969) | 3.690435 / 3.745712 (-0.055277) | 3.302625 / 5.269862 (-1.967236) | 2.044193 / 4.565676 (-2.521483) | 0.057520 / 0.424275 (-0.366755) | 0.007281 / 0.007607 (-0.000326) | 0.521078 / 0.226044 (0.295034) | 5.162620 / 2.268929 (2.893691) | 2.744041 / 55.444624 (-52.700583) | 2.407211 / 6.876477 (-4.469266) | 2.606290 / 2.142072 (0.464217) | 0.586412 / 4.805227 (-4.218815) | 0.132152 / 6.500664 (-6.368512) | 0.059424 / 0.075469 (-0.016045) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351879 / 1.841788 (-0.489908) | 19.460608 / 8.074308 (11.386299) | 14.643413 / 10.191392 (4.452021) | 0.168062 / 0.680424 (-0.512362) | 0.020396 / 0.534201 (-0.513805) | 0.395885 / 0.579283 (-0.183398) | 0.439551 / 0.434364 (0.005187) | 0.473051 / 0.540337 (-0.067286) | 0.644614 / 1.386936 (-0.742322) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#732b2ed47728fffc8d74f92691c21de8ac7423fe \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014708 / 0.011353 (0.003355) | 0.008309 / 0.011008 (-0.002699) | 0.138986 / 0.038508 (0.100478) | 0.121781 / 0.023109 (0.098671) | 0.495536 / 0.275898 (0.219637) | 0.565195 / 0.323480 (0.241715) | 0.008018 / 0.007986 (0.000032) | 0.004904 / 0.004328 (0.000575) | 0.080622 / 0.004250 (0.076371) | 0.078917 / 0.037052 (0.041865) | 0.489424 / 0.258489 (0.230935) | 0.540496 / 0.293841 (0.246656) | 0.061110 / 0.128546 (-0.067437) | 0.021443 / 0.075646 (-0.054203) | 0.395789 / 0.419271 (-0.023482) | 0.076727 / 0.043533 (0.033194) | 0.427808 / 0.255139 (0.172669) | 0.519672 / 0.283200 (0.236473) | 0.041607 / 0.141683 (-0.100076) | 2.098675 / 1.452155 (0.646520) | 2.175123 / 1.492716 (0.682407) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275784 / 0.018006 (0.257777) | 0.707103 / 0.000490 (0.706613) | 0.011524 / 0.000200 (0.011324) | 0.000390 / 0.000054 (0.000336) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032897 / 0.037411 (-0.004514) | 0.123239 / 0.014526 (0.108713) | 0.151815 / 0.176557 (-0.024741) | 0.214790 / 0.737135 (-0.522345) | 0.139166 / 0.296338 (-0.157173) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.740662 / 0.215209 (0.525453) | 7.540376 / 2.077655 (5.462721) | 3.168207 / 1.504120 (1.664087) | 2.745663 / 1.541195 (1.204468) | 2.714020 / 1.468490 (1.245530) | 1.182632 / 4.584777 (-3.402145) | 6.365807 / 3.745712 (2.620095) | 6.317228 / 5.269862 (1.047366) | 4.061107 / 4.565676 (-0.504569) | 0.146939 / 0.424275 (-0.277336) | 0.011765 / 0.007607 (0.004158) | 0.910564 / 0.226044 (0.684519) | 9.020618 / 2.268929 (6.751689) | 4.180748 / 55.444624 (-51.263876) | 3.290257 / 6.876477 (-3.586220) | 3.363172 / 2.142072 (1.221099) | 1.239142 / 4.805227 (-3.566086) | 0.294965 / 6.500664 (-6.205699) | 0.088520 / 0.075469 (0.013051) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.867528 / 1.841788 (0.025741) | 29.494058 / 8.074308 (21.419750) | 31.386703 / 10.191392 (21.195311) | 0.302488 / 0.680424 (-0.377936) | 0.036116 / 0.534201 (-0.498085) | 0.622112 / 0.579283 (0.042829) | 0.775658 / 0.434364 (0.341294) | 0.632452 / 0.540337 (0.092115) | 0.909424 / 1.386936 (-0.477512) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.016002 / 0.011353 (0.004649) | 0.007007 / 0.011008 (-0.004002) | 0.100463 / 0.038508 (0.061955) | 0.124423 / 0.023109 (0.101314) | 0.556014 / 0.275898 (0.280116) | 0.600909 / 0.323480 (0.277429) | 0.007272 / 0.007986 (-0.000714) | 0.006743 / 0.004328 (0.002415) | 0.088575 / 0.004250 (0.084324) | 0.066003 / 0.037052 (0.028951) | 0.580080 / 0.258489 (0.321591) | 0.655567 / 0.293841 (0.361726) | 0.065295 / 0.128546 (-0.063252) | 0.021105 / 0.075646 (-0.054541) | 0.120044 / 0.419271 (-0.299227) | 0.081133 / 0.043533 (0.037600) | 0.570322 / 0.255139 (0.315183) | 0.581134 / 0.283200 (0.297934) | 0.046298 / 0.141683 (-0.095385) | 2.113200 / 1.452155 (0.661045) | 2.344187 / 1.492716 (0.851471) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284517 / 0.018006 (0.266511) | 0.611834 / 0.000490 (0.611345) | 0.005581 / 0.000200 (0.005381) | 0.000153 / 0.000054 (0.000098) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.042162 / 0.037411 (0.004750) | 0.114496 / 0.014526 (0.099970) | 0.134034 / 0.176557 (-0.042523) | 0.201649 / 0.737135 (-0.535486) | 0.143235 / 0.296338 (-0.153103) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.764863 / 0.215209 (0.549654) | 7.603076 / 2.077655 (5.525421) | 3.318911 / 1.504120 (1.814791) | 2.939815 / 1.541195 (1.398620) | 2.870911 / 1.468490 (1.402421) | 1.171978 / 4.584777 (-3.412799) | 6.479933 / 3.745712 (2.734221) | 5.944387 / 5.269862 (0.674526) | 4.282625 / 4.565676 (-0.283051) | 0.123672 / 0.424275 (-0.300603) | 0.009666 / 0.007607 (0.002059) | 0.870683 / 0.226044 (0.644638) | 9.187788 / 2.268929 (6.918859) | 4.431818 / 55.444624 (-51.012807) | 3.460457 / 6.876477 (-3.416020) | 3.708198 / 2.142072 (1.566126) | 1.353673 / 4.805227 (-3.451554) | 0.264274 / 6.500664 (-6.236390) | 0.074943 / 0.075469 (-0.000526) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 2.073810 / 1.841788 (0.232023) | 29.182464 / 8.074308 (21.108156) | 30.527040 / 10.191392 (20.335648) | 0.307561 / 0.680424 (-0.372863) | 0.047384 / 0.534201 (-0.486817) | 0.662760 / 0.579283 (0.083477) | 0.768321 / 0.434364 (0.333957) | 0.692296 / 0.540337 (0.151959) | 0.955197 / 1.386936 (-0.431739) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1e82d6f017c7fc0ab6b65847c1e34772c880d3b7 \"CML watermark\")\n" ]
2023-10-23T09:05:26
2023-11-07T08:23:10
2023-11-07T08:09:06
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6332", "html_url": "https://github.com/huggingface/datasets/pull/6332", "diff_url": "https://github.com/huggingface/datasets/pull/6332.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6332.patch", "merged_at": "2023-11-07T08:09:06" }
Replace deprecated license_file in `setup.cfg`. See: https://github.com/huggingface/datasets/actions/runs/6610930650/job/17953825724?pr=6331 ``` /tmp/pip-build-env-a51hls20/overlay/lib/python3.8/site-packages/setuptools/config/setupcfg.py:293: _DeprecatedConfig: Deprecated config in `setup.cfg` !! ******************************************************************************** The license_file parameter is deprecated, use license_files instead. By 2023-Oct-30, you need to update your project and remove deprecated calls or your builds will no longer be supported. See https://setuptools.pypa.io/en/latest/userguide/declarative_config.html for details. ******************************************************************************** !! ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6332/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6332/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6331
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6331/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6331/comments
https://api.github.com/repos/huggingface/datasets/issues/6331/events
https://github.com/huggingface/datasets/pull/6331
1,956,671,256
PR_kwDODunzps5dgRQt
6,331
Temporarily pin fsspec < 2023.10.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009605 / 0.011353 (-0.001747) | 0.004864 / 0.011008 (-0.006144) | 0.114605 / 0.038508 (0.076097) | 0.090874 / 0.023109 (0.067765) | 0.429203 / 0.275898 (0.153305) | 0.489888 / 0.323480 (0.166408) | 0.006542 / 0.007986 (-0.001443) | 0.004585 / 0.004328 (0.000257) | 0.090251 / 0.004250 (0.086001) | 0.066612 / 0.037052 (0.029560) | 0.437491 / 0.258489 (0.179002) | 0.515196 / 0.293841 (0.221355) | 0.047756 / 0.128546 (-0.080791) | 0.013587 / 0.075646 (-0.062059) | 0.376960 / 0.419271 (-0.042311) | 0.069701 / 0.043533 (0.026168) | 0.430850 / 0.255139 (0.175711) | 0.475061 / 0.283200 (0.191861) | 0.034800 / 0.141683 (-0.106883) | 1.799947 / 1.452155 (0.347793) | 1.941863 / 1.492716 (0.449147) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316685 / 0.018006 (0.298679) | 0.595098 / 0.000490 (0.594608) | 0.015447 / 0.000200 (0.015247) | 0.000463 / 0.000054 (0.000409) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039364 / 0.037411 (0.001953) | 0.091295 / 0.014526 (0.076769) | 0.109380 / 0.176557 (-0.067177) | 0.185454 / 0.737135 (-0.551681) | 0.104476 / 0.296338 (-0.191862) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.626291 / 0.215209 (0.411082) | 5.869948 / 2.077655 (3.792293) | 2.466267 / 1.504120 (0.962147) | 2.183572 / 1.541195 (0.642377) | 2.208286 / 1.468490 (0.739796) | 0.817175 / 4.584777 (-3.767602) | 5.255141 / 3.745712 (1.509429) | 4.878668 / 5.269862 (-0.391193) | 2.917020 / 4.565676 (-1.648657) | 0.104995 / 0.424275 (-0.319280) | 0.008687 / 0.007607 (0.001080) | 0.678993 / 0.226044 (0.452948) | 7.004983 / 2.268929 (4.736054) | 3.444040 / 55.444624 (-52.000584) | 2.745075 / 6.876477 (-4.131402) | 2.720151 / 2.142072 (0.578078) | 0.995803 / 4.805227 (-3.809424) | 0.205928 / 6.500664 (-6.294736) | 0.077053 / 0.075469 (0.001584) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.587354 / 1.841788 (-0.254434) | 23.843227 / 8.074308 (15.768919) | 21.355771 / 10.191392 (11.164379) | 0.225593 / 0.680424 (-0.454831) | 0.029054 / 0.534201 (-0.505147) | 0.469676 / 0.579283 (-0.109607) | 0.582619 / 0.434364 (0.148255) | 0.576932 / 0.540337 (0.036594) | 0.946182 / 1.386936 (-0.440754) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009819 / 0.011353 (-0.001534) | 0.005562 / 0.011008 (-0.005446) | 0.075512 / 0.038508 (0.037004) | 0.084294 / 0.023109 (0.061185) | 0.549516 / 0.275898 (0.273618) | 0.550364 / 0.323480 (0.226884) | 0.006603 / 0.007986 (-0.001383) | 0.004587 / 0.004328 (0.000259) | 0.084040 / 0.004250 (0.079789) | 0.066815 / 0.037052 (0.029762) | 0.549224 / 0.258489 (0.290735) | 0.556213 / 0.293841 (0.262372) | 0.048538 / 0.128546 (-0.080008) | 0.014050 / 0.075646 (-0.061596) | 0.088955 / 0.419271 (-0.330317) | 0.062393 / 0.043533 (0.018860) | 0.528770 / 0.255139 (0.273631) | 0.564854 / 0.283200 (0.281655) | 0.033976 / 0.141683 (-0.107707) | 1.858558 / 1.452155 (0.406403) | 1.894616 / 1.492716 (0.401899) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.378597 / 0.018006 (0.360591) | 0.650586 / 0.000490 (0.650097) | 0.033179 / 0.000200 (0.032979) | 0.000477 / 0.000054 (0.000423) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031779 / 0.037411 (-0.005632) | 0.103393 / 0.014526 (0.088867) | 0.119810 / 0.176557 (-0.056747) | 0.192188 / 0.737135 (-0.544948) | 0.114545 / 0.296338 (-0.181794) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.623571 / 0.215209 (0.408362) | 6.350249 / 2.077655 (4.272594) | 3.207773 / 1.504120 (1.703653) | 2.861118 / 1.541195 (1.319923) | 2.864445 / 1.468490 (1.395955) | 0.827451 / 4.584777 (-3.757326) | 5.323860 / 3.745712 (1.578148) | 4.569197 / 5.269862 (-0.700665) | 2.967595 / 4.565676 (-1.598081) | 0.090926 / 0.424275 (-0.333349) | 0.007820 / 0.007607 (0.000213) | 0.731610 / 0.226044 (0.505565) | 7.342651 / 2.268929 (5.073723) | 3.781727 / 55.444624 (-51.662897) | 3.222100 / 6.876477 (-3.654377) | 3.546145 / 2.142072 (1.404073) | 1.030500 / 4.805227 (-3.774728) | 0.226563 / 6.500664 (-6.274101) | 0.078633 / 0.075469 (0.003164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.733677 / 1.841788 (-0.108111) | 24.650616 / 8.074308 (16.576308) | 22.033745 / 10.191392 (11.842353) | 0.211055 / 0.680424 (-0.469369) | 0.031658 / 0.534201 (-0.502543) | 0.467190 / 0.579283 (-0.112094) | 0.598303 / 0.434364 (0.163939) | 0.569318 / 0.540337 (0.028981) | 0.825984 / 1.386936 (-0.560952) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7eef7749031232d0b29f7ca10e3fa9f997b19ef7 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006873 / 0.011353 (-0.004479) | 0.004174 / 0.011008 (-0.006835) | 0.085874 / 0.038508 (0.047366) | 0.074207 / 0.023109 (0.051098) | 0.307342 / 0.275898 (0.031444) | 0.339972 / 0.323480 (0.016493) | 0.005522 / 0.007986 (-0.002463) | 0.003576 / 0.004328 (-0.000753) | 0.065680 / 0.004250 (0.061430) | 0.056274 / 0.037052 (0.019222) | 0.313121 / 0.258489 (0.054632) | 0.364699 / 0.293841 (0.070858) | 0.031297 / 0.128546 (-0.097249) | 0.008652 / 0.075646 (-0.066994) | 0.288431 / 0.419271 (-0.130840) | 0.053081 / 0.043533 (0.009548) | 0.309076 / 0.255139 (0.053937) | 0.329251 / 0.283200 (0.046052) | 0.024840 / 0.141683 (-0.116843) | 1.484155 / 1.452155 (0.032001) | 1.598665 / 1.492716 (0.105949) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270933 / 0.018006 (0.252927) | 0.565867 / 0.000490 (0.565377) | 0.006964 / 0.000200 (0.006764) | 0.000298 / 0.000054 (0.000244) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028393 / 0.037411 (-0.009018) | 0.081756 / 0.014526 (0.067230) | 0.095733 / 0.176557 (-0.080823) | 0.152426 / 0.737135 (-0.584710) | 0.096655 / 0.296338 (-0.199683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403992 / 0.215209 (0.188783) | 4.027230 / 2.077655 (1.949576) | 2.031102 / 1.504120 (0.526982) | 1.843727 / 1.541195 (0.302532) | 1.898342 / 1.468490 (0.429852) | 0.479186 / 4.584777 (-4.105591) | 3.488153 / 3.745712 (-0.257559) | 3.523953 / 5.269862 (-1.745909) | 2.078392 / 4.565676 (-2.487284) | 0.056104 / 0.424275 (-0.368171) | 0.007368 / 0.007607 (-0.000239) | 0.479630 / 0.226044 (0.253585) | 4.787400 / 2.268929 (2.518471) | 2.488268 / 55.444624 (-52.956356) | 2.229955 / 6.876477 (-4.646522) | 2.260468 / 2.142072 (0.118396) | 0.587934 / 4.805227 (-4.217294) | 0.147124 / 6.500664 (-6.353540) | 0.059954 / 0.075469 (-0.015515) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283155 / 1.841788 (-0.558632) | 19.013574 / 8.074308 (10.939266) | 13.915188 / 10.191392 (3.723796) | 0.174101 / 0.680424 (-0.506323) | 0.018172 / 0.534201 (-0.516029) | 0.390322 / 0.579283 (-0.188961) | 0.405493 / 0.434364 (-0.028871) | 0.456914 / 0.540337 (-0.083424) | 0.635213 / 1.386936 (-0.751723) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006622 / 0.011353 (-0.004731) | 0.003997 / 0.011008 (-0.007011) | 0.064542 / 0.038508 (0.026034) | 0.074165 / 0.023109 (0.051056) | 0.392285 / 0.275898 (0.116387) | 0.423522 / 0.323480 (0.100042) | 0.006361 / 0.007986 (-0.001625) | 0.003463 / 0.004328 (-0.000866) | 0.064891 / 0.004250 (0.060641) | 0.058485 / 0.037052 (0.021433) | 0.425217 / 0.258489 (0.166728) | 0.435907 / 0.293841 (0.142066) | 0.031501 / 0.128546 (-0.097045) | 0.008575 / 0.075646 (-0.067071) | 0.072094 / 0.419271 (-0.347178) | 0.047904 / 0.043533 (0.004371) | 0.397174 / 0.255139 (0.142035) | 0.417940 / 0.283200 (0.134741) | 0.023324 / 0.141683 (-0.118358) | 1.517245 / 1.452155 (0.065090) | 1.586497 / 1.492716 (0.093781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268311 / 0.018006 (0.250305) | 0.561118 / 0.000490 (0.560628) | 0.004352 / 0.000200 (0.004152) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033039 / 0.037411 (-0.004373) | 0.091596 / 0.014526 (0.077071) | 0.111520 / 0.176557 (-0.065036) | 0.161755 / 0.737135 (-0.575381) | 0.107681 / 0.296338 (-0.188657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427170 / 0.215209 (0.211961) | 4.252648 / 2.077655 (2.174994) | 2.257623 / 1.504120 (0.753503) | 2.098446 / 1.541195 (0.557251) | 2.128544 / 1.468490 (0.660054) | 0.496639 / 4.584777 (-4.088138) | 3.593385 / 3.745712 (-0.152328) | 3.396367 / 5.269862 (-1.873494) | 2.073369 / 4.565676 (-2.492308) | 0.058386 / 0.424275 (-0.365889) | 0.007515 / 0.007607 (-0.000093) | 0.502358 / 0.226044 (0.276313) | 5.015224 / 2.268929 (2.746296) | 2.735740 / 55.444624 (-52.708885) | 2.388368 / 6.876477 (-4.488109) | 2.682857 / 2.142072 (0.540785) | 0.595003 / 4.805227 (-4.210225) | 0.135419 / 6.500664 (-6.365245) | 0.062824 / 0.075469 (-0.012645) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.367507 / 1.841788 (-0.474281) | 19.569288 / 8.074308 (11.494979) | 14.748693 / 10.191392 (4.557301) | 0.198659 / 0.680424 (-0.481765) | 0.020954 / 0.534201 (-0.513247) | 0.414858 / 0.579283 (-0.164426) | 0.421226 / 0.434364 (-0.013138) | 0.477774 / 0.540337 (-0.062563) | 0.676173 / 1.386936 (-0.710763) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#87ed467af77d87ad7e38279cf9a24c341545cbac \"CML watermark\")\n" ]
2023-10-23T08:51:50
2023-10-23T09:26:42
2023-10-23T09:17:55
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6331", "html_url": "https://github.com/huggingface/datasets/pull/6331", "diff_url": "https://github.com/huggingface/datasets/pull/6331.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6331.patch", "merged_at": "2023-10-23T09:17:55" }
Temporarily pin fsspec < 2023.10.0 until permanent solution is found. Hot fix #6330. See: https://github.com/huggingface/datasets/actions/runs/6610904287/job/17953774987 ``` ... ERROR tests/test_iterable_dataset.py::test_iterable_dataset_from_file - NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported. = 373 failed, 2055 passed, 17 skipped, 8 warnings, 6 errors in 228.14s (0:03:48) = ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6331/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6331/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6330
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6330/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6330/comments
https://api.github.com/repos/huggingface/datasets/issues/6330/events
https://github.com/huggingface/datasets/issues/6330
1,956,053,294
I_kwDODunzps50lwEu
6,330
Latest fsspec==2023.10.0 issue with streaming datasets
{ "login": "ZachNagengast", "id": 1981179, "node_id": "MDQ6VXNlcjE5ODExNzk=", "avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ZachNagengast", "html_url": "https://github.com/ZachNagengast", "followers_url": "https://api.github.com/users/ZachNagengast/followers", "following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}", "gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}", "starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions", "organizations_url": "https://api.github.com/users/ZachNagengast/orgs", "repos_url": "https://api.github.com/users/ZachNagengast/repos", "events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}", "received_events_url": "https://api.github.com/users/ZachNagengast/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[ "I also encountered a similar error below.\r\nAppreciate the team could shed some light on this issue.\r\n\r\n```\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\n[/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb) Cell 1 line 4\r\n [1](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0) from datasets import load_dataset, load_dataset\r\n [3](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=2) # ds = load_dataset(\"parquet\", data_dir=\"/home/ubuntu/work/EveryDream2trainer/datasets/monse_v1/data\")\r\n----> [4](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=3) ds = load_dataset(\"Raspberry-ai/monse-v1\")\r\n\r\nFile [/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/load.py:1804](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/load.py:1804), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1800 # Build dataset for splits\r\n 1801 keep_in_memory = (\r\n 1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1803 )\r\n-> 1804 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1805 # Rename and cast features to match task schema\r\n 1806 if task is not None:\r\n\r\nFile [/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/builder.py:1108](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/builder.py:1108), in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1106 is_local = not is_remote_filesystem(self._fs)\r\n 1107 if not is_local:\r\n-> 1108 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1109 if not os.path.exists(self._output_dir):\r\n 1110 raise FileNotFoundError(\r\n 1111 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1112 \"builder.download_and_prepare(), or use \"\r\n 1113 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1114 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```\r\n\r\nCode to reproduce the issue:\r\n\r\n```\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"Raspberry-ai/monse-v1\")\r\n```\r\n\r\n\r\nDependencies:\r\n```\r\nPackage Version\r\n------------------------- ------------\r\nabsl-py 2.0.0\r\naccelerate 0.23.0\r\naiohttp 3.8.4\r\naiosignal 1.3.1\r\nantlr4-python3-runtime 4.9.3\r\nanyio 4.0.0\r\nappdirs 1.4.4\r\nargon2-cffi 23.1.0\r\nargon2-cffi-bindings 21.2.0\r\narrow 1.3.0\r\nasttokens 2.4.0\r\nasync-lru 2.0.4\r\nasync-timeout 4.0.3\r\nattrs 23.1.0\r\nBabel 2.13.0\r\nbackcall 0.2.0\r\nbeautifulsoup4 4.12.2\r\nbitsandbytes 0.41.1\r\nbleach 6.1.0\r\nbraceexpand 0.1.7\r\ncachetools 5.3.1\r\ncertifi 2023.7.22\r\ncffi 1.16.0\r\ncharset-normalizer 3.3.1\r\nclick 8.1.7\r\ncmake 3.27.7\r\ncolorama 0.4.6\r\ncomm 0.1.4\r\ncompel 1.1.6\r\ndatasets 2.11.0\r\ndebugpy 1.8.0\r\ndecorator 5.1.1\r\ndefusedxml 0.7.1\r\ndiffusers 0.18.0\r\ndill 0.3.6\r\ndocker-pycreds 0.4.0\r\ndowg 0.3.1\r\neinops 0.7.0\r\neinops-exts 0.0.4\r\nexceptiongroup 1.1.3\r\nexecuting 2.0.0\r\nfastjsonschema 2.18.1\r\nfilelock 3.12.4\r\nfqdn 1.5.1\r\nfrozenlist 1.4.0\r\nfsspec 2023.10.0\r\nftfy 6.1.1\r\ngitdb 4.0.11\r\nGitPython 3.1.40\r\ngoogle-auth 2.23.3\r\ngoogle-auth-oauthlib 1.1.0\r\ngrpcio 1.59.0\r\nhuggingface-hub 0.18.0\r\nidna 3.4\r\nimportlib-metadata 6.8.0\r\ninflection 0.5.1\r\nipykernel 6.25.2\r\nipython 8.16.1\r\nisoduration 20.11.0\r\njedi 0.19.1\r\nJinja2 3.1.2\r\njoblib 1.3.2\r\njson5 0.9.14\r\njsonpointer 2.4\r\njsonschema 4.19.1\r\njsonschema-specifications 2023.7.1\r\njupyter_client 8.4.0\r\njupyter_core 5.4.0\r\njupyter-events 0.8.0\r\njupyter-lsp 2.2.0\r\njupyter_server 2.8.0\r\njupyter_server_terminals 0.4.4\r\njupyterlab 4.0.7\r\njupyterlab-pygments 0.2.2\r\njupyterlab_server 2.25.0\r\nlightning-utilities 0.9.0\r\nlion-pytorch 0.1.2\r\nlit 17.0.3\r\nMarkdown 3.5\r\nMarkupSafe 2.1.3\r\nmatplotlib-inline 0.1.6\r\nmistune 3.0.2\r\nmore-itertools 10.1.0\r\nmpmath 1.3.0\r\nmultidict 6.0.4\r\nmultiprocess 0.70.14\r\nmypy-extensions 1.0.0\r\nnbclient 0.8.0\r\nnbconvert 7.9.2\r\nnbformat 5.9.2\r\nnest-asyncio 1.5.8\r\nnetworkx 3.2\r\nnltk 3.8.1\r\nnotebook_shim 0.2.3\r\nnumpy 1.23.5\r\noauthlib 3.2.2\r\nomegaconf 2.2.3\r\nopen-clip-torch 2.22.0\r\nopen-flamingo 2.0.0\r\noverrides 7.4.0\r\npackaging 23.2\r\npandas 2.1.1\r\npandocfilters 1.5.0\r\nparso 0.8.3\r\npathtools 0.1.2\r\npexpect 4.8.0\r\npickleshare 0.7.5\r\nPillow 10.1.0\r\npip 23.3.1\r\nplatformdirs 3.11.0\r\nprometheus-client 0.17.1\r\nprompt-toolkit 3.0.39\r\nprotobuf 3.20.1\r\npsutil 5.9.6\r\nptyprocess 0.7.0\r\npure-eval 0.2.2\r\npyarrow 13.0.0\r\npyasn1 0.5.0\r\npyasn1-modules 0.3.0\r\npycparser 2.21\r\npyDeprecate 0.3.2\r\nPygments 2.16.1\r\npynvml 11.4.1\r\npyparsing 3.1.1\r\npyre-extensions 0.0.29\r\npython-dateutil 2.8.2\r\npython-json-logger 2.0.7\r\npytorch-lightning 1.6.5\r\npytz 2023.3.post1\r\nPyYAML 6.0.1\r\npyzmq 25.1.1\r\nreferencing 0.30.2\r\nregex 2023.10.3\r\nrequests 2.31.0\r\nrequests-oauthlib 1.3.1\r\nresponses 0.18.0\r\nrfc3339-validator 0.1.4\r\nrfc3986-validator 0.1.1\r\nrpds-py 0.10.6\r\nrsa 4.9\r\nsafetensors 0.4.0\r\nscipy 1.11.3\r\nSend2Trash 1.8.2\r\nsentencepiece 0.1.98\r\nsentry-sdk 1.32.0\r\nsetproctitle 1.3.3\r\nsetuptools 68.2.2\r\nsix 1.16.0\r\nsmmap 5.0.1\r\nsniffio 1.3.0\r\nsoupsieve 2.5\r\nstack-data 0.6.3\r\nsympy 1.12\r\ntensorboard 2.15.0\r\ntensorboard-data-server 0.7.1\r\nterminado 0.17.1\r\ntimm 0.9.8\r\ntinycss2 1.2.1\r\ntokenizers 0.13.3\r\ntomli 2.0.1\r\ntorch 2.0.1+cu118\r\ntorchmetrics 1.2.0\r\ntorchvision 0.15.2+cu118\r\ntornado 6.3.3\r\ntqdm 4.66.1\r\ntraitlets 5.11.2\r\ntransformers 4.29.2\r\ntriton 2.0.0\r\ntypes-python-dateutil 2.8.19.14\r\ntyping_extensions 4.8.0\r\ntyping-inspect 0.9.0\r\ntzdata 2023.3\r\nuri-template 1.3.0\r\nurllib3 2.0.7\r\nwandb 0.15.12\r\nwcwidth 0.2.8\r\nwebcolors 1.13\r\nwebdataset 0.2.62\r\nwebencodings 0.5.1\r\nwebsocket-client 1.6.4\r\nWerkzeug 3.0.0\r\nwheel 0.41.2\r\nxformers 0.0.20\r\nxxhash 3.4.1\r\nyarl 1.9.2\r\nzipp 3.17.0\r\n```", "@humpydonkey FWIW setting fsspec down to 2023.9.2 fixed the issue\r\n\r\n`pip install fsspec==2023.9.2`", "got it, thanks @ZachNagengast ", "Thanks for reporting and for the investigation, @ZachNagengast! :hugs: \r\n\r\nWe are investigating the root cause of the issue. In the meantime, we are going to pin fsspec < 2023.10.0. ", "https://stackoverflow.com/questions/77433096/notimplementederror-loading-a-dataset-cached-in-a-localfilesystem-is-not-suppor/77433141#77433141", "You can also update `datasets`:\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\nIt will also update `fsspec` to use the right version" ]
2023-10-22T20:57:10
2023-11-07T10:02:14
2023-10-23T09:17:56
CONTRIBUTOR
null
null
### Describe the bug Loading a streaming dataset with this version of fsspec fails with the following error: `NotImplementedError: Loading a streaming dataset cached in a LocalFileSystem is not supported yet.` I suspect the issue is with this PR https://github.com/fsspec/filesystem_spec/pull/1381 ### Steps to reproduce the bug 1. Upgrade fsspec to version `2023.10.0` 2. Attempt to load a streaming dataset e.g. `load_dataset("laion/gpt4v-emotion-dataset", split="train", streaming=True)` 3. Observe the following exception: ``` File "/opt/hostedtoolcache/Python/3.11.6/x64/lib/python3.11/site-packages/datasets/load.py", line 2146, in load_dataset return builder_instance.as_streaming_dataset(split=split) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/hostedtoolcache/Python/3.11.6/x64/lib/python3.11/site-packages/datasets/builder.py", line 1318, in as_streaming_dataset raise NotImplementedError( NotImplementedError: Loading a streaming dataset cached in a LocalFileSystem is not supported yet. ``` ### Expected behavior Should stream the dataset as normal. ### Environment info datasets@main fsspec==2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6330/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6330/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6329
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6329/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6329/comments
https://api.github.com/repos/huggingface/datasets/issues/6329/events
https://github.com/huggingface/datasets/issues/6329
1,955,858,020
I_kwDODunzps50lAZk
6,329
شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی
{ "login": "shabnam706", "id": 147399213, "node_id": "U_kgDOCMkiLQ", "avatar_url": "https://avatars.githubusercontent.com/u/147399213?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shabnam706", "html_url": "https://github.com/shabnam706", "followers_url": "https://api.github.com/users/shabnam706/followers", "following_url": "https://api.github.com/users/shabnam706/following{/other_user}", "gists_url": "https://api.github.com/users/shabnam706/gists{/gist_id}", "starred_url": "https://api.github.com/users/shabnam706/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shabnam706/subscriptions", "organizations_url": "https://api.github.com/users/shabnam706/orgs", "repos_url": "https://api.github.com/users/shabnam706/repos", "events_url": "https://api.github.com/users/shabnam706/events{/privacy}", "received_events_url": "https://api.github.com/users/shabnam706/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-10-22T11:07:46
2023-10-23T09:22:58
2023-10-23T09:22:58
NONE
null
null
شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6329/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6329/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6328
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6328/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6328/comments
https://api.github.com/repos/huggingface/datasets/issues/6328/events
https://github.com/huggingface/datasets/issues/6328
1,955,857,904
I_kwDODunzps50lAXw
6,328
شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی
{ "login": "shabnam706", "id": 147399213, "node_id": "U_kgDOCMkiLQ", "avatar_url": "https://avatars.githubusercontent.com/u/147399213?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shabnam706", "html_url": "https://github.com/shabnam706", "followers_url": "https://api.github.com/users/shabnam706/followers", "following_url": "https://api.github.com/users/shabnam706/following{/other_user}", "gists_url": "https://api.github.com/users/shabnam706/gists{/gist_id}", "starred_url": "https://api.github.com/users/shabnam706/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shabnam706/subscriptions", "organizations_url": "https://api.github.com/users/shabnam706/orgs", "repos_url": "https://api.github.com/users/shabnam706/repos", "events_url": "https://api.github.com/users/shabnam706/events{/privacy}", "received_events_url": "https://api.github.com/users/shabnam706/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی" ]
2023-10-22T11:07:21
2023-10-23T09:22:38
2023-10-23T09:22:38
NONE
null
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6328/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6328/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6327
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6327/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6327/comments
https://api.github.com/repos/huggingface/datasets/issues/6327/events
https://github.com/huggingface/datasets/issues/6327
1,955,470,755
I_kwDODunzps50jh2j
6,327
FileNotFoundError when trying to load the downloaded dataset with `load_dataset(..., streaming=True)`
{ "login": "yzhangcs", "id": 18402347, "node_id": "MDQ6VXNlcjE4NDAyMzQ3", "avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yzhangcs", "html_url": "https://github.com/yzhangcs", "followers_url": "https://api.github.com/users/yzhangcs/followers", "following_url": "https://api.github.com/users/yzhangcs/following{/other_user}", "gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}", "starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions", "organizations_url": "https://api.github.com/users/yzhangcs/orgs", "repos_url": "https://api.github.com/users/yzhangcs/repos", "events_url": "https://api.github.com/users/yzhangcs/events{/privacy}", "received_events_url": "https://api.github.com/users/yzhangcs/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "You can clone the `togethercomputer/RedPajama-Data-1T-Sample` repo and load the dataset with `load_dataset(\"path/to/cloned_repo\")` to use it offline.", "@mariosasko Thank you for your kind reply! I'll try it as a workaround.\r\nDoes that mean that currently it's not supported to simply load with a short name?", "It is, but manually downloading repo files to the cache can easily lead to failure (the HF cache is not meant to be modified by a user besides deleting the files 🙂), as in your case. Hence, the clone + `load_dataset(\"path/to/cloned_repo\")` workflow should be used instead." ]
2023-10-21T12:27:03
2023-10-23T18:50:07
2023-10-23T18:50:07
NONE
null
null
### Describe the bug Hi, I'm trying to load the dataset `togethercomputer/RedPajama-Data-1T-Sample` with `load_dataset` in streaming mode, i.e., `streaming=True`, but `FileNotFoundError` occurs. ### Steps to reproduce the bug I've downloaded the dataset and save it to the cache dir in advance. My hope is loading the files in offline environment and without taking too much hours to prepross the entire data before running into the training process. So I try the following code to load the files streamingly ```py dataset = load_dataset('togethercomputer/RedPajama-Data-1T-Sample', streaming=True) print(next(iter(dataset['train']))) ``` Sadly, it raises the following: ``` FileNotFoundError: [Errno 2] No such file or directory: 'CURRENT_CODE_PATH/arxiv_sample.jsonl' ``` I've noticed that the dataset can be properly found in the begining ``` Using the latest cached version of the module from /root/.cache/huggingface/modules/datasets_modules/datasets/togethercomputer--RedPajama-Data-1T-Sample/6ea3bc8ec2e84ec6d2df1930942e9028ace8c5b9d9143823cf911c50bbd92039 (last modified on Sat Oct 21 20:12:57 2023) since it couldn't be found locally at togethercomputer/RedPajama-Data-1T-Sample., or remotely on the Hugging Face Hub. ``` But it seems that the paths couldn't be properly parsed when loading iteratively. How should I fix this error. I've tried specifying `data_files` or `data_dir` as `.../arxiv_sample.jsonl` but none of them works. Thanks. ### Expected behavior Properly load the dataset. ### Environment info `datasets==2.14.5`
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6327/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6327/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6326
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6326/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6326/comments
https://api.github.com/repos/huggingface/datasets/issues/6326/events
https://github.com/huggingface/datasets/pull/6326
1,955,420,536
PR_kwDODunzps5dcSRa
6,326
Create battery_analysis.py
{ "login": "vinitkm", "id": 130216732, "node_id": "U_kgDOB8LzHA", "avatar_url": "https://avatars.githubusercontent.com/u/130216732?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vinitkm", "html_url": "https://github.com/vinitkm", "followers_url": "https://api.github.com/users/vinitkm/followers", "following_url": "https://api.github.com/users/vinitkm/following{/other_user}", "gists_url": "https://api.github.com/users/vinitkm/gists{/gist_id}", "starred_url": "https://api.github.com/users/vinitkm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vinitkm/subscriptions", "organizations_url": "https://api.github.com/users/vinitkm/orgs", "repos_url": "https://api.github.com/users/vinitkm/repos", "events_url": "https://api.github.com/users/vinitkm/events{/privacy}", "received_events_url": "https://api.github.com/users/vinitkm/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-10-21T10:07:48
2023-10-23T14:56:20
2023-10-23T14:56:20
NONE
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6326", "html_url": "https://github.com/huggingface/datasets/pull/6326", "diff_url": "https://github.com/huggingface/datasets/pull/6326.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6326.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6326/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6326/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6325
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6325/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6325/comments
https://api.github.com/repos/huggingface/datasets/issues/6325/events
https://github.com/huggingface/datasets/pull/6325
1,955,420,178
PR_kwDODunzps5dcSM3
6,325
Create battery_analysis.py
{ "login": "vinitkm", "id": 130216732, "node_id": "U_kgDOB8LzHA", "avatar_url": "https://avatars.githubusercontent.com/u/130216732?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vinitkm", "html_url": "https://github.com/vinitkm", "followers_url": "https://api.github.com/users/vinitkm/followers", "following_url": "https://api.github.com/users/vinitkm/following{/other_user}", "gists_url": "https://api.github.com/users/vinitkm/gists{/gist_id}", "starred_url": "https://api.github.com/users/vinitkm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vinitkm/subscriptions", "organizations_url": "https://api.github.com/users/vinitkm/orgs", "repos_url": "https://api.github.com/users/vinitkm/repos", "events_url": "https://api.github.com/users/vinitkm/events{/privacy}", "received_events_url": "https://api.github.com/users/vinitkm/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-10-21T10:06:37
2023-10-23T14:55:58
2023-10-23T14:55:58
NONE
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6325", "html_url": "https://github.com/huggingface/datasets/pull/6325", "diff_url": "https://github.com/huggingface/datasets/pull/6325.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6325.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6325/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6325/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6324
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6324/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6324/comments
https://api.github.com/repos/huggingface/datasets/issues/6324/events
https://github.com/huggingface/datasets/issues/6324
1,955,126,687
I_kwDODunzps50iN2f
6,324
Conversion to Arrow fails due to wrong type heuristic
{ "login": "jphme", "id": 2862336, "node_id": "MDQ6VXNlcjI4NjIzMzY=", "avatar_url": "https://avatars.githubusercontent.com/u/2862336?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jphme", "html_url": "https://github.com/jphme", "followers_url": "https://api.github.com/users/jphme/followers", "following_url": "https://api.github.com/users/jphme/following{/other_user}", "gists_url": "https://api.github.com/users/jphme/gists{/gist_id}", "starred_url": "https://api.github.com/users/jphme/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jphme/subscriptions", "organizations_url": "https://api.github.com/users/jphme/orgs", "repos_url": "https://api.github.com/users/jphme/repos", "events_url": "https://api.github.com/users/jphme/events{/privacy}", "received_events_url": "https://api.github.com/users/jphme/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Unlike Pandas, Arrow is strict with types, so converting the problematic strings to ints (or ints to strings) to ensure all the values have the same type is the only fix. \r\n\r\nJSON support has been requested in Arrow [here](https://github.com/apache/arrow/issues/32538), but I don't expect this to be implemented soon. \r\n\r\nAlso, this type could be represented with the Arrow Union type. However, due to low usage, the Union type has limited support in the Arrow ecosystem (e.g., IIRC Parquet still does not support it). So, we should probably wait a bit more before adding support for it in `datasets`", "> Unlike Pandas, Arrow is strict with types, so converting the problematic strings to ints (or ints to strings) to ensure all the values have the same type is the only fix.\r\n> \r\n> JSON support has been requested in Arrow [here](https://github.com/apache/arrow/issues/32538), but I don't expect this to be implemented soon.\r\n> \r\n> Also, this type could be represented with the Arrow Union type. However, due to low usage, the Union type has limited support in the Arrow ecosystem (e.g., IIRC Parquet still does not support it). So, we should probably wait a bit more before adding support for it in `datasets`\r\n\r\nOk many thanks, I was able to mitigate the problem by manually checking and converting all problematic fields now." ]
2023-10-20T23:20:58
2023-10-23T20:52:57
2023-10-23T20:52:57
NONE
null
null
### Describe the bug I have a list of dictionaries with valid/JSON-serializable values. One key is the denominator for a paragraph. In 99.9% of cases its a number, but there are some occurences of '1a', '2b' and so on. If trying to convert this list to a dataset with `Dataset.from_list()`, I always get `ArrowInvalid: Could not convert '1' with type str: tried to convert to int64`, presumably because pyarrow tries to convert the keys to integers. Is there any way to circumvent this and fix dtypes? I didn't find anything in the documentation. ### Steps to reproduce the bug * create a list of dicts with one key being a string of an integer for the first few thousand occurences and try to convert to dataset. ### Expected behavior There shouldn't be an error (e.g. some flag to turn off automatic str to numeric conversion). ### Environment info - `datasets` version: 2.14.5 - Platform: Linux-5.15.0-84-generic-x86_64-with-glibc2.35 - Python version: 3.9.18 - Huggingface_hub version: 0.17.3 - PyArrow version: 13.0.0 - Pandas version: 2.1.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6324/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6324/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6323
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6323/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6323/comments
https://api.github.com/repos/huggingface/datasets/issues/6323/events
https://github.com/huggingface/datasets/issues/6323
1,954,245,980
I_kwDODunzps50e21c
6,323
Loading dataset from large GCS bucket very slow since 2.14
{ "login": "jbcdnr", "id": 6209990, "node_id": "MDQ6VXNlcjYyMDk5OTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6209990?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jbcdnr", "html_url": "https://github.com/jbcdnr", "followers_url": "https://api.github.com/users/jbcdnr/followers", "following_url": "https://api.github.com/users/jbcdnr/following{/other_user}", "gists_url": "https://api.github.com/users/jbcdnr/gists{/gist_id}", "starred_url": "https://api.github.com/users/jbcdnr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jbcdnr/subscriptions", "organizations_url": "https://api.github.com/users/jbcdnr/orgs", "repos_url": "https://api.github.com/users/jbcdnr/repos", "events_url": "https://api.github.com/users/jbcdnr/events{/privacy}", "received_events_url": "https://api.github.com/users/jbcdnr/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[]
2023-10-20T12:59:55
2023-10-20T12:59:55
null
NONE
null
null
### Describe the bug Since updating to >2.14 we have very slow access to our parquet files on GCS when loading a dataset (>30 min vs 3s). Our GCS bucket has many objects and resolving globs is very slow. I could track down the problem to this change: https://github.com/huggingface/datasets/blame/bade7af74437347a760830466eb74f7a8ce0d799/src/datasets/data_files.py#L348 The underlying implementation with gcsfs is really slow. Could you go back to the old way if we are simply giving the parquet files and no glob pattern? Thank you. ### Steps to reproduce the bug Load a dataset from a GCS bucket that has many files. ### Expected behavior Used to be fast (3s) in 2.13 ### Environment info datasets==2.14.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6323/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6323/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6322
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6322/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6322/comments
https://api.github.com/repos/huggingface/datasets/issues/6322/events
https://github.com/huggingface/datasets/pull/6322
1,952,947,461
PR_kwDODunzps5dT5vG
6,322
Fix regex `get_data_files` formatting for base paths
{ "login": "ZachNagengast", "id": 1981179, "node_id": "MDQ6VXNlcjE5ODExNzk=", "avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ZachNagengast", "html_url": "https://github.com/ZachNagengast", "followers_url": "https://api.github.com/users/ZachNagengast/followers", "following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}", "gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}", "starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions", "organizations_url": "https://api.github.com/users/ZachNagengast/orgs", "repos_url": "https://api.github.com/users/ZachNagengast/repos", "events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}", "received_events_url": "https://api.github.com/users/ZachNagengast/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "> The reason why I used the the glob_pattern_to_regex in the entire pattern is because otherwise I got an error for Windows local paths: a base_path like 'C:\\\\Users\\\\runneradmin... made the function string_to_dict raise re.error: incomplete escape \\U at position 2\r\n\r\nWhat is the expected inputs and outputs for the windows `base_path`\r\n\r\n> That issue was fixed once we pass the base_path as POSIX.\r\n\r\nI'm not sure what you meant by that, are there still changes needed?\r\n", "We took the liberty of continuing this PR to include it in today's patch release :)\r\nI hope you don't mind", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007109 / 0.011353 (-0.004244) | 0.004209 / 0.011008 (-0.006799) | 0.097401 / 0.038508 (0.058892) | 0.079532 / 0.023109 (0.056423) | 0.341300 / 0.275898 (0.065402) | 0.402165 / 0.323480 (0.078685) | 0.005838 / 0.007986 (-0.002148) | 0.003310 / 0.004328 (-0.001018) | 0.072804 / 0.004250 (0.068553) | 0.059418 / 0.037052 (0.022366) | 0.339277 / 0.258489 (0.080788) | 0.418495 / 0.293841 (0.124654) | 0.035975 / 0.128546 (-0.092571) | 0.008101 / 0.075646 (-0.067546) | 0.339236 / 0.419271 (-0.080035) | 0.059326 / 0.043533 (0.015794) | 0.326880 / 0.255139 (0.071741) | 0.393614 / 0.283200 (0.110414) | 0.025830 / 0.141683 (-0.115852) | 1.657726 / 1.452155 (0.205571) | 1.817250 / 1.492716 (0.324534) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256015 / 0.018006 (0.238008) | 0.482447 / 0.000490 (0.481957) | 0.012166 / 0.000200 (0.011966) | 0.000343 / 0.000054 (0.000288) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029898 / 0.037411 (-0.007514) | 0.088218 / 0.014526 (0.073692) | 0.102353 / 0.176557 (-0.074203) | 0.165863 / 0.737135 (-0.571272) | 0.100342 / 0.296338 (-0.195996) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429362 / 0.215209 (0.214153) | 4.147327 / 2.077655 (2.069672) | 2.014653 / 1.504120 (0.510533) | 1.824394 / 1.541195 (0.283199) | 1.936408 / 1.468490 (0.467917) | 0.542960 / 4.584777 (-4.041817) | 3.917215 / 3.745712 (0.171503) | 3.714825 / 5.269862 (-1.555036) | 2.180279 / 4.565676 (-2.385398) | 0.057808 / 0.424275 (-0.366467) | 0.008426 / 0.007607 (0.000819) | 0.472372 / 0.226044 (0.246327) | 4.879656 / 2.268929 (2.610728) | 2.602729 / 55.444624 (-52.841896) | 2.142593 / 6.876477 (-4.733884) | 2.206070 / 2.142072 (0.063997) | 0.635591 / 4.805227 (-4.169636) | 0.140928 / 6.500664 (-6.359736) | 0.065119 / 0.075469 (-0.010350) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455909 / 1.841788 (-0.385879) | 20.803592 / 8.074308 (12.729284) | 14.788713 / 10.191392 (4.597321) | 0.170546 / 0.680424 (-0.509878) | 0.021189 / 0.534201 (-0.513012) | 0.432368 / 0.579283 (-0.146915) | 0.444664 / 0.434364 (0.010300) | 0.517744 / 0.540337 (-0.022593) | 0.699265 / 1.386936 (-0.687671) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007592 / 0.011353 (-0.003760) | 0.004045 / 0.011008 (-0.006964) | 0.073434 / 0.038508 (0.034926) | 0.076962 / 0.023109 (0.053853) | 0.468873 / 0.275898 (0.192975) | 0.479968 / 0.323480 (0.156488) | 0.006270 / 0.007986 (-0.001716) | 0.003652 / 0.004328 (-0.000677) | 0.069893 / 0.004250 (0.065643) | 0.061902 / 0.037052 (0.024850) | 0.443379 / 0.258489 (0.184890) | 0.492627 / 0.293841 (0.198786) | 0.035967 / 0.128546 (-0.092579) | 0.009276 / 0.075646 (-0.066370) | 0.083060 / 0.419271 (-0.336212) | 0.050870 / 0.043533 (0.007337) | 0.438246 / 0.255139 (0.183107) | 0.472074 / 0.283200 (0.188874) | 0.023724 / 0.141683 (-0.117959) | 1.677178 / 1.452155 (0.225023) | 1.732273 / 1.492716 (0.239557) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244693 / 0.018006 (0.226687) | 0.470067 / 0.000490 (0.469577) | 0.005574 / 0.000200 (0.005374) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036242 / 0.037411 (-0.001169) | 0.099166 / 0.014526 (0.084641) | 0.116785 / 0.176557 (-0.059772) | 0.174986 / 0.737135 (-0.562149) | 0.118130 / 0.296338 (-0.178209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475907 / 0.215209 (0.260698) | 4.708125 / 2.077655 (2.630470) | 2.600855 / 1.504120 (1.096735) | 2.446498 / 1.541195 (0.905303) | 2.538786 / 1.468490 (1.070296) | 0.566787 / 4.584777 (-4.017990) | 4.066187 / 3.745712 (0.320475) | 3.743632 / 5.269862 (-1.526229) | 2.337737 / 4.565676 (-2.227939) | 0.068402 / 0.424275 (-0.355873) | 0.008674 / 0.007607 (0.001067) | 0.593428 / 0.226044 (0.367384) | 5.840687 / 2.268929 (3.571759) | 3.194937 / 55.444624 (-52.249688) | 2.899033 / 6.876477 (-3.977444) | 2.977870 / 2.142072 (0.835797) | 0.683673 / 4.805227 (-4.121554) | 0.154933 / 6.500664 (-6.345731) | 0.071619 / 0.075469 (-0.003850) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.501895 / 1.841788 (-0.339893) | 21.709792 / 8.074308 (13.635484) | 15.679556 / 10.191392 (5.488164) | 0.188028 / 0.680424 (-0.492396) | 0.022555 / 0.534201 (-0.511646) | 0.439840 / 0.579283 (-0.139443) | 0.452140 / 0.434364 (0.017776) | 0.526421 / 0.540337 (-0.013916) | 0.731692 / 1.386936 (-0.655244) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02ecc84a2e2ed664f574ccbcab0e525a7377a01d \"CML watermark\")\n" ]
2023-10-19T19:45:10
2023-10-23T14:40:45
2023-10-23T14:31:21
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6322", "html_url": "https://github.com/huggingface/datasets/pull/6322", "diff_url": "https://github.com/huggingface/datasets/pull/6322.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6322.patch", "merged_at": "2023-10-23T14:31:21" }
With this pr https://github.com/huggingface/datasets/pull/6309, it is formatting the entire base path into regex, which results in the undesired formatting error `doesn't match the pattern` because of the line in `glob_pattern_to_regex`: `.replace("//", "/")`: - Input: `hf://datasets/...` - Output: `hf:/datasets/...` This fix will only convert the `split_pattern` to regex and keep the `base_path` unchanged. cc @albertvillanova hopefully this still works with your implementation
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6322/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6322/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6321
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6321/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6321/comments
https://api.github.com/repos/huggingface/datasets/issues/6321/events
https://github.com/huggingface/datasets/pull/6321
1,952,643,483
PR_kwDODunzps5dS3Mc
6,321
Fix typos
{ "login": "python273", "id": 3097956, "node_id": "MDQ6VXNlcjMwOTc5NTY=", "avatar_url": "https://avatars.githubusercontent.com/u/3097956?v=4", "gravatar_id": "", "url": "https://api.github.com/users/python273", "html_url": "https://github.com/python273", "followers_url": "https://api.github.com/users/python273/followers", "following_url": "https://api.github.com/users/python273/following{/other_user}", "gists_url": "https://api.github.com/users/python273/gists{/gist_id}", "starred_url": "https://api.github.com/users/python273/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/python273/subscriptions", "organizations_url": "https://api.github.com/users/python273/orgs", "repos_url": "https://api.github.com/users/python273/repos", "events_url": "https://api.github.com/users/python273/events{/privacy}", "received_events_url": "https://api.github.com/users/python273/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007809 / 0.011353 (-0.003544) | 0.004573 / 0.011008 (-0.006435) | 0.101201 / 0.038508 (0.062693) | 0.089703 / 0.023109 (0.066594) | 0.416502 / 0.275898 (0.140604) | 0.463352 / 0.323480 (0.139872) | 0.006101 / 0.007986 (-0.001885) | 0.003783 / 0.004328 (-0.000545) | 0.076531 / 0.004250 (0.072281) | 0.064017 / 0.037052 (0.026964) | 0.422453 / 0.258489 (0.163964) | 0.485926 / 0.293841 (0.192085) | 0.036797 / 0.128546 (-0.091749) | 0.010172 / 0.075646 (-0.065474) | 0.344442 / 0.419271 (-0.074829) | 0.062240 / 0.043533 (0.018707) | 0.422685 / 0.255139 (0.167546) | 0.451457 / 0.283200 (0.168257) | 0.027831 / 0.141683 (-0.113852) | 1.737187 / 1.452155 (0.285033) | 1.847631 / 1.492716 (0.354915) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270336 / 0.018006 (0.252330) | 0.500540 / 0.000490 (0.500050) | 0.017042 / 0.000200 (0.016842) | 0.000704 / 0.000054 (0.000650) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033450 / 0.037411 (-0.003962) | 0.100314 / 0.014526 (0.085788) | 0.117216 / 0.176557 (-0.059340) | 0.182352 / 0.737135 (-0.554784) | 0.114903 / 0.296338 (-0.181436) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458562 / 0.215209 (0.243353) | 4.570492 / 2.077655 (2.492837) | 2.230286 / 1.504120 (0.726167) | 2.032229 / 1.541195 (0.491034) | 2.130431 / 1.468490 (0.661941) | 0.563254 / 4.584777 (-4.021523) | 4.108455 / 3.745712 (0.362743) | 3.994059 / 5.269862 (-1.275802) | 2.424589 / 4.565676 (-2.141087) | 0.067534 / 0.424275 (-0.356741) | 0.008774 / 0.007607 (0.001167) | 0.546356 / 0.226044 (0.320312) | 5.527772 / 2.268929 (3.258843) | 2.934410 / 55.444624 (-52.510215) | 2.536871 / 6.876477 (-4.339605) | 2.598704 / 2.142072 (0.456632) | 0.676721 / 4.805227 (-4.128506) | 0.155904 / 6.500664 (-6.344760) | 0.073274 / 0.075469 (-0.002195) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.559170 / 1.841788 (-0.282618) | 23.228524 / 8.074308 (15.154216) | 16.743246 / 10.191392 (6.551854) | 0.184113 / 0.680424 (-0.496310) | 0.021804 / 0.534201 (-0.512397) | 0.466158 / 0.579283 (-0.113125) | 0.539911 / 0.434364 (0.105547) | 0.544377 / 0.540337 (0.004040) | 0.765779 / 1.386936 (-0.621157) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008249 / 0.011353 (-0.003104) | 0.004734 / 0.011008 (-0.006275) | 0.077083 / 0.038508 (0.038575) | 0.096959 / 0.023109 (0.073850) | 0.497501 / 0.275898 (0.221603) | 0.530687 / 0.323480 (0.207207) | 0.006379 / 0.007986 (-0.001607) | 0.003899 / 0.004328 (-0.000430) | 0.076165 / 0.004250 (0.071915) | 0.069406 / 0.037052 (0.032354) | 0.515847 / 0.258489 (0.257358) | 0.540639 / 0.293841 (0.246798) | 0.038334 / 0.128546 (-0.090213) | 0.010112 / 0.075646 (-0.065534) | 0.084918 / 0.419271 (-0.334353) | 0.056866 / 0.043533 (0.013333) | 0.495555 / 0.255139 (0.240416) | 0.518988 / 0.283200 (0.235789) | 0.028556 / 0.141683 (-0.113127) | 1.799320 / 1.452155 (0.347165) | 1.874647 / 1.492716 (0.381931) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264283 / 0.018006 (0.246277) | 0.510278 / 0.000490 (0.509788) | 0.015219 / 0.000200 (0.015019) | 0.000160 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038462 / 0.037411 (0.001051) | 0.115420 / 0.014526 (0.100894) | 0.124250 / 0.176557 (-0.052306) | 0.187724 / 0.737135 (-0.549411) | 0.126674 / 0.296338 (-0.169664) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.499345 / 0.215209 (0.284136) | 4.983924 / 2.077655 (2.906269) | 2.705099 / 1.504120 (1.200980) | 2.516344 / 1.541195 (0.975149) | 2.621103 / 1.468490 (1.152613) | 0.583254 / 4.584777 (-4.001523) | 4.231215 / 3.745712 (0.485503) | 4.028326 / 5.269862 (-1.241536) | 2.459171 / 4.565676 (-2.106505) | 0.069194 / 0.424275 (-0.355081) | 0.008850 / 0.007607 (0.001243) | 0.593878 / 0.226044 (0.367834) | 5.926478 / 2.268929 (3.657549) | 3.287435 / 55.444624 (-52.157189) | 2.902104 / 6.876477 (-3.974372) | 3.151307 / 2.142072 (1.009234) | 0.696922 / 4.805227 (-4.108306) | 0.161140 / 6.500664 (-6.339524) | 0.073728 / 0.075469 (-0.001741) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.636456 / 1.841788 (-0.205331) | 23.884606 / 8.074308 (15.810298) | 17.180875 / 10.191392 (6.989483) | 0.176782 / 0.680424 (-0.503642) | 0.023731 / 0.534201 (-0.510470) | 0.475191 / 0.579283 (-0.104092) | 0.506603 / 0.434364 (0.072239) | 0.571976 / 0.540337 (0.031638) | 0.826935 / 1.386936 (-0.560002) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2b19f6b30f49e09b0d1f0c4a38b10d76f35ac483 \"CML watermark\")\n" ]
2023-10-19T16:24:35
2023-10-19T17:18:00
2023-10-19T17:07:35
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6321", "html_url": "https://github.com/huggingface/datasets/pull/6321", "diff_url": "https://github.com/huggingface/datasets/pull/6321.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6321.patch", "merged_at": "2023-10-19T17:07:35" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6321/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6321/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6320
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6320/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6320/comments
https://api.github.com/repos/huggingface/datasets/issues/6320/events
https://github.com/huggingface/datasets/issues/6320
1,952,618,316
I_kwDODunzps50YpdM
6,320
Dataset slice splits can't load training and validation at the same time
{ "login": "timlac", "id": 32488097, "node_id": "MDQ6VXNlcjMyNDg4MDk3", "avatar_url": "https://avatars.githubusercontent.com/u/32488097?v=4", "gravatar_id": "", "url": "https://api.github.com/users/timlac", "html_url": "https://github.com/timlac", "followers_url": "https://api.github.com/users/timlac/followers", "following_url": "https://api.github.com/users/timlac/following{/other_user}", "gists_url": "https://api.github.com/users/timlac/gists{/gist_id}", "starred_url": "https://api.github.com/users/timlac/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/timlac/subscriptions", "organizations_url": "https://api.github.com/users/timlac/orgs", "repos_url": "https://api.github.com/users/timlac/repos", "events_url": "https://api.github.com/users/timlac/events{/privacy}", "received_events_url": "https://api.github.com/users/timlac/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The expression \"train+test\" concatenates the splits.\r\n\r\nThe individual splits as separate datasets can be obtained as follows:\r\n```python\r\ntrain_ds, test_ds = load_dataset(\"<dataset_name>\", split=[\"train\", \"test\"])\r\ntrain_10pct_ds, test_10pct_ds = load_dataset(\"<dataset_name>\", split=[\"train[:10%]\", \"test[:%10]\"])\r\n```" ]
2023-10-19T16:09:22
2023-11-30T16:21:15
2023-11-30T16:21:15
NONE
null
null
### Describe the bug According to the [documentation](https://huggingface.co/docs/datasets/v2.14.5/loading#slice-splits) is should be possible to run the following command: `train_test_ds = datasets.load_dataset("bookcorpus", split="train+test")` to load the train and test sets from the dataset. However executing the equivalent code: `speech_commands_v1 = load_dataset("superb", "ks", split="train+test")` only yields the following output: > Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 54175 > }) Where loading the dataset without the split argument yields: > DatasetDict({ > train: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 51094 > }) > validation: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 6798 > }) > test: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 3081 > }) > }) Thus, the API seems to be broken in this regard. This is a bit annoying since I want to be able to use the split argument with `split="train[:10%]+test[:10%]"` to have smaller dataset to work with when validating my model is working correctly. ### Steps to reproduce the bug `speech_commands_v1 = load_dataset("superb", "ks", split="train+test")` ### Expected behavior > DatasetDict({ > train: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 51094 > }) > test: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 3081 > }) > }) ### Environment info ``` import datasets print(datasets.__version__) ``` > 2.14.5 ``` import sys print(sys.version) ``` > 3.9.17 (main, Jul 5 2023, 20:41:20) > [GCC 11.2.0]
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6320/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6320/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6319
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6319/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6319/comments
https://api.github.com/repos/huggingface/datasets/issues/6319/events
https://github.com/huggingface/datasets/issues/6319
1,952,101,717
I_kwDODunzps50WrVV
6,319
Datasets.map is severely broken
{ "login": "phalexo", "id": 4603365, "node_id": "MDQ6VXNlcjQ2MDMzNjU=", "avatar_url": "https://avatars.githubusercontent.com/u/4603365?v=4", "gravatar_id": "", "url": "https://api.github.com/users/phalexo", "html_url": "https://github.com/phalexo", "followers_url": "https://api.github.com/users/phalexo/followers", "following_url": "https://api.github.com/users/phalexo/following{/other_user}", "gists_url": "https://api.github.com/users/phalexo/gists{/gist_id}", "starred_url": "https://api.github.com/users/phalexo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/phalexo/subscriptions", "organizations_url": "https://api.github.com/users/phalexo/orgs", "repos_url": "https://api.github.com/users/phalexo/repos", "events_url": "https://api.github.com/users/phalexo/events{/privacy}", "received_events_url": "https://api.github.com/users/phalexo/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Hi! Instead of processing a single example at a time, you should use the batched `map` for the best performance (with `num_proc=1`) - the fast tokenizers can process a batch's samples in parallel in that scenario.\r\n\r\nE.g., the following code in Colab takes an hour to complete:\r\n```python\r\n# !pip install datasets transformers\r\nfrom datasets import load_dataset\r\nfrom transformers import AutoTokenizer\r\ntokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\r\ndataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n```", "Batched is far worse. A single batch of 1000 took hours and that was only 1%\r\n\r\n\r\nOn Thu, Oct 19, 2023, 2:26 PM Mario Šaško ***@***.***> wrote:\r\n\r\n> Hi! You should use the batched map for the best performance (with\r\n> num_proc=1) - the fast tokenizers can process a batch's samples in\r\n> parallel.\r\n>\r\n> E.g., the following code in Colab takes an hour to complete:\r\n>\r\n> # !pip install datasets transformersfrom datasets import load_datasetfrom transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771503757>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZJHPSRVDEXFNMXR2N3YAFWFZAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDGNZVG4>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "Can you please provide a self-contained reproducer?", "Which specific version of datasets are you using?\r\n\r\nWhat is the architecture of your colab setup? Ram? Cores? OS?\r\n\r\n\r\nOn Thu, Oct 19, 2023, 2:27 PM pensive introvert ***@***.***>\r\nwrote:\r\n\r\n> Batched is far worse. A single batch of 1000 took hours and that was only\r\n> 1%\r\n>\r\n>\r\n> On Thu, Oct 19, 2023, 2:26 PM Mario Šaško ***@***.***>\r\n> wrote:\r\n>\r\n>> Hi! You should use the batched map for the best performance (with\r\n>> num_proc=1) - the fast tokenizers can process a batch's samples in\r\n>> parallel.\r\n>>\r\n>> E.g., the following code in Colab takes an hour to complete:\r\n>>\r\n>> # !pip install datasets transformersfrom datasets import load_datasetfrom transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n>>\r\n>> —\r\n>> Reply to this email directly, view it on GitHub\r\n>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771503757>,\r\n>> or unsubscribe\r\n>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZJHPSRVDEXFNMXR2N3YAFWFZAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDGNZVG4>\r\n>> .\r\n>> You are receiving this because you authored the thread.Message ID:\r\n>> ***@***.***>\r\n>>\r\n>\r\n", "from functools import partial\r\nimport transformers\r\nfrom datasets import load_dataset, concatenate_datasets, load_from_disk\r\n\r\nmodel_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\noutput_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\ncache_dir=\"/opt/data/data/LongLoRA/cache\"\r\nmodel_max_length=16384\r\n\r\nIGNORE_INDEX = -100\r\nDEFAULT_PAD_TOKEN = \"[PAD]\"\r\nDEFAULT_EOS_TOKEN = \"</s>\"\r\nDEFAULT_BOS_TOKEN = \"<s>\"\r\nDEFAULT_UNK_TOKEN = \"<unk>\"\r\n\r\n\r\ntokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n model_name_or_path,\r\n cache_dir=cache_dir,\r\n model_max_length=model_max_length,\r\n padding_side=\"right\",\r\n use_fast=True,\r\n #use_fast=False\r\n)\r\n\r\nspecial_tokens_dict = dict()\r\nif tokenizer.pad_token is None:\r\n special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\nif tokenizer.eos_token is None:\r\n special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\nif tokenizer.bos_token is None:\r\n special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\nif tokenizer.unk_token is None:\r\n special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n\r\ntokenizer.add_special_tokens(special_tokens_dict)\r\n\r\ndef tokenize_fn(tokenizer, example):\r\n context_length = tokenizer.model_max_length\r\n outputs = tokenizer(\r\n tokenizer.eos_token.join(example[\"text\"]),\r\n #truncation=False,\r\n truncation=True,\r\n return_tensors=\"pt\",\r\n #return_tensors=\"np\",\r\n pad_to_multiple_of=context_length,\r\n padding=True,\r\n )\r\n return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n\r\nfor idx in range(100):\r\n dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\ncache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\nnum_proc=16, remove_columns=[\"text\", \"meta\"])\r\n dataset.save_to_disk(training_args.cache_dir + f\"/training_data_{idx}\")\r\n\r\n\r\nOn Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\nwrote:\r\n\r\n> Can you please provide a self-contained reproducer?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "I changed the tokenizer to one without \"Fast suffix, and something changed.\r\nThe fraction, although still slowed a lot at 80% was able to get over the\r\nfinish line of 100%\r\n\r\nI have to do more testng, see if the whole set can be processed\r\n\r\n\r\n\r\nOn Thu, Oct 19, 2023 at 3:03 PM pensive introvert <\r\n***@***.***> wrote:\r\n\r\n> from functools import partial\r\n> import transformers\r\n> from datasets import load_dataset, concatenate_datasets, load_from_disk\r\n>\r\n> model_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\n> output_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\n> cache_dir=\"/opt/data/data/LongLoRA/cache\"\r\n> model_max_length=16384\r\n>\r\n> IGNORE_INDEX = -100\r\n> DEFAULT_PAD_TOKEN = \"[PAD]\"\r\n> DEFAULT_EOS_TOKEN = \"</s>\"\r\n> DEFAULT_BOS_TOKEN = \"<s>\"\r\n> DEFAULT_UNK_TOKEN = \"<unk>\"\r\n>\r\n>\r\n> tokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n> model_name_or_path,\r\n> cache_dir=cache_dir,\r\n> model_max_length=model_max_length,\r\n> padding_side=\"right\",\r\n> use_fast=True,\r\n> #use_fast=False\r\n> )\r\n>\r\n> special_tokens_dict = dict()\r\n> if tokenizer.pad_token is None:\r\n> special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\n> if tokenizer.eos_token is None:\r\n> special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\n> if tokenizer.bos_token is None:\r\n> special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\n> if tokenizer.unk_token is None:\r\n> special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n>\r\n> tokenizer.add_special_tokens(special_tokens_dict)\r\n>\r\n> def tokenize_fn(tokenizer, example):\r\n> context_length = tokenizer.model_max_length\r\n> outputs = tokenizer(\r\n> tokenizer.eos_token.join(example[\"text\"]),\r\n> #truncation=False,\r\n> truncation=True,\r\n> return_tensors=\"pt\",\r\n> #return_tensors=\"np\",\r\n> pad_to_multiple_of=context_length,\r\n> padding=True,\r\n> )\r\n> return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n>\r\n> for idx in range(100):\r\n> dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\n> cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n> dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\n> num_proc=16, remove_columns=[\"text\", \"meta\"])\r\n> dataset.save_to_disk(training_args.cache_dir + f\"/training_data_{idx}\")\r\n>\r\n>\r\n> On Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\n> wrote:\r\n>\r\n>> Can you please provide a self-contained reproducer?\r\n>>\r\n>> —\r\n>> Reply to this email directly, view it on GitHub\r\n>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n>> or unsubscribe\r\n>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n>> .\r\n>> You are receiving this because you authored the thread.Message ID:\r\n>> ***@***.***>\r\n>>\r\n>\r\n", "So, using LlamaTokenizerFast was the problem. Changing it to LlamaTokenizer\r\nfixed things,\r\n\r\nOn Thu, Oct 19, 2023 at 4:04 PM pensive introvert <\r\n***@***.***> wrote:\r\n\r\n> I changed the tokenizer to one without \"Fast suffix, and something\r\n> changed. The fraction, although still slowed a lot at 80% was able to get\r\n> over the finish line of 100%\r\n>\r\n> I have to do more testng, see if the whole set can be processed\r\n>\r\n>\r\n>\r\n> On Thu, Oct 19, 2023 at 3:03 PM pensive introvert <\r\n> ***@***.***> wrote:\r\n>\r\n>> from functools import partial\r\n>> import transformers\r\n>> from datasets import load_dataset, concatenate_datasets, load_from_disk\r\n>>\r\n>> model_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\n>> output_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\n>> cache_dir=\"/opt/data/data/LongLoRA/cache\"\r\n>> model_max_length=16384\r\n>>\r\n>> IGNORE_INDEX = -100\r\n>> DEFAULT_PAD_TOKEN = \"[PAD]\"\r\n>> DEFAULT_EOS_TOKEN = \"</s>\"\r\n>> DEFAULT_BOS_TOKEN = \"<s>\"\r\n>> DEFAULT_UNK_TOKEN = \"<unk>\"\r\n>>\r\n>>\r\n>> tokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n>> model_name_or_path,\r\n>> cache_dir=cache_dir,\r\n>> model_max_length=model_max_length,\r\n>> padding_side=\"right\",\r\n>> use_fast=True,\r\n>> #use_fast=False\r\n>> )\r\n>>\r\n>> special_tokens_dict = dict()\r\n>> if tokenizer.pad_token is None:\r\n>> special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\n>> if tokenizer.eos_token is None:\r\n>> special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\n>> if tokenizer.bos_token is None:\r\n>> special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\n>> if tokenizer.unk_token is None:\r\n>> special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n>>\r\n>> tokenizer.add_special_tokens(special_tokens_dict)\r\n>>\r\n>> def tokenize_fn(tokenizer, example):\r\n>> context_length = tokenizer.model_max_length\r\n>> outputs = tokenizer(\r\n>> tokenizer.eos_token.join(example[\"text\"]),\r\n>> #truncation=False,\r\n>> truncation=True,\r\n>> return_tensors=\"pt\",\r\n>> #return_tensors=\"np\",\r\n>> pad_to_multiple_of=context_length,\r\n>> padding=True,\r\n>> )\r\n>> return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n>>\r\n>> for idx in range(100):\r\n>> dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\n>> cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n>> dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\n>> num_proc=16, remove_columns=[\"text\", \"meta\"])\r\n>> dataset.save_to_disk(training_args.cache_dir +\r\n>> f\"/training_data_{idx}\")\r\n>>\r\n>>\r\n>> On Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\n>> wrote:\r\n>>\r\n>>> Can you please provide a self-contained reproducer?\r\n>>>\r\n>>> —\r\n>>> Reply to this email directly, view it on GitHub\r\n>>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n>>> or unsubscribe\r\n>>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n>>> .\r\n>>> You are receiving this because you authored the thread.Message ID:\r\n>>> ***@***.***>\r\n>>>\r\n>>\r\n", "Indeed, the tokenizer is super slow. Perhaps @ArthurZucker knows the reason why.\r\n\r\n([This](https://colab.research.google.com/drive/1VgeurX-4Fl2X6aBQTwh_X4kuQKZ6K9L1?usp=sharing) simplified Colab can be used to reproduce the behavior)", "same issue here\r\nsample to reproduce: https://github.com/philschmid/document-ai-transformers/blob/main/training/donut_sroie.ipynb\r\nwith following map line\r\nhttps://github.com/philschmid/document-ai-transformers/blob/main/training/donut_sroie.ipynb\r\n\r\nIf I directly iterate over the dataset and call the mapping method, it is very fast\r\n```py\r\nfor sample in dataset:\r\n def preprocess_documents_for_donut(sample):\r\n```\r\n\r\nif i removed `.convert('RGB')` It can run to completion without getting stuck. I suspect it has something to do with the Image.\r\n\r\nIf I use batch, it's even slower.", "@ewfian \r\n\r\n> If I directly iterate over the dataset and call the mapping method, it is very fast\r\n\r\n`Dataset.map` must also convert the images into bytes to write them to an Arrow file (the write itself takes some time, too). \r\n\r\nYou can make the `map` faster by manually converting the images into an \"arrow-compatible\" representation. Otherwise, the Pillow defaults are used when saving an image, which seems particularly slow for the notebook's case.\r\n\r\n```python\r\ndef preprocess_documents_for_donut(sample):\r\n text = json.loads(sample[\"text\"])\r\n d_doc = task_start_token + json2token(text) + eos_token\r\n image = sample[\"image\"].convert('RGB')\r\n # convert image to bytes\r\n buffer = io.BytesIO()\r\n image.save(buffer, format=\"PNG\", compress_level=1)\r\n return {\"image\": {\"bytes\": buffer.getvalue()}, \"text\": d_doc}\r\n\r\nproc_dataset = dataset.map(preprocess_documents_for_donut, writer_batch_size=50)\r\n```", "The problem I had was to do with map using fork and copying locks from the\r\nparent process in acquired state. I ended up changing the context to use\r\nforkserver instead.\r\n\r\n\r\nOn Wed, Nov 29, 2023, 10:04 PM Mario Šaško ***@***.***> wrote:\r\n\r\n> @ewfian <https://github.com/ewfian>\r\n>\r\n> If I directly iterate over the dataset and call the mapping method, it is\r\n> very fast\r\n>\r\n> Dataset.map must also convert the images into bytes to write them to an\r\n> Arrow file (the write itself takes some time, too).\r\n>\r\n> You can make the map faster by manually converting the images into an\r\n> \"arrow-compatible\" representation. Otherwise, the Pillow defaults are used\r\n> when saving an image, which seems particularly slow for the notebook's case.\r\n>\r\n> def preprocess_documents_for_donut(sample):\r\n> text = json.loads(sample[\"text\"])\r\n> d_doc = task_start_token + json2token(text) + eos_token\r\n> image = sample[\"image\"].convert('RGB')\r\n> # convert image to bytes\r\n> buffer = io.BytesIO()\r\n> image.save(buffer, format=\"PNG\", compress_level=1)\r\n> return {\"image\": {\"bytes\": buffer.getvalue()}, \"text\": d_doc}\r\n> proc_dataset = dataset.map(preprocess_documents_for_donut, writer_batch_size=50)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1833033973>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZKKEKJVWBFH7QHLRJ3YG7ZUJAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQMZTGAZTGOJXGM>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n" ]
2023-10-19T12:19:33
2023-11-30T03:27:26
null
NONE
null
null
### Describe the bug Regardless of how many cores I used, I have 16 or 32 threads, map slows down to a crawl at around 80% done, lingers maybe until 97% extremely slowly and NEVER finishes the job. It just hangs. After watching this for 27 hours I control-C out of it. Until the end one process appears to be doing something, but it never ends. I saw some comments about fast tokenizers using Rust and all and tried different variations. NOTHING works. ### Steps to reproduce the bug Running it without breaking the dataset into parts results in the same behavior. The loop was an attempt to see if this was a RAM issue. for idx in range(100): dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]') dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False, num_proc=1, remove_columns=["text", "meta"]) dataset.save_to_disk(training_args.cache_dir + f"/training_data_{idx}") ### Expected behavior I expect map to run at more or less the same speed it starts with and FINISH its processing. ### Environment info Python 3.8, same with 3.10 makes no difference. Ubuntu 20.04,
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6319/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6319/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6318
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6318/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6318/comments
https://api.github.com/repos/huggingface/datasets/issues/6318/events
https://github.com/huggingface/datasets/pull/6318
1,952,100,706
PR_kwDODunzps5dRC9V
6,318
Deterministic set hash
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006827 / 0.011353 (-0.004526) | 0.004468 / 0.011008 (-0.006540) | 0.088687 / 0.038508 (0.050179) | 0.072560 / 0.023109 (0.049451) | 0.333421 / 0.275898 (0.057523) | 0.374977 / 0.323480 (0.051497) | 0.005829 / 0.007986 (-0.002156) | 0.003284 / 0.004328 (-0.001045) | 0.068929 / 0.004250 (0.064678) | 0.057212 / 0.037052 (0.020160) | 0.328911 / 0.258489 (0.070422) | 0.389107 / 0.293841 (0.095266) | 0.033518 / 0.128546 (-0.095029) | 0.009919 / 0.075646 (-0.065728) | 0.308100 / 0.419271 (-0.111171) | 0.059380 / 0.043533 (0.015847) | 0.345587 / 0.255139 (0.090448) | 0.353703 / 0.283200 (0.070503) | 0.026454 / 0.141683 (-0.115229) | 1.573309 / 1.452155 (0.121155) | 1.663812 / 1.492716 (0.171095) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255081 / 0.018006 (0.237075) | 0.472613 / 0.000490 (0.472123) | 0.016120 / 0.000200 (0.015920) | 0.000383 / 0.000054 (0.000328) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028219 / 0.037411 (-0.009192) | 0.086600 / 0.014526 (0.072074) | 0.099484 / 0.176557 (-0.077073) | 0.154604 / 0.737135 (-0.582531) | 0.099168 / 0.296338 (-0.197171) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421703 / 0.215209 (0.206494) | 4.188600 / 2.077655 (2.110945) | 2.037575 / 1.504120 (0.533456) | 1.843389 / 1.541195 (0.302194) | 1.912554 / 1.468490 (0.444064) | 0.517452 / 4.584777 (-4.067325) | 3.838002 / 3.745712 (0.092290) | 3.698899 / 5.269862 (-1.570963) | 2.175393 / 4.565676 (-2.390283) | 0.066059 / 0.424275 (-0.358216) | 0.008455 / 0.007607 (0.000848) | 0.506813 / 0.226044 (0.280768) | 4.826994 / 2.268929 (2.558066) | 2.544437 / 55.444624 (-52.900187) | 2.164938 / 6.876477 (-4.711539) | 2.171725 / 2.142072 (0.029652) | 0.603757 / 4.805227 (-4.201470) | 0.149113 / 6.500664 (-6.351551) | 0.065093 / 0.075469 (-0.010376) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.366887 / 1.841788 (-0.474901) | 20.508089 / 8.074308 (12.433780) | 14.836531 / 10.191392 (4.645139) | 0.167418 / 0.680424 (-0.513006) | 0.019707 / 0.534201 (-0.514494) | 0.409897 / 0.579283 (-0.169387) | 0.439412 / 0.434364 (0.005048) | 0.495784 / 0.540337 (-0.044553) | 0.685367 / 1.386936 (-0.701569) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007604 / 0.011353 (-0.003749) | 0.004368 / 0.011008 (-0.006640) | 0.072628 / 0.038508 (0.034120) | 0.084187 / 0.023109 (0.061077) | 0.461396 / 0.275898 (0.185498) | 0.481429 / 0.323480 (0.157949) | 0.005894 / 0.007986 (-0.002092) | 0.003472 / 0.004328 (-0.000857) | 0.068717 / 0.004250 (0.064466) | 0.061066 / 0.037052 (0.024014) | 0.464217 / 0.258489 (0.205728) | 0.498061 / 0.293841 (0.204220) | 0.035458 / 0.128546 (-0.093089) | 0.009474 / 0.075646 (-0.066173) | 0.079633 / 0.419271 (-0.339639) | 0.053966 / 0.043533 (0.010433) | 0.454911 / 0.255139 (0.199772) | 0.470837 / 0.283200 (0.187637) | 0.026358 / 0.141683 (-0.115325) | 1.665131 / 1.452155 (0.212976) | 1.730365 / 1.492716 (0.237648) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234810 / 0.018006 (0.216804) | 0.453672 / 0.000490 (0.453183) | 0.004620 / 0.000200 (0.004420) | 0.000119 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035310 / 0.037411 (-0.002101) | 0.100379 / 0.014526 (0.085853) | 0.118802 / 0.176557 (-0.057754) | 0.173853 / 0.737135 (-0.563282) | 0.115714 / 0.296338 (-0.180624) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.466797 / 0.215209 (0.251588) | 4.698324 / 2.077655 (2.620670) | 2.446897 / 1.504120 (0.942777) | 2.277346 / 1.541195 (0.736151) | 2.347211 / 1.468490 (0.878721) | 0.514377 / 4.584777 (-4.070400) | 3.931269 / 3.745712 (0.185557) | 3.573575 / 5.269862 (-1.696286) | 2.208122 / 4.565676 (-2.357554) | 0.061081 / 0.424275 (-0.363194) | 0.007803 / 0.007607 (0.000196) | 0.544376 / 0.226044 (0.318332) | 5.440003 / 2.268929 (3.171074) | 3.012559 / 55.444624 (-52.432065) | 2.617286 / 6.876477 (-4.259191) | 2.863978 / 2.142072 (0.721906) | 0.610024 / 4.805227 (-4.195203) | 0.133643 / 6.500664 (-6.367021) | 0.064766 / 0.075469 (-0.010703) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.465225 / 1.841788 (-0.376563) | 21.308351 / 8.074308 (13.234043) | 15.176634 / 10.191392 (4.985242) | 0.172701 / 0.680424 (-0.507723) | 0.020345 / 0.534201 (-0.513855) | 0.433923 / 0.579283 (-0.145360) | 0.450183 / 0.434364 (0.015819) | 0.514048 / 0.540337 (-0.026289) | 0.736302 / 1.386936 (-0.650634) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7f1a7d621fff3b08ace02643466097654a5e010f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008305 / 0.011353 (-0.003048) | 0.006007 / 0.011008 (-0.005001) | 0.103521 / 0.038508 (0.065013) | 0.075776 / 0.023109 (0.052666) | 0.378888 / 0.275898 (0.102990) | 0.405245 / 0.323480 (0.081765) | 0.004596 / 0.007986 (-0.003390) | 0.003687 / 0.004328 (-0.000641) | 0.079043 / 0.004250 (0.074792) | 0.055895 / 0.037052 (0.018843) | 0.406565 / 0.258489 (0.148076) | 0.433869 / 0.293841 (0.140028) | 0.045321 / 0.128546 (-0.083226) | 0.014317 / 0.075646 (-0.061329) | 0.345312 / 0.419271 (-0.073960) | 0.064485 / 0.043533 (0.020953) | 0.381744 / 0.255139 (0.126605) | 0.401162 / 0.283200 (0.117962) | 0.035973 / 0.141683 (-0.105709) | 1.829616 / 1.452155 (0.377461) | 1.868487 / 1.492716 (0.375771) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245432 / 0.018006 (0.227426) | 0.494249 / 0.000490 (0.493759) | 0.010878 / 0.000200 (0.010678) | 0.000492 / 0.000054 (0.000437) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032778 / 0.037411 (-0.004633) | 0.103418 / 0.014526 (0.088892) | 0.108010 / 0.176557 (-0.068547) | 0.176477 / 0.737135 (-0.560658) | 0.107732 / 0.296338 (-0.188606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.572471 / 0.215209 (0.357262) | 5.647039 / 2.077655 (3.569384) | 2.385069 / 1.504120 (0.880949) | 2.048928 / 1.541195 (0.507733) | 2.108538 / 1.468490 (0.640048) | 0.861436 / 4.584777 (-3.723341) | 4.933452 / 3.745712 (1.187739) | 4.735219 / 5.269862 (-0.534642) | 2.926971 / 4.565676 (-1.638705) | 0.097687 / 0.424275 (-0.326588) | 0.008346 / 0.007607 (0.000739) | 0.677754 / 0.226044 (0.451709) | 6.798433 / 2.268929 (4.529504) | 3.129862 / 55.444624 (-52.314762) | 2.454033 / 6.876477 (-4.422444) | 2.464590 / 2.142072 (0.322517) | 1.034497 / 4.805227 (-3.770730) | 0.205753 / 6.500664 (-6.294911) | 0.076618 / 0.075469 (0.001149) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.617569 / 1.841788 (-0.224219) | 22.091489 / 8.074308 (14.017181) | 20.406312 / 10.191392 (10.214920) | 0.222012 / 0.680424 (-0.458411) | 0.027787 / 0.534201 (-0.506414) | 0.441669 / 0.579283 (-0.137615) | 0.564773 / 0.434364 (0.130409) | 0.510389 / 0.540337 (-0.029948) | 0.753672 / 1.386936 (-0.633264) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011107 / 0.011353 (-0.000246) | 0.004973 / 0.011008 (-0.006035) | 0.078331 / 0.038508 (0.039823) | 0.083964 / 0.023109 (0.060855) | 0.518980 / 0.275898 (0.243082) | 0.528264 / 0.323480 (0.204784) | 0.007452 / 0.007986 (-0.000534) | 0.003931 / 0.004328 (-0.000397) | 0.079724 / 0.004250 (0.075474) | 0.061739 / 0.037052 (0.024686) | 0.517804 / 0.258489 (0.259315) | 0.582764 / 0.293841 (0.288923) | 0.049674 / 0.128546 (-0.078873) | 0.014540 / 0.075646 (-0.061106) | 0.093130 / 0.419271 (-0.326141) | 0.060647 / 0.043533 (0.017114) | 0.492628 / 0.255139 (0.237489) | 0.549761 / 0.283200 (0.266562) | 0.034313 / 0.141683 (-0.107369) | 1.824574 / 1.452155 (0.372419) | 2.013664 / 1.492716 (0.520947) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231335 / 0.018006 (0.213329) | 0.521477 / 0.000490 (0.520987) | 0.011314 / 0.000200 (0.011114) | 0.000397 / 0.000054 (0.000343) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033303 / 0.037411 (-0.004108) | 0.098238 / 0.014526 (0.083712) | 0.119527 / 0.176557 (-0.057030) | 0.169163 / 0.737135 (-0.567972) | 0.114536 / 0.296338 (-0.181803) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578401 / 0.215209 (0.363191) | 5.966438 / 2.077655 (3.888783) | 2.646370 / 1.504120 (1.142250) | 2.361833 / 1.541195 (0.820638) | 2.476573 / 1.468490 (1.008083) | 0.777411 / 4.584777 (-3.807366) | 4.811070 / 3.745712 (1.065357) | 4.314221 / 5.269862 (-0.955641) | 2.743317 / 4.565676 (-1.822359) | 0.110394 / 0.424275 (-0.313881) | 0.008333 / 0.007607 (0.000726) | 0.729588 / 0.226044 (0.503543) | 7.743226 / 2.268929 (5.474298) | 3.606294 / 55.444624 (-51.838330) | 2.838069 / 6.876477 (-4.038408) | 3.087494 / 2.142072 (0.945421) | 1.053341 / 4.805227 (-3.751886) | 0.205105 / 6.500664 (-6.295559) | 0.075204 / 0.075469 (-0.000265) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.561959 / 1.841788 (-0.279829) | 21.407849 / 8.074308 (13.333541) | 19.084263 / 10.191392 (8.892871) | 0.226129 / 0.680424 (-0.454295) | 0.029695 / 0.534201 (-0.504506) | 0.427035 / 0.579283 (-0.152248) | 0.565353 / 0.434364 (0.130989) | 0.526789 / 0.540337 (-0.013548) | 0.734820 / 1.386936 (-0.652116) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5b52536f4e39df3b98f7e0b03ee71b24c4fff49a \"CML watermark\")\n" ]
2023-10-19T12:19:13
2023-10-19T16:27:20
2023-10-19T16:16:31
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6318", "html_url": "https://github.com/huggingface/datasets/pull/6318", "diff_url": "https://github.com/huggingface/datasets/pull/6318.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6318.patch", "merged_at": "2023-10-19T16:16:31" }
Sort the items in a set according to their `datasets.fingerprint.Hasher.hash` hash to get a deterministic hash of sets. This is useful to get deterministic hashes of tokenizers that use a trie based on python sets. reported in https://github.com/huggingface/datasets/issues/3847
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6318/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6318/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6317
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6317/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6317/comments
https://api.github.com/repos/huggingface/datasets/issues/6317/events
https://github.com/huggingface/datasets/issues/6317
1,951,965,668
I_kwDODunzps50WKHk
6,317
sentiment140 dataset unavailable
{ "login": "AndreasKarasenko", "id": 52670382, "node_id": "MDQ6VXNlcjUyNjcwMzgy", "avatar_url": "https://avatars.githubusercontent.com/u/52670382?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AndreasKarasenko", "html_url": "https://github.com/AndreasKarasenko", "followers_url": "https://api.github.com/users/AndreasKarasenko/followers", "following_url": "https://api.github.com/users/AndreasKarasenko/following{/other_user}", "gists_url": "https://api.github.com/users/AndreasKarasenko/gists{/gist_id}", "starred_url": "https://api.github.com/users/AndreasKarasenko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AndreasKarasenko/subscriptions", "organizations_url": "https://api.github.com/users/AndreasKarasenko/orgs", "repos_url": "https://api.github.com/users/AndreasKarasenko/repos", "events_url": "https://api.github.com/users/AndreasKarasenko/events{/privacy}", "received_events_url": "https://api.github.com/users/AndreasKarasenko/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[ "Thanks for reporting. We are investigating the issue.", "We have opened an issue in the corresponding Hub dataset: https://huggingface.co/datasets/sentiment140/discussions/3\r\n\r\nLet's continue the discussion there." ]
2023-10-19T11:25:21
2023-10-19T13:04:56
2023-10-19T13:04:56
NONE
null
null
### Describe the bug loading the dataset using load_dataset("sentiment140") returns the following error ConnectionError: Couldn't reach http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip (error 403) ### Steps to reproduce the bug Run the following code (version should not matter). ``` from datasets import load_dataset data = load_dataset("sentiment140") ``` ### Expected behavior The dataset should be loaded just like any other. The main issue is that it is no longer hosted by stanford. It is still available from a [Google Drive Link](https://docs.google.com/file/d/0B04GJPshIjmPRnZManQwWEdTZjg/edit). ### Environment info - `datasets` version: 2.14.5 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.10.8 - Huggingface_hub version: 0.17.3 - PyArrow version: 13.0.0 - Pandas version: 2.1.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6317/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6317/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6316
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6316/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6316/comments
https://api.github.com/repos/huggingface/datasets/issues/6316/events
https://github.com/huggingface/datasets/pull/6316
1,951,819,869
PR_kwDODunzps5dQGpg
6,316
Fix loading Hub datasets with CSV metadata file
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008896 / 0.011353 (-0.002456) | 0.005811 / 0.011008 (-0.005197) | 0.108582 / 0.038508 (0.070074) | 0.096509 / 0.023109 (0.073399) | 0.481725 / 0.275898 (0.205827) | 0.534743 / 0.323480 (0.211263) | 0.005517 / 0.007986 (-0.002468) | 0.006479 / 0.004328 (0.002151) | 0.081313 / 0.004250 (0.077062) | 0.063578 / 0.037052 (0.026525) | 0.493977 / 0.258489 (0.235488) | 0.551897 / 0.293841 (0.258056) | 0.051835 / 0.128546 (-0.076711) | 0.014105 / 0.075646 (-0.061541) | 0.385866 / 0.419271 (-0.033405) | 0.069131 / 0.043533 (0.025598) | 0.484780 / 0.255139 (0.229641) | 0.493221 / 0.283200 (0.210021) | 0.039560 / 0.141683 (-0.102123) | 1.782331 / 1.452155 (0.330176) | 1.899193 / 1.492716 (0.406477) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329978 / 0.018006 (0.311972) | 0.600839 / 0.000490 (0.600349) | 0.013187 / 0.000200 (0.012987) | 0.000499 / 0.000054 (0.000444) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031835 / 0.037411 (-0.005576) | 0.103740 / 0.014526 (0.089214) | 0.115875 / 0.176557 (-0.060681) | 0.189880 / 0.737135 (-0.547255) | 0.132614 / 0.296338 (-0.163725) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.596255 / 0.215209 (0.381046) | 5.967993 / 2.077655 (3.890339) | 2.612675 / 1.504120 (1.108555) | 2.251461 / 1.541195 (0.710266) | 2.308585 / 1.468490 (0.840095) | 0.816516 / 4.584777 (-3.768261) | 5.241791 / 3.745712 (1.496079) | 4.680745 / 5.269862 (-0.589117) | 2.997370 / 4.565676 (-1.568307) | 0.098632 / 0.424275 (-0.325643) | 0.010912 / 0.007607 (0.003305) | 0.659092 / 0.226044 (0.433047) | 6.825562 / 2.268929 (4.556634) | 3.323844 / 55.444624 (-52.120780) | 2.796203 / 6.876477 (-4.080274) | 2.946994 / 2.142072 (0.804922) | 1.002814 / 4.805227 (-3.802413) | 0.202613 / 6.500664 (-6.298051) | 0.072011 / 0.075469 (-0.003459) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.613873 / 1.841788 (-0.227914) | 24.500990 / 8.074308 (16.426682) | 21.941599 / 10.191392 (11.750207) | 0.214450 / 0.680424 (-0.465974) | 0.031227 / 0.534201 (-0.502974) | 0.498297 / 0.579283 (-0.080986) | 0.597460 / 0.434364 (0.163096) | 0.558152 / 0.540337 (0.017815) | 0.789693 / 1.386936 (-0.597243) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011299 / 0.011353 (-0.000053) | 0.005103 / 0.011008 (-0.005905) | 0.083161 / 0.038508 (0.044653) | 0.094201 / 0.023109 (0.071092) | 0.560457 / 0.275898 (0.284559) | 0.590459 / 0.323480 (0.266980) | 0.007059 / 0.007986 (-0.000926) | 0.004418 / 0.004328 (0.000090) | 0.081343 / 0.004250 (0.077093) | 0.067069 / 0.037052 (0.030016) | 0.538137 / 0.258489 (0.279648) | 0.600416 / 0.293841 (0.306575) | 0.049046 / 0.128546 (-0.079500) | 0.014299 / 0.075646 (-0.061347) | 0.093631 / 0.419271 (-0.325641) | 0.062536 / 0.043533 (0.019003) | 0.557238 / 0.255139 (0.302099) | 0.571050 / 0.283200 (0.287850) | 0.035881 / 0.141683 (-0.105802) | 1.918487 / 1.452155 (0.466332) | 2.013979 / 1.492716 (0.521263) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.400995 / 0.018006 (0.382989) | 0.634898 / 0.000490 (0.634408) | 0.041809 / 0.000200 (0.041609) | 0.000279 / 0.000054 (0.000224) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034160 / 0.037411 (-0.003251) | 0.109996 / 0.014526 (0.095470) | 0.124335 / 0.176557 (-0.052222) | 0.188100 / 0.737135 (-0.549035) | 0.135897 / 0.296338 (-0.160442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639751 / 0.215209 (0.424542) | 6.403312 / 2.077655 (4.325657) | 3.146453 / 1.504120 (1.642333) | 2.840358 / 1.541195 (1.299164) | 2.908667 / 1.468490 (1.440177) | 0.818767 / 4.584777 (-3.766010) | 5.416939 / 3.745712 (1.671227) | 4.853498 / 5.269862 (-0.416364) | 3.023526 / 4.565676 (-1.542150) | 0.110850 / 0.424275 (-0.313425) | 0.013103 / 0.007607 (0.005496) | 0.799720 / 0.226044 (0.573676) | 7.837704 / 2.268929 (5.568775) | 4.016526 / 55.444624 (-51.428099) | 3.338965 / 6.876477 (-3.537512) | 3.715721 / 2.142072 (1.573648) | 1.088340 / 4.805227 (-3.716887) | 0.213610 / 6.500664 (-6.287054) | 0.079244 / 0.075469 (0.003775) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.833175 / 1.841788 (-0.008612) | 25.307218 / 8.074308 (17.232910) | 23.716075 / 10.191392 (13.524683) | 0.259114 / 0.680424 (-0.421310) | 0.035171 / 0.534201 (-0.499029) | 0.530128 / 0.579283 (-0.049155) | 0.651484 / 0.434364 (0.217120) | 0.589414 / 0.540337 (0.049077) | 0.862691 / 1.386936 (-0.524245) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1bdfba93b8a739b9d885b8fb1909d47ff689bbc2 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "Me too, I thought the same... quite surprised... :open_mouth: ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006929 / 0.011353 (-0.004423) | 0.004345 / 0.011008 (-0.006663) | 0.085522 / 0.038508 (0.047014) | 0.083380 / 0.023109 (0.060271) | 0.310332 / 0.275898 (0.034434) | 0.350525 / 0.323480 (0.027045) | 0.004367 / 0.007986 (-0.003618) | 0.005503 / 0.004328 (0.001175) | 0.066311 / 0.004250 (0.062061) | 0.059545 / 0.037052 (0.022492) | 0.314090 / 0.258489 (0.055601) | 0.366661 / 0.293841 (0.072821) | 0.031581 / 0.128546 (-0.096965) | 0.008852 / 0.075646 (-0.066794) | 0.289312 / 0.419271 (-0.129960) | 0.052960 / 0.043533 (0.009427) | 0.308134 / 0.255139 (0.052995) | 0.330342 / 0.283200 (0.047142) | 0.026157 / 0.141683 (-0.115526) | 1.488463 / 1.452155 (0.036308) | 1.561441 / 1.492716 (0.068725) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.327735 / 0.018006 (0.309729) | 0.568162 / 0.000490 (0.567672) | 0.012097 / 0.000200 (0.011897) | 0.000438 / 0.000054 (0.000383) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029503 / 0.037411 (-0.007909) | 0.084327 / 0.014526 (0.069801) | 0.102065 / 0.176557 (-0.074492) | 0.157392 / 0.737135 (-0.579744) | 0.101428 / 0.296338 (-0.194910) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386767 / 0.215209 (0.171558) | 3.870757 / 2.077655 (1.793102) | 1.870048 / 1.504120 (0.365928) | 1.678221 / 1.541195 (0.137026) | 1.799423 / 1.468490 (0.330933) | 0.477718 / 4.584777 (-4.107059) | 3.618351 / 3.745712 (-0.127361) | 3.577921 / 5.269862 (-1.691941) | 2.146217 / 4.565676 (-2.419459) | 0.056290 / 0.424275 (-0.367985) | 0.007378 / 0.007607 (-0.000229) | 0.460678 / 0.226044 (0.234633) | 4.606243 / 2.268929 (2.337314) | 2.303460 / 55.444624 (-53.141164) | 1.982662 / 6.876477 (-4.893814) | 2.103891 / 2.142072 (-0.038182) | 0.570700 / 4.805227 (-4.234527) | 0.131747 / 6.500664 (-6.368918) | 0.060915 / 0.075469 (-0.014554) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286364 / 1.841788 (-0.555424) | 20.106330 / 8.074308 (12.032022) | 14.780833 / 10.191392 (4.589441) | 0.164301 / 0.680424 (-0.516123) | 0.018730 / 0.534201 (-0.515471) | 0.398530 / 0.579283 (-0.180754) | 0.418084 / 0.434364 (-0.016280) | 0.468735 / 0.540337 (-0.071602) | 0.690122 / 1.386936 (-0.696814) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007262 / 0.011353 (-0.004091) | 0.004228 / 0.011008 (-0.006780) | 0.065866 / 0.038508 (0.027358) | 0.096151 / 0.023109 (0.073042) | 0.409352 / 0.275898 (0.133454) | 0.441234 / 0.323480 (0.117754) | 0.005946 / 0.007986 (-0.002039) | 0.003630 / 0.004328 (-0.000698) | 0.066271 / 0.004250 (0.062020) | 0.061567 / 0.037052 (0.024515) | 0.409097 / 0.258489 (0.150608) | 0.447675 / 0.293841 (0.153834) | 0.032804 / 0.128546 (-0.095743) | 0.008793 / 0.075646 (-0.066853) | 0.070790 / 0.419271 (-0.348482) | 0.048650 / 0.043533 (0.005117) | 0.411021 / 0.255139 (0.155882) | 0.421398 / 0.283200 (0.138198) | 0.025305 / 0.141683 (-0.116378) | 1.494826 / 1.452155 (0.042671) | 1.580441 / 1.492716 (0.087724) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.321871 / 0.018006 (0.303865) | 0.526471 / 0.000490 (0.525982) | 0.006913 / 0.000200 (0.006713) | 0.000108 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034889 / 0.037411 (-0.002522) | 0.096096 / 0.014526 (0.081570) | 0.111920 / 0.176557 (-0.064636) | 0.166103 / 0.737135 (-0.571032) | 0.111162 / 0.296338 (-0.185176) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428037 / 0.215209 (0.212828) | 4.294150 / 2.077655 (2.216495) | 2.270331 / 1.504120 (0.766211) | 2.108235 / 1.541195 (0.567041) | 2.242560 / 1.468490 (0.774070) | 0.489941 / 4.584777 (-4.094836) | 3.688111 / 3.745712 (-0.057601) | 3.450180 / 5.269862 (-1.819681) | 2.175106 / 4.565676 (-2.390570) | 0.057657 / 0.424275 (-0.366619) | 0.007478 / 0.007607 (-0.000130) | 0.505242 / 0.226044 (0.279198) | 5.047817 / 2.268929 (2.778888) | 2.724125 / 55.444624 (-52.720500) | 2.419765 / 6.876477 (-4.456711) | 2.723231 / 2.142072 (0.581159) | 0.602382 / 4.805227 (-4.202846) | 0.132362 / 6.500664 (-6.368302) | 0.060600 / 0.075469 (-0.014869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.363356 / 1.841788 (-0.478431) | 21.446474 / 8.074308 (13.372165) | 15.074732 / 10.191392 (4.883340) | 0.191837 / 0.680424 (-0.488587) | 0.020565 / 0.534201 (-0.513636) | 0.396692 / 0.579283 (-0.182591) | 0.432390 / 0.434364 (-0.001974) | 0.491747 / 0.540337 (-0.048591) | 0.699203 / 1.386936 (-0.687733) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c3a8a87c841426495d3a7ed1863c26660a6a551f \"CML watermark\")\n" ]
2023-10-19T10:21:34
2023-10-20T06:23:21
2023-10-20T06:14:09
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6316", "html_url": "https://github.com/huggingface/datasets/pull/6316", "diff_url": "https://github.com/huggingface/datasets/pull/6316.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6316.patch", "merged_at": "2023-10-20T06:14:09" }
Currently, the reading of the metadata file infers the file extension (.jsonl or .csv) from the passed filename. However, downloaded files from the Hub don't have file extension. For example: - the original file: `hf://datasets/__DUMMY_TRANSFORMERS_USER__/test-dataset-5916a4-16977085077831/metadata.jsonl` - corresponds to the downloaded path: `/tmp/pytest-of-username/pytest-46/cache/datasets/downloads/9f5374dbb470f711f6b89d66a5eec1f19cc96324b26bcbebe29138bda6cb20e6`, which does not have extension In the case where the metadata file does not have an extension, the reader assumes it is a JSONL file, thus the reported error when trying to read a CSV file as a JSONL one: `ArrowInvalid: JSON parse error: Invalid value. in row 0` This behavior was introduced by: - #4837 This PR extracts the metadata file extension from the original filename (instead of the downloaded one) and passes it as a parameter to the read_metadata function. Fix #6315.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6316/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6316/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6315
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6315/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6315/comments
https://api.github.com/repos/huggingface/datasets/issues/6315/events
https://github.com/huggingface/datasets/issues/6315
1,951,800,819
I_kwDODunzps50Vh3z
6,315
Hub datasets with CSV metadata raise ArrowInvalid: JSON parse error: Invalid value. in row 0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[]
2023-10-19T10:11:29
2023-10-20T06:14:10
2023-10-20T06:14:10
MEMBER
null
null
When trying to load a Hub dataset that contains a CSV metadata file, it raises an `ArrowInvalid` error: ``` E pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0 pyarrow/error.pxi:100: ArrowInvalid ``` See: https://huggingface.co/datasets/lukarape/public_small_papers/discussions/1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6315/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6315/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6314
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6314/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6314/comments
https://api.github.com/repos/huggingface/datasets/issues/6314/events
https://github.com/huggingface/datasets/pull/6314
1,951,684,763
PR_kwDODunzps5dPo25
6,314
Support creating new branch in push_to_hub
{ "login": "jmif", "id": 1000442, "node_id": "MDQ6VXNlcjEwMDA0NDI=", "avatar_url": "https://avatars.githubusercontent.com/u/1000442?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jmif", "html_url": "https://github.com/jmif", "followers_url": "https://api.github.com/users/jmif/followers", "following_url": "https://api.github.com/users/jmif/following{/other_user}", "gists_url": "https://api.github.com/users/jmif/gists{/gist_id}", "starred_url": "https://api.github.com/users/jmif/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jmif/subscriptions", "organizations_url": "https://api.github.com/users/jmif/orgs", "repos_url": "https://api.github.com/users/jmif/repos", "events_url": "https://api.github.com/users/jmif/events{/privacy}", "received_events_url": "https://api.github.com/users/jmif/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-10-19T09:12:39
2023-10-19T09:20:06
2023-10-19T09:19:48
NONE
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6314", "html_url": "https://github.com/huggingface/datasets/pull/6314", "diff_url": "https://github.com/huggingface/datasets/pull/6314.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6314.patch", "merged_at": null }
This adds support for creating a new branch when pushing a dataset to the hub. Tested both methods locally and branches are created.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6314/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6314/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6313
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6313/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6313/comments
https://api.github.com/repos/huggingface/datasets/issues/6313/events
https://github.com/huggingface/datasets/pull/6313
1,951,527,712
PR_kwDODunzps5dPGmL
6,313
Fix commit message formatting in multi-commit uploads
{ "login": "qgallouedec", "id": 45557362, "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "gravatar_id": "", "url": "https://api.github.com/users/qgallouedec", "html_url": "https://github.com/qgallouedec", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "repos_url": "https://api.github.com/users/qgallouedec/repos", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006760 / 0.011353 (-0.004593) | 0.003918 / 0.011008 (-0.007091) | 0.084016 / 0.038508 (0.045508) | 0.069927 / 0.023109 (0.046818) | 0.307898 / 0.275898 (0.032000) | 0.337453 / 0.323480 (0.013973) | 0.004132 / 0.007986 (-0.003854) | 0.003248 / 0.004328 (-0.001081) | 0.064526 / 0.004250 (0.060275) | 0.056424 / 0.037052 (0.019371) | 0.316313 / 0.258489 (0.057824) | 0.356302 / 0.293841 (0.062461) | 0.030634 / 0.128546 (-0.097912) | 0.008467 / 0.075646 (-0.067180) | 0.286676 / 0.419271 (-0.132595) | 0.051813 / 0.043533 (0.008280) | 0.309874 / 0.255139 (0.054735) | 0.332513 / 0.283200 (0.049313) | 0.023919 / 0.141683 (-0.117764) | 1.509033 / 1.452155 (0.056878) | 1.549636 / 1.492716 (0.056920) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221464 / 0.018006 (0.203458) | 0.447873 / 0.000490 (0.447384) | 0.002408 / 0.000200 (0.002208) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027634 / 0.037411 (-0.009777) | 0.081802 / 0.014526 (0.067276) | 0.781489 / 0.176557 (0.604933) | 0.165184 / 0.737135 (-0.571951) | 0.121526 / 0.296338 (-0.174813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408215 / 0.215209 (0.193006) | 4.091192 / 2.077655 (2.013538) | 2.062608 / 1.504120 (0.558488) | 1.895747 / 1.541195 (0.354552) | 1.873682 / 1.468490 (0.405192) | 0.484184 / 4.584777 (-4.100593) | 3.469096 / 3.745712 (-0.276616) | 3.365325 / 5.269862 (-1.904537) | 2.000333 / 4.565676 (-2.565343) | 0.056661 / 0.424275 (-0.367614) | 0.007100 / 0.007607 (-0.000507) | 0.478587 / 0.226044 (0.252542) | 4.768703 / 2.268929 (2.499774) | 2.472432 / 55.444624 (-52.972192) | 2.133611 / 6.876477 (-4.742865) | 2.154296 / 2.142072 (0.012223) | 0.582293 / 4.805227 (-4.222934) | 0.131932 / 6.500664 (-6.368732) | 0.060259 / 0.075469 (-0.015211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259167 / 1.841788 (-0.582620) | 18.465604 / 8.074308 (10.391296) | 14.024528 / 10.191392 (3.833136) | 0.162320 / 0.680424 (-0.518104) | 0.018144 / 0.534201 (-0.516057) | 0.389931 / 0.579283 (-0.189352) | 0.396456 / 0.434364 (-0.037908) | 0.454734 / 0.540337 (-0.085603) | 0.636406 / 1.386936 (-0.750530) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006565 / 0.011353 (-0.004788) | 0.004008 / 0.011008 (-0.007000) | 0.064526 / 0.038508 (0.026018) | 0.071963 / 0.023109 (0.048854) | 0.415456 / 0.275898 (0.139557) | 0.441199 / 0.323480 (0.117719) | 0.005619 / 0.007986 (-0.002366) | 0.003261 / 0.004328 (-0.001067) | 0.064817 / 0.004250 (0.060567) | 0.055349 / 0.037052 (0.018296) | 0.425172 / 0.258489 (0.166683) | 0.452629 / 0.293841 (0.158788) | 0.031676 / 0.128546 (-0.096870) | 0.008432 / 0.075646 (-0.067214) | 0.071752 / 0.419271 (-0.347519) | 0.047176 / 0.043533 (0.003643) | 0.408641 / 0.255139 (0.153502) | 0.428579 / 0.283200 (0.145380) | 0.021548 / 0.141683 (-0.120135) | 1.495153 / 1.452155 (0.042999) | 1.557933 / 1.492716 (0.065217) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212749 / 0.018006 (0.194743) | 0.441263 / 0.000490 (0.440773) | 0.005831 / 0.000200 (0.005631) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031844 / 0.037411 (-0.005567) | 0.091590 / 0.014526 (0.077064) | 0.102859 / 0.176557 (-0.073697) | 0.155859 / 0.737135 (-0.581276) | 0.104717 / 0.296338 (-0.191622) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425924 / 0.215209 (0.210715) | 4.292829 / 2.077655 (2.215174) | 2.314350 / 1.504120 (0.810230) | 2.163087 / 1.541195 (0.621892) | 2.217310 / 1.468490 (0.748820) | 0.490889 / 4.584777 (-4.093887) | 3.498287 / 3.745712 (-0.247425) | 3.224980 / 5.269862 (-2.044881) | 1.987739 / 4.565676 (-2.577938) | 0.057486 / 0.424275 (-0.366790) | 0.007199 / 0.007607 (-0.000408) | 0.501194 / 0.226044 (0.275149) | 5.015202 / 2.268929 (2.746273) | 2.816307 / 55.444624 (-52.628318) | 2.474593 / 6.876477 (-4.401884) | 2.649510 / 2.142072 (0.507437) | 0.597167 / 4.805227 (-4.208060) | 0.131199 / 6.500664 (-6.369465) | 0.059532 / 0.075469 (-0.015938) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.384053 / 1.841788 (-0.457734) | 18.964201 / 8.074308 (10.889893) | 14.336209 / 10.191392 (4.144817) | 0.187522 / 0.680424 (-0.492902) | 0.020201 / 0.534201 (-0.514000) | 0.394778 / 0.579283 (-0.184505) | 0.408393 / 0.434364 (-0.025971) | 0.470965 / 0.540337 (-0.069373) | 0.667974 / 1.386936 (-0.718962) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b3333d790800ddaa3bf386ee71dc800258c921c \"CML watermark\")\n" ]
2023-10-19T07:53:56
2023-10-20T14:06:13
2023-10-20T13:57:39
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6313", "html_url": "https://github.com/huggingface/datasets/pull/6313", "diff_url": "https://github.com/huggingface/datasets/pull/6313.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6313.patch", "merged_at": "2023-10-20T13:57:38" }
Currently, the commit message keeps on adding: - `Upload dataset (part 00000-of-00002)` - `Upload dataset (part 00000-of-00002) (part 00001-of-00002)` Introduced in https://github.com/huggingface/datasets/pull/6269 This PR fixes this issue to have - `Upload dataset (part 00000-of-00002)` - `Upload dataset (part 00001-of-00002)`
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6313/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6313/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6312
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6312/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6312/comments
https://api.github.com/repos/huggingface/datasets/issues/6312/events
https://github.com/huggingface/datasets/pull/6312
1,950,128,416
PR_kwDODunzps5dKWDF
6,312
docs: resolving namespace conflict, refactored variable
{ "login": "smty2018", "id": 74114936, "node_id": "MDQ6VXNlcjc0MTE0OTM2", "avatar_url": "https://avatars.githubusercontent.com/u/74114936?v=4", "gravatar_id": "", "url": "https://api.github.com/users/smty2018", "html_url": "https://github.com/smty2018", "followers_url": "https://api.github.com/users/smty2018/followers", "following_url": "https://api.github.com/users/smty2018/following{/other_user}", "gists_url": "https://api.github.com/users/smty2018/gists{/gist_id}", "starred_url": "https://api.github.com/users/smty2018/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/smty2018/subscriptions", "organizations_url": "https://api.github.com/users/smty2018/orgs", "repos_url": "https://api.github.com/users/smty2018/repos", "events_url": "https://api.github.com/users/smty2018/events{/privacy}", "received_events_url": "https://api.github.com/users/smty2018/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006209 / 0.011353 (-0.005144) | 0.003708 / 0.011008 (-0.007300) | 0.080435 / 0.038508 (0.041926) | 0.060105 / 0.023109 (0.036995) | 0.392962 / 0.275898 (0.117064) | 0.429381 / 0.323480 (0.105902) | 0.003596 / 0.007986 (-0.004390) | 0.003849 / 0.004328 (-0.000480) | 0.062377 / 0.004250 (0.058127) | 0.048718 / 0.037052 (0.011666) | 0.400906 / 0.258489 (0.142417) | 0.440335 / 0.293841 (0.146494) | 0.027807 / 0.128546 (-0.100739) | 0.008066 / 0.075646 (-0.067580) | 0.262542 / 0.419271 (-0.156730) | 0.045513 / 0.043533 (0.001980) | 0.399608 / 0.255139 (0.144469) | 0.418007 / 0.283200 (0.134807) | 0.023475 / 0.141683 (-0.118208) | 1.476563 / 1.452155 (0.024409) | 1.528898 / 1.492716 (0.036182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223798 / 0.018006 (0.205792) | 0.430526 / 0.000490 (0.430036) | 0.009232 / 0.000200 (0.009032) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024921 / 0.037411 (-0.012490) | 0.077692 / 0.014526 (0.063166) | 0.085382 / 0.176557 (-0.091174) | 0.146220 / 0.737135 (-0.590915) | 0.086396 / 0.296338 (-0.209943) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439986 / 0.215209 (0.224777) | 4.384552 / 2.077655 (2.306897) | 2.373697 / 1.504120 (0.869577) | 2.176138 / 1.541195 (0.634943) | 2.225914 / 1.468490 (0.757424) | 0.505776 / 4.584777 (-4.079001) | 3.053744 / 3.745712 (-0.691968) | 3.080443 / 5.269862 (-2.189419) | 1.904392 / 4.565676 (-2.661285) | 0.058112 / 0.424275 (-0.366163) | 0.006631 / 0.007607 (-0.000976) | 0.503409 / 0.226044 (0.277365) | 5.053375 / 2.268929 (2.784447) | 2.789963 / 55.444624 (-52.654661) | 2.452659 / 6.876477 (-4.423818) | 2.512353 / 2.142072 (0.370280) | 0.590095 / 4.805227 (-4.215132) | 0.126267 / 6.500664 (-6.374397) | 0.061246 / 0.075469 (-0.014223) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249884 / 1.841788 (-0.591903) | 17.684730 / 8.074308 (9.610422) | 13.967467 / 10.191392 (3.776075) | 0.144202 / 0.680424 (-0.536222) | 0.017004 / 0.534201 (-0.517197) | 0.333634 / 0.579283 (-0.245649) | 0.387251 / 0.434364 (-0.047113) | 0.390189 / 0.540337 (-0.150148) | 0.535662 / 1.386936 (-0.851274) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006379 / 0.011353 (-0.004974) | 0.003681 / 0.011008 (-0.007327) | 0.063005 / 0.038508 (0.024497) | 0.064221 / 0.023109 (0.041112) | 0.446074 / 0.275898 (0.170176) | 0.471997 / 0.323480 (0.148517) | 0.005074 / 0.007986 (-0.002911) | 0.002945 / 0.004328 (-0.001383) | 0.063305 / 0.004250 (0.059054) | 0.050608 / 0.037052 (0.013556) | 0.443260 / 0.258489 (0.184771) | 0.478497 / 0.293841 (0.184656) | 0.028980 / 0.128546 (-0.099566) | 0.008145 / 0.075646 (-0.067502) | 0.068412 / 0.419271 (-0.350859) | 0.041552 / 0.043533 (-0.001980) | 0.436649 / 0.255139 (0.181510) | 0.462397 / 0.283200 (0.179198) | 0.019929 / 0.141683 (-0.121753) | 1.530248 / 1.452155 (0.078093) | 1.611117 / 1.492716 (0.118401) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232894 / 0.018006 (0.214888) | 0.421451 / 0.000490 (0.420961) | 0.003984 / 0.000200 (0.003784) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027776 / 0.037411 (-0.009635) | 0.081632 / 0.014526 (0.067106) | 0.094031 / 0.176557 (-0.082526) | 0.147930 / 0.737135 (-0.589206) | 0.094226 / 0.296338 (-0.202112) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471722 / 0.215209 (0.256513) | 4.713241 / 2.077655 (2.635587) | 2.662660 / 1.504120 (1.158540) | 2.490778 / 1.541195 (0.949583) | 2.555786 / 1.468490 (1.087296) | 0.512209 / 4.584777 (-4.072568) | 3.210612 / 3.745712 (-0.535100) | 2.863346 / 5.269862 (-2.406516) | 1.884664 / 4.565676 (-2.681012) | 0.058514 / 0.424275 (-0.365761) | 0.006473 / 0.007607 (-0.001134) | 0.543279 / 0.226044 (0.317235) | 5.441485 / 2.268929 (3.172556) | 3.145398 / 55.444624 (-52.299226) | 2.749603 / 6.876477 (-4.126874) | 2.925738 / 2.142072 (0.783666) | 0.598725 / 4.805227 (-4.206502) | 0.125616 / 6.500664 (-6.375048) | 0.061314 / 0.075469 (-0.014155) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.384270 / 1.841788 (-0.457518) | 18.307618 / 8.074308 (10.233310) | 14.635768 / 10.191392 (4.444376) | 0.148787 / 0.680424 (-0.531637) | 0.018191 / 0.534201 (-0.516010) | 0.333166 / 0.579283 (-0.246117) | 0.405116 / 0.434364 (-0.029247) | 0.392798 / 0.540337 (-0.147540) | 0.582299 / 1.386936 (-0.804637) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7004f0f2ec59832fe53af033efdca10d00377760 \"CML watermark\")\n" ]
2023-10-18T16:10:59
2023-10-19T16:31:59
2023-10-19T16:23:07
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6312", "html_url": "https://github.com/huggingface/datasets/pull/6312", "diff_url": "https://github.com/huggingface/datasets/pull/6312.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6312.patch", "merged_at": "2023-10-19T16:23:07" }
In docs of about_arrow.md, in the below example code ![image](https://github.com/huggingface/datasets/assets/74114936/fc70e152-e15f-422e-949a-1c4c4c9aa116) The variable name 'time' was being used in a way that could potentially lead to a namespace conflict with Python's built-in 'time' module. It is not a good convention and can lead to unintended variable shadowing for any user re-using the example code. To ensure code clarity, and prevent potential naming conflicts renamed the variable 'time' to 'elapsed_time' in the example code.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6312/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6312/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6311
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6311/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6311/comments
https://api.github.com/repos/huggingface/datasets/issues/6311/events
https://github.com/huggingface/datasets/issues/6311
1,949,304,993
I_kwDODunzps50MAih
6,311
cast_column to Sequence with length=4 occur exception raise in datasets/table.py:2146
{ "login": "neiblegy", "id": 16574677, "node_id": "MDQ6VXNlcjE2NTc0Njc3", "avatar_url": "https://avatars.githubusercontent.com/u/16574677?v=4", "gravatar_id": "", "url": "https://api.github.com/users/neiblegy", "html_url": "https://github.com/neiblegy", "followers_url": "https://api.github.com/users/neiblegy/followers", "following_url": "https://api.github.com/users/neiblegy/following{/other_user}", "gists_url": "https://api.github.com/users/neiblegy/gists{/gist_id}", "starred_url": "https://api.github.com/users/neiblegy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/neiblegy/subscriptions", "organizations_url": "https://api.github.com/users/neiblegy/orgs", "repos_url": "https://api.github.com/users/neiblegy/repos", "events_url": "https://api.github.com/users/neiblegy/events{/privacy}", "received_events_url": "https://api.github.com/users/neiblegy/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Thanks for reporting! We've spotted the bugs with the `array.values` handling and are fixing them in https://github.com/huggingface/datasets/pull/6283 (should be part of the next release).", "> Thanks for reporting! We've spotted the bugs with the `array.values` handling and are fixing them in #6283 (should be part of the next release).\r\n\r\ni encounter another exception while cast_column to type `Sequence(feature={\"points\": Array2D(shape=(-1, 2), dtype=\"int64\"), \"label\": ClassLabel(num_classes=num_classes, names=names)})`\r\n\r\nwhile my data like this: '{\"points\": [[0.6,0.6], [0.7,0.7], [0.8,0.8]], \"label\": \"A1\"}'\r\n\r\nhere is the backtrace info:\r\n\r\n```\r\n out = func(dataset, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 2110, in cast_column\r\n return self.cast(features)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 2055, in cast\r\n dataset = dataset.map(\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 592, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 557, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3097, in map\r\n for rank, done, content in Dataset._map_single(**dataset_kwargs):\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3474, in _map_single\r\n batch = apply_function_on_filtered_inputs(\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3353, in apply_function_on_filtered_inputs\r\n processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2329, in table_cast\r\n return cast_table_to_schema(table, schema)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2288, in cast_table_to_schema\r\n arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2288, in <listcomp>\r\n arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1831, in wrapper\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1831, in <listcomp>\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2073, in cast_array_to_feature\r\n arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2073, in <listcomp>\r\n arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2095, in cast_array_to_feature\r\n casted_values = _c(array.values, feature.feature)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2144, in cast_array_to_feature\r\n return array_cast(array, feature(), allow_number_to_str=allow_number_to_str)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1967, in array_cast\r\n return pa_type.wrap_array(array)\r\n File \"pyarrow/types.pxi\", line 1369, in pyarrow.lib.BaseExtensionType.wrap_array\r\nTypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: double>>, got list<item: double>\r\n```\r\nand i print(array) in datasets/table.py:1967 indeed get 2D list. is that same issue in #6283 ?\r\n\r\nbesides this, hugging face datasets seems don't naturally support multi-labels which means `Sequence(ClassLabel)` illegal if data is [\"label1\", \"label2\"]. so i have to define a class derived from `ClassLabel`, like this:\r\n\r\n```\r\nclass AisClassLabels(ClassLabel):\r\n def encode_example(self, example_data):\r\n if self.num_classes is None:\r\n raise ValueError(\r\n \"Trying to use ClassLabel feature with undefined number of class. \"\r\n \"Please set ClassLabel.names or num_classes.\"\r\n )\r\n if not isinstance(example_data, list):\r\n example_data = [example_data]\r\n\r\n for i in range(len(example_data)):\r\n if isinstance(example_data[i], str):\r\n example_data[i] = self.str2int(example_data[i])\r\n if not -1 <= example_data[i] < self.num_classes:\r\n raise ValueError(f\"Class label {example_data:d} greater than configured num_classes {self.num_classes}\")\r\n return example_data\r\n```\r\nand it works well in my case. but is there any recommend way to implement multi-labels?", "`Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: double>>, got list<item: double>`\r\nif i change `Array2D(shape=(-1, 2), dtype=\"int64\")` to `Sequence(Value(\"int64\"))` , every thing goes well. but my data is 2D int list", "i test Sequence(ClassLabel) is ok if one column is label list. but it is not ok in nested column such as `Sequence(feature= {\"points\": Sequence(Value(\"int32\")), \"label\": Sequence(ClassLabel(num_classes....)))`. in this case i need override ClassLabels. encode_example as i given above." ]
2023-10-18T09:38:05
2024-02-06T19:24:20
2024-02-06T19:24:20
NONE
null
null
### Describe the bug i load a dataset from local csv file which has 187383612 examples, then use `map` to generate new columns for test. here is my code : ``` import os from datasets import load_dataset from datasets.features import Sequence, Value def add_new_path(example): example["ais_bbox"] = [100,100,200,200] example["ais_image_path"] = os.path.join("images", example["image_path"]) if example["image_path"] else "" return example ais_dataset = load_dataset("/data/ryan.gao/ais_dataset_cache/raw/1749/") hf_ds = ais_dataset.map(add_new_path, batched=False, num_proc=32) ds = hf_ds.cast_column("ais_bbox", Sequence(Value("int32"), length=4)) ``` and the `cast_column` raise an exception ``` Casting the dataset: 3%|███▉ ... File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2110, in cast_column return self.cast(features) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2055, in cast dataset = dataset.map( File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3097, in map for rank, done, content in Dataset._map_single(**dataset_kwargs): File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3474, in _map_single batch = apply_function_on_filtered_inputs( File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3353, in apply_function_on_filtered_inputs processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2329, in table_cast return cast_table_to_schema(table, schema) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2288, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2288, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 1831, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 1831, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2145, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}") TypeError: Couldn't cast array of type list<item: int64> to Sequence(feature=Value(dtype='int32', id=None), length=4, id=None) ``` i check the source code and make debug info: in datasets/table.py:2092 ``` 2091 if feature.length > -1: 2092 if feature.length * len(array) == len(array.values): 2093 return pa.FixedSizeListArray.from_arrays(_c(array.values, feature.feature), feature.length) 2094 print(len(array)) 2095 print(len(array.values)) ``` my feature.length is 4. but feature.length * len(array) == len(array.values) is false. print(len(array)) is 262 print(len(array.values)) is 4000 then I use "for item in array" to print each item then get 262 * [100,100,200,200] and use "for item in array.values" to print each item and get 4000 int32 which are 1000 * [100,100,200,200] i'm wondering the `chunk` in each `array.chunks`, the "chunk.values" may get all the chunks's value rather than single chunk? but i check the pyarrow's doc seems chunk.values is chunk's value not all. ### Steps to reproduce the bug code provided above. ### Expected behavior feature.length * len(array) == len(array.values) should be true. and there should not has Exception. ### Environment info python3.9 x86_64 datasets: 2.14.4 pyarrow: 13.0.0 or 10.0.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6311/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6311/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6310
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6310/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6310/comments
https://api.github.com/repos/huggingface/datasets/issues/6310/events
https://github.com/huggingface/datasets/pull/6310
1,947,457,988
PR_kwDODunzps5dBPnY
6,310
Add return_file_name in load_dataset
{ "login": "juliendenize", "id": 40604584, "node_id": "MDQ6VXNlcjQwNjA0NTg0", "avatar_url": "https://avatars.githubusercontent.com/u/40604584?v=4", "gravatar_id": "", "url": "https://api.github.com/users/juliendenize", "html_url": "https://github.com/juliendenize", "followers_url": "https://api.github.com/users/juliendenize/followers", "following_url": "https://api.github.com/users/juliendenize/following{/other_user}", "gists_url": "https://api.github.com/users/juliendenize/gists{/gist_id}", "starred_url": "https://api.github.com/users/juliendenize/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/juliendenize/subscriptions", "organizations_url": "https://api.github.com/users/juliendenize/orgs", "repos_url": "https://api.github.com/users/juliendenize/repos", "events_url": "https://api.github.com/users/juliendenize/events{/privacy}", "received_events_url": "https://api.github.com/users/juliendenize/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6310). All of your documentation changes will be reflected on that endpoint.", "> Thanks for the change !\r\n> \r\n> Since `return` in python often refers to what is actually returned by the function (here `load_dataset`), I think we can use another word for the parameter. Maybe name it `with_file_names`?\r\n> \r\n> cc @mariosasko in case you have an opinion\r\n\r\nI changed the argument name to your suggestion, I agree that it should be less confusing :)", "> Thanks! I've left some comments.\r\n> \r\n> @lhoestq WDYT about returning a data file's name (the last part) instead of the full path? This way we could have the same values in the streaming and the non-streaming mode. (In the non-streaming mode, we would also have to iterate over remote files to not output the files' hash (from the HF cache))\r\n\r\nConcerning the last part of the file name, do you have suggestions on how to do that? Because it can happen that the files are located in different folders with the same name so I am wondering what would be the way to go." ]
2023-10-17T13:36:57
2023-11-27T21:11:14
null
NONE
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6310", "html_url": "https://github.com/huggingface/datasets/pull/6310", "diff_url": "https://github.com/huggingface/datasets/pull/6310.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6310.patch", "merged_at": null }
Proposition to fix #5806. Added an optional parameter `return_file_name` in the dataset builder config. When set to `True`, the function will include the file name corresponding to the sample in the returned output. There is a difference between arrow-based and folder-based datasets to return the file name: - for arrow-based: a column is concatenated after the table is cast. - for folder-based: `dataset.info.features` has the entry `file_name` and the original file name is passed to the `sample_metadata` dictionary. The difference in behavior might be a concern, also I do not know whether the `file_name` should return the original file path or the downloaded one for folder-based datasets. I added some tests for the datasets that already had a test file.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6310/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6310/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6309
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6309/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6309/comments
https://api.github.com/repos/huggingface/datasets/issues/6309/events
https://github.com/huggingface/datasets/pull/6309
1,946,916,969
PR_kwDODunzps5c_YcX
6,309
Fix get_data_patterns for directories with the word data twice
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006461 / 0.011353 (-0.004891) | 0.004035 / 0.011008 (-0.006973) | 0.085037 / 0.038508 (0.046529) | 0.072434 / 0.023109 (0.049325) | 0.308565 / 0.275898 (0.032667) | 0.330455 / 0.323480 (0.006975) | 0.003782 / 0.007986 (-0.004204) | 0.004363 / 0.004328 (0.000034) | 0.065242 / 0.004250 (0.060991) | 0.056111 / 0.037052 (0.019058) | 0.318008 / 0.258489 (0.059519) | 0.357904 / 0.293841 (0.064063) | 0.030702 / 0.128546 (-0.097844) | 0.008741 / 0.075646 (-0.066905) | 0.287666 / 0.419271 (-0.131605) | 0.052281 / 0.043533 (0.008748) | 0.306894 / 0.255139 (0.051755) | 0.335739 / 0.283200 (0.052540) | 0.023712 / 0.141683 (-0.117971) | 1.492304 / 1.452155 (0.040149) | 1.544540 / 1.492716 (0.051823) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299419 / 0.018006 (0.281413) | 0.547195 / 0.000490 (0.546705) | 0.011571 / 0.000200 (0.011371) | 0.000223 / 0.000054 (0.000168) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028364 / 0.037411 (-0.009048) | 0.081445 / 0.014526 (0.066919) | 0.626670 / 0.176557 (0.450114) | 0.159964 / 0.737135 (-0.577171) | 0.100528 / 0.296338 (-0.195811) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409915 / 0.215209 (0.194705) | 4.108689 / 2.077655 (2.031034) | 2.046247 / 1.504120 (0.542127) | 1.851081 / 1.541195 (0.309887) | 1.857857 / 1.468490 (0.389367) | 0.493246 / 4.584777 (-4.091531) | 3.581557 / 3.745712 (-0.164155) | 3.456708 / 5.269862 (-1.813153) | 2.051054 / 4.565676 (-2.514623) | 0.057553 / 0.424275 (-0.366722) | 0.007287 / 0.007607 (-0.000320) | 0.493094 / 0.226044 (0.267050) | 4.873051 / 2.268929 (2.604122) | 2.515266 / 55.444624 (-52.929358) | 2.144743 / 6.876477 (-4.731733) | 2.159412 / 2.142072 (0.017340) | 0.595627 / 4.805227 (-4.209601) | 0.133773 / 6.500664 (-6.366891) | 0.059965 / 0.075469 (-0.015504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259625 / 1.841788 (-0.582163) | 19.030742 / 8.074308 (10.956434) | 14.039246 / 10.191392 (3.847854) | 0.168116 / 0.680424 (-0.512308) | 0.018168 / 0.534201 (-0.516033) | 0.391187 / 0.579283 (-0.188096) | 0.420901 / 0.434364 (-0.013463) | 0.465827 / 0.540337 (-0.074511) | 0.718373 / 1.386936 (-0.668563) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006616 / 0.011353 (-0.004737) | 0.004048 / 0.011008 (-0.006960) | 0.064568 / 0.038508 (0.026060) | 0.075933 / 0.023109 (0.052824) | 0.396353 / 0.275898 (0.120455) | 0.424159 / 0.323480 (0.100679) | 0.005446 / 0.007986 (-0.002540) | 0.003393 / 0.004328 (-0.000935) | 0.064673 / 0.004250 (0.060422) | 0.056983 / 0.037052 (0.019930) | 0.402478 / 0.258489 (0.143989) | 0.433240 / 0.293841 (0.139399) | 0.032100 / 0.128546 (-0.096446) | 0.008664 / 0.075646 (-0.066983) | 0.070502 / 0.419271 (-0.348770) | 0.047800 / 0.043533 (0.004267) | 0.399506 / 0.255139 (0.144367) | 0.418376 / 0.283200 (0.135176) | 0.022654 / 0.141683 (-0.119029) | 1.487280 / 1.452155 (0.035125) | 1.543733 / 1.492716 (0.051017) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317660 / 0.018006 (0.299654) | 0.523922 / 0.000490 (0.523432) | 0.007086 / 0.000200 (0.006886) | 0.000109 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032381 / 0.037411 (-0.005030) | 0.091636 / 0.014526 (0.077110) | 0.104743 / 0.176557 (-0.071814) | 0.158793 / 0.737135 (-0.578342) | 0.103164 / 0.296338 (-0.193175) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434081 / 0.215209 (0.218872) | 4.329448 / 2.077655 (2.251794) | 2.335855 / 1.504120 (0.831735) | 2.177513 / 1.541195 (0.636319) | 2.205406 / 1.468490 (0.736916) | 0.500117 / 4.584777 (-4.084660) | 3.693715 / 3.745712 (-0.051997) | 3.305803 / 5.269862 (-1.964059) | 2.048283 / 4.565676 (-2.517394) | 0.058301 / 0.424275 (-0.365974) | 0.007196 / 0.007607 (-0.000411) | 0.512917 / 0.226044 (0.286873) | 5.129283 / 2.268929 (2.860355) | 2.836200 / 55.444624 (-52.608425) | 2.499022 / 6.876477 (-4.377455) | 2.652305 / 2.142072 (0.510232) | 0.604219 / 4.805227 (-4.201008) | 0.137310 / 6.500664 (-6.363354) | 0.060880 / 0.075469 (-0.014589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346948 / 1.841788 (-0.494839) | 19.499516 / 8.074308 (11.425208) | 14.701500 / 10.191392 (4.510108) | 0.168626 / 0.680424 (-0.511798) | 0.020002 / 0.534201 (-0.514199) | 0.394729 / 0.579283 (-0.184554) | 0.428323 / 0.434364 (-0.006040) | 0.481202 / 0.540337 (-0.059136) | 0.684768 / 1.386936 (-0.702169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fed9c07458afc73870e8ec9846bf1fc5cac0b378 \"CML watermark\")\n", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6309). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007033 / 0.011353 (-0.004320) | 0.004411 / 0.011008 (-0.006597) | 0.086146 / 0.038508 (0.047638) | 0.086669 / 0.023109 (0.063560) | 0.329145 / 0.275898 (0.053247) | 0.348728 / 0.323480 (0.025248) | 0.004404 / 0.007986 (-0.003582) | 0.003656 / 0.004328 (-0.000673) | 0.066120 / 0.004250 (0.061869) | 0.059157 / 0.037052 (0.022105) | 0.316537 / 0.258489 (0.058048) | 0.369065 / 0.293841 (0.075224) | 0.031921 / 0.128546 (-0.096625) | 0.008877 / 0.075646 (-0.066770) | 0.290068 / 0.419271 (-0.129204) | 0.054007 / 0.043533 (0.010475) | 0.308823 / 0.255139 (0.053684) | 0.331189 / 0.283200 (0.047989) | 0.027313 / 0.141683 (-0.114370) | 1.486772 / 1.452155 (0.034617) | 1.570359 / 1.492716 (0.077643) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.315991 / 0.018006 (0.297985) | 0.577876 / 0.000490 (0.577386) | 0.011207 / 0.000200 (0.011007) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031753 / 0.037411 (-0.005658) | 0.089270 / 0.014526 (0.074744) | 0.102518 / 0.176557 (-0.074038) | 0.160260 / 0.737135 (-0.576875) | 0.103365 / 0.296338 (-0.192973) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405789 / 0.215209 (0.190580) | 4.052740 / 2.077655 (1.975085) | 2.052076 / 1.504120 (0.547956) | 1.873966 / 1.541195 (0.332771) | 1.997156 / 1.468490 (0.528665) | 0.494975 / 4.584777 (-4.089802) | 3.600007 / 3.745712 (-0.145705) | 3.626459 / 5.269862 (-1.643403) | 2.176927 / 4.565676 (-2.388750) | 0.057894 / 0.424275 (-0.366381) | 0.007469 / 0.007607 (-0.000138) | 0.487422 / 0.226044 (0.261377) | 4.868744 / 2.268929 (2.599815) | 2.528707 / 55.444624 (-52.915918) | 2.149520 / 6.876477 (-4.726956) | 2.275491 / 2.142072 (0.133419) | 0.589112 / 4.805227 (-4.216115) | 0.136644 / 6.500664 (-6.364020) | 0.062144 / 0.075469 (-0.013325) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286625 / 1.841788 (-0.555163) | 20.528128 / 8.074308 (12.453819) | 15.290866 / 10.191392 (5.099474) | 0.168380 / 0.680424 (-0.512044) | 0.018908 / 0.534201 (-0.515293) | 0.397210 / 0.579283 (-0.182073) | 0.426133 / 0.434364 (-0.008231) | 0.471754 / 0.540337 (-0.068584) | 0.653343 / 1.386936 (-0.733593) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007599 / 0.011353 (-0.003754) | 0.004499 / 0.011008 (-0.006509) | 0.066248 / 0.038508 (0.027740) | 0.097704 / 0.023109 (0.074595) | 0.414558 / 0.275898 (0.138660) | 0.451088 / 0.323480 (0.127609) | 0.005932 / 0.007986 (-0.002054) | 0.003698 / 0.004328 (-0.000630) | 0.065784 / 0.004250 (0.061534) | 0.064777 / 0.037052 (0.027725) | 0.443318 / 0.258489 (0.184829) | 0.456896 / 0.293841 (0.163055) | 0.033436 / 0.128546 (-0.095111) | 0.008977 / 0.075646 (-0.066669) | 0.072067 / 0.419271 (-0.347205) | 0.049571 / 0.043533 (0.006038) | 0.420325 / 0.255139 (0.165186) | 0.443588 / 0.283200 (0.160388) | 0.026723 / 0.141683 (-0.114960) | 1.512566 / 1.452155 (0.060411) | 1.647591 / 1.492716 (0.154875) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.326410 / 0.018006 (0.308404) | 0.532878 / 0.000490 (0.532388) | 0.006257 / 0.000200 (0.006057) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037289 / 0.037411 (-0.000122) | 0.104940 / 0.014526 (0.090414) | 0.113597 / 0.176557 (-0.062960) | 0.170562 / 0.737135 (-0.566573) | 0.114583 / 0.296338 (-0.181755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435530 / 0.215209 (0.220321) | 4.332659 / 2.077655 (2.255005) | 2.343576 / 1.504120 (0.839456) | 2.190517 / 1.541195 (0.649322) | 2.323101 / 1.468490 (0.854611) | 0.493019 / 4.584777 (-4.091758) | 3.686726 / 3.745712 (-0.058986) | 3.437143 / 5.269862 (-1.832719) | 2.167193 / 4.565676 (-2.398483) | 0.059636 / 0.424275 (-0.364639) | 0.007696 / 0.007607 (0.000089) | 0.511159 / 0.226044 (0.285115) | 5.119358 / 2.268929 (2.850429) | 2.814934 / 55.444624 (-52.629690) | 2.477871 / 6.876477 (-4.398606) | 2.774473 / 2.142072 (0.632401) | 0.590258 / 4.805227 (-4.214969) | 0.135923 / 6.500664 (-6.364741) | 0.062793 / 0.075469 (-0.012676) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350192 / 1.841788 (-0.491596) | 21.382135 / 8.074308 (13.307827) | 16.024198 / 10.191392 (5.832806) | 0.163623 / 0.680424 (-0.516801) | 0.020749 / 0.534201 (-0.513452) | 0.402578 / 0.579283 (-0.176705) | 0.436569 / 0.434364 (0.002205) | 0.477217 / 0.540337 (-0.063121) | 0.682929 / 1.386936 (-0.704007) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fa36173f2e8c6f266efd236933eff3a95af0382c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006671 / 0.011353 (-0.004681) | 0.004176 / 0.011008 (-0.006832) | 0.084095 / 0.038508 (0.045587) | 0.076345 / 0.023109 (0.053236) | 0.341201 / 0.275898 (0.065303) | 0.381920 / 0.323480 (0.058440) | 0.005578 / 0.007986 (-0.002408) | 0.003535 / 0.004328 (-0.000794) | 0.065227 / 0.004250 (0.060976) | 0.054983 / 0.037052 (0.017931) | 0.345938 / 0.258489 (0.087449) | 0.398708 / 0.293841 (0.104867) | 0.031029 / 0.128546 (-0.097518) | 0.008643 / 0.075646 (-0.067004) | 0.287286 / 0.419271 (-0.131985) | 0.052424 / 0.043533 (0.008892) | 0.342914 / 0.255139 (0.087775) | 0.366982 / 0.283200 (0.083782) | 0.024511 / 0.141683 (-0.117172) | 1.510575 / 1.452155 (0.058421) | 1.593214 / 1.492716 (0.100497) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272703 / 0.018006 (0.254697) | 0.583235 / 0.000490 (0.582746) | 0.008467 / 0.000200 (0.008267) | 0.000295 / 0.000054 (0.000240) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029654 / 0.037411 (-0.007757) | 0.085078 / 0.014526 (0.070552) | 0.106391 / 0.176557 (-0.070165) | 0.155790 / 0.737135 (-0.581345) | 0.104835 / 0.296338 (-0.191503) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408584 / 0.215209 (0.193375) | 4.082557 / 2.077655 (2.004902) | 2.054001 / 1.504120 (0.549881) | 1.868470 / 1.541195 (0.327275) | 1.950600 / 1.468490 (0.482110) | 0.492572 / 4.584777 (-4.092205) | 3.497105 / 3.745712 (-0.248607) | 3.464596 / 5.269862 (-1.805265) | 2.106399 / 4.565676 (-2.459278) | 0.057413 / 0.424275 (-0.366862) | 0.007449 / 0.007607 (-0.000158) | 0.482900 / 0.226044 (0.256856) | 4.844152 / 2.268929 (2.575223) | 2.499930 / 55.444624 (-52.944695) | 2.180396 / 6.876477 (-4.696081) | 2.282830 / 2.142072 (0.140758) | 0.581371 / 4.805227 (-4.223857) | 0.134641 / 6.500664 (-6.366023) | 0.063137 / 0.075469 (-0.012332) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274291 / 1.841788 (-0.567496) | 19.426189 / 8.074308 (11.351881) | 14.292833 / 10.191392 (4.101441) | 0.166321 / 0.680424 (-0.514102) | 0.018419 / 0.534201 (-0.515782) | 0.392433 / 0.579283 (-0.186850) | 0.415128 / 0.434364 (-0.019236) | 0.459274 / 0.540337 (-0.081063) | 0.714668 / 1.386936 (-0.672268) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006740 / 0.011353 (-0.004613) | 0.004283 / 0.011008 (-0.006725) | 0.063845 / 0.038508 (0.025337) | 0.077037 / 0.023109 (0.053927) | 0.425103 / 0.275898 (0.149205) | 0.445525 / 0.323480 (0.122046) | 0.005755 / 0.007986 (-0.002230) | 0.003589 / 0.004328 (-0.000739) | 0.064515 / 0.004250 (0.060265) | 0.057398 / 0.037052 (0.020346) | 0.424781 / 0.258489 (0.166292) | 0.452162 / 0.293841 (0.158321) | 0.032164 / 0.128546 (-0.096382) | 0.008660 / 0.075646 (-0.066986) | 0.069873 / 0.419271 (-0.349399) | 0.048100 / 0.043533 (0.004567) | 0.409097 / 0.255139 (0.153958) | 0.441533 / 0.283200 (0.158333) | 0.024122 / 0.141683 (-0.117560) | 1.503431 / 1.452155 (0.051277) | 1.577518 / 1.492716 (0.084802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264433 / 0.018006 (0.246426) | 0.553631 / 0.000490 (0.553141) | 0.006354 / 0.000200 (0.006154) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033259 / 0.037411 (-0.004152) | 0.094908 / 0.014526 (0.080382) | 0.108238 / 0.176557 (-0.068318) | 0.161354 / 0.737135 (-0.575781) | 0.109073 / 0.296338 (-0.187265) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434450 / 0.215209 (0.219241) | 4.347501 / 2.077655 (2.269847) | 2.362225 / 1.504120 (0.858105) | 2.189285 / 1.541195 (0.648090) | 2.288797 / 1.468490 (0.820307) | 0.487782 / 4.584777 (-4.096995) | 3.598732 / 3.745712 (-0.146980) | 3.343263 / 5.269862 (-1.926599) | 2.086256 / 4.565676 (-2.479420) | 0.057838 / 0.424275 (-0.366437) | 0.007412 / 0.007607 (-0.000195) | 0.510098 / 0.226044 (0.284054) | 5.088743 / 2.268929 (2.819814) | 2.809105 / 55.444624 (-52.635519) | 2.476005 / 6.876477 (-4.400471) | 2.753785 / 2.142072 (0.611712) | 0.585045 / 4.805227 (-4.220182) | 0.131162 / 6.500664 (-6.369502) | 0.060431 / 0.075469 (-0.015038) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.342149 / 1.841788 (-0.499639) | 20.602369 / 8.074308 (12.528061) | 14.973301 / 10.191392 (4.781909) | 0.151655 / 0.680424 (-0.528769) | 0.020793 / 0.534201 (-0.513408) | 0.401657 / 0.579283 (-0.177626) | 0.419845 / 0.434364 (-0.014519) | 0.467225 / 0.540337 (-0.073113) | 0.672469 / 1.386936 (-0.714467) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#474beafbc1c2735ff4747f5675855583be2ede06 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007006 / 0.011353 (-0.004346) | 0.004282 / 0.011008 (-0.006726) | 0.085413 / 0.038508 (0.046905) | 0.085148 / 0.023109 (0.062038) | 0.336543 / 0.275898 (0.060645) | 0.367959 / 0.323480 (0.044479) | 0.004337 / 0.007986 (-0.003648) | 0.004535 / 0.004328 (0.000207) | 0.065379 / 0.004250 (0.061128) | 0.059993 / 0.037052 (0.022941) | 0.343162 / 0.258489 (0.084673) | 0.383766 / 0.293841 (0.089925) | 0.031520 / 0.128546 (-0.097026) | 0.008605 / 0.075646 (-0.067042) | 0.288620 / 0.419271 (-0.130651) | 0.053617 / 0.043533 (0.010084) | 0.339389 / 0.255139 (0.084250) | 0.350842 / 0.283200 (0.067642) | 0.027816 / 0.141683 (-0.113867) | 1.505500 / 1.452155 (0.053346) | 1.566511 / 1.492716 (0.073795) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272203 / 0.018006 (0.254197) | 0.569729 / 0.000490 (0.569240) | 0.010061 / 0.000200 (0.009861) | 0.000328 / 0.000054 (0.000273) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030015 / 0.037411 (-0.007396) | 0.083991 / 0.014526 (0.069465) | 0.099796 / 0.176557 (-0.076761) | 0.159131 / 0.737135 (-0.578004) | 0.099102 / 0.296338 (-0.197237) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390076 / 0.215209 (0.174867) | 3.897157 / 2.077655 (1.819502) | 1.935912 / 1.504120 (0.431793) | 1.815109 / 1.541195 (0.273915) | 1.875041 / 1.468490 (0.406551) | 0.482168 / 4.584777 (-4.102609) | 3.556140 / 3.745712 (-0.189572) | 3.528889 / 5.269862 (-1.740972) | 2.132767 / 4.565676 (-2.432909) | 0.057761 / 0.424275 (-0.366514) | 0.007353 / 0.007607 (-0.000254) | 0.464801 / 0.226044 (0.238757) | 4.637301 / 2.268929 (2.368372) | 2.362239 / 55.444624 (-53.082386) | 2.049811 / 6.876477 (-4.826665) | 2.143485 / 2.142072 (0.001412) | 0.580929 / 4.805227 (-4.224299) | 0.140252 / 6.500664 (-6.360412) | 0.061352 / 0.075469 (-0.014117) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257487 / 1.841788 (-0.584301) | 19.453319 / 8.074308 (11.379011) | 14.276332 / 10.191392 (4.084940) | 0.166772 / 0.680424 (-0.513652) | 0.018339 / 0.534201 (-0.515862) | 0.393008 / 0.579283 (-0.186275) | 0.420960 / 0.434364 (-0.013404) | 0.464331 / 0.540337 (-0.076007) | 0.717973 / 1.386936 (-0.668963) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007255 / 0.011353 (-0.004098) | 0.004230 / 0.011008 (-0.006778) | 0.065191 / 0.038508 (0.026683) | 0.085765 / 0.023109 (0.062655) | 0.412464 / 0.275898 (0.136566) | 0.446067 / 0.323480 (0.122587) | 0.005875 / 0.007986 (-0.002110) | 0.003700 / 0.004328 (-0.000628) | 0.065430 / 0.004250 (0.061179) | 0.060284 / 0.037052 (0.023231) | 0.419984 / 0.258489 (0.161495) | 0.453779 / 0.293841 (0.159938) | 0.032595 / 0.128546 (-0.095952) | 0.008873 / 0.075646 (-0.066773) | 0.072124 / 0.419271 (-0.347148) | 0.048072 / 0.043533 (0.004539) | 0.408725 / 0.255139 (0.153586) | 0.432485 / 0.283200 (0.149285) | 0.024662 / 0.141683 (-0.117021) | 1.540434 / 1.452155 (0.088279) | 1.624768 / 1.492716 (0.132051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253220 / 0.018006 (0.235214) | 0.555469 / 0.000490 (0.554980) | 0.007765 / 0.000200 (0.007565) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032666 / 0.037411 (-0.004745) | 0.094786 / 0.014526 (0.080260) | 0.108219 / 0.176557 (-0.068337) | 0.161546 / 0.737135 (-0.575589) | 0.109828 / 0.296338 (-0.186510) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437024 / 0.215209 (0.221815) | 4.354065 / 2.077655 (2.276411) | 2.336832 / 1.504120 (0.832713) | 2.161959 / 1.541195 (0.620764) | 2.257214 / 1.468490 (0.788724) | 0.501576 / 4.584777 (-4.083201) | 3.654292 / 3.745712 (-0.091420) | 3.349504 / 5.269862 (-1.920357) | 2.092998 / 4.565676 (-2.472679) | 0.058740 / 0.424275 (-0.365535) | 0.007420 / 0.007607 (-0.000187) | 0.513443 / 0.226044 (0.287399) | 5.151247 / 2.268929 (2.882319) | 2.816036 / 55.444624 (-52.628589) | 2.451863 / 6.876477 (-4.424613) | 2.709908 / 2.142072 (0.567836) | 0.597834 / 4.805227 (-4.207394) | 0.136547 / 6.500664 (-6.364117) | 0.062030 / 0.075469 (-0.013439) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.371412 / 1.841788 (-0.470375) | 20.398981 / 8.074308 (12.324673) | 14.932307 / 10.191392 (4.740915) | 0.167796 / 0.680424 (-0.512628) | 0.020740 / 0.534201 (-0.513461) | 0.397162 / 0.579283 (-0.182121) | 0.435493 / 0.434364 (0.001129) | 0.477074 / 0.540337 (-0.063264) | 0.697546 / 1.386936 (-0.689390) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#017cefbc832bfe662afd87d9d1241104bf67c53e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007388 / 0.011353 (-0.003964) | 0.004408 / 0.011008 (-0.006600) | 0.098225 / 0.038508 (0.059717) | 0.079368 / 0.023109 (0.056259) | 0.381866 / 0.275898 (0.105968) | 0.425942 / 0.323480 (0.102462) | 0.005978 / 0.007986 (-0.002007) | 0.003677 / 0.004328 (-0.000651) | 0.075488 / 0.004250 (0.071238) | 0.061725 / 0.037052 (0.024672) | 0.389126 / 0.258489 (0.130637) | 0.444099 / 0.293841 (0.150258) | 0.036222 / 0.128546 (-0.092324) | 0.009926 / 0.075646 (-0.065720) | 0.336632 / 0.419271 (-0.082640) | 0.060867 / 0.043533 (0.017335) | 0.385437 / 0.255139 (0.130298) | 0.416599 / 0.283200 (0.133399) | 0.025118 / 0.141683 (-0.116565) | 1.728073 / 1.452155 (0.275919) | 1.847750 / 1.492716 (0.355033) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263774 / 0.018006 (0.245768) | 0.491242 / 0.000490 (0.490752) | 0.013621 / 0.000200 (0.013421) | 0.000333 / 0.000054 (0.000279) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032911 / 0.037411 (-0.004500) | 0.095738 / 0.014526 (0.081212) | 0.110482 / 0.176557 (-0.066075) | 0.175533 / 0.737135 (-0.561603) | 0.109240 / 0.296338 (-0.187098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453967 / 0.215209 (0.238758) | 4.489384 / 2.077655 (2.411730) | 2.185496 / 1.504120 (0.681376) | 1.979126 / 1.541195 (0.437931) | 2.016364 / 1.468490 (0.547874) | 0.565539 / 4.584777 (-4.019238) | 4.106561 / 3.745712 (0.360849) | 3.906402 / 5.269862 (-1.363460) | 2.342186 / 4.565676 (-2.223491) | 0.067815 / 0.424275 (-0.356460) | 0.008663 / 0.007607 (0.001056) | 0.543841 / 0.226044 (0.317796) | 5.433491 / 2.268929 (3.164563) | 2.785723 / 55.444624 (-52.658901) | 2.355716 / 6.876477 (-4.520760) | 2.397563 / 2.142072 (0.255491) | 0.682587 / 4.805227 (-4.122641) | 0.156548 / 6.500664 (-6.344116) | 0.070654 / 0.075469 (-0.004815) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.475183 / 1.841788 (-0.366605) | 21.353030 / 8.074308 (13.278722) | 15.938324 / 10.191392 (5.746932) | 0.167010 / 0.680424 (-0.513413) | 0.020931 / 0.534201 (-0.513270) | 0.464376 / 0.579283 (-0.114907) | 0.472546 / 0.434364 (0.038182) | 0.544645 / 0.540337 (0.004308) | 0.752940 / 1.386936 (-0.633996) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007359 / 0.011353 (-0.003994) | 0.004276 / 0.011008 (-0.006732) | 0.075345 / 0.038508 (0.036837) | 0.080105 / 0.023109 (0.056995) | 0.480456 / 0.275898 (0.204558) | 0.514974 / 0.323480 (0.191494) | 0.006087 / 0.007986 (-0.001899) | 0.003717 / 0.004328 (-0.000611) | 0.075067 / 0.004250 (0.070816) | 0.063739 / 0.037052 (0.026686) | 0.487569 / 0.258489 (0.229080) | 0.530198 / 0.293841 (0.236357) | 0.036056 / 0.128546 (-0.092491) | 0.009606 / 0.075646 (-0.066041) | 0.082343 / 0.419271 (-0.336929) | 0.055488 / 0.043533 (0.011956) | 0.484789 / 0.255139 (0.229650) | 0.501918 / 0.283200 (0.218718) | 0.025340 / 0.141683 (-0.116342) | 1.784417 / 1.452155 (0.332262) | 1.854202 / 1.492716 (0.361486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252476 / 0.018006 (0.234470) | 0.484967 / 0.000490 (0.484478) | 0.005471 / 0.000200 (0.005271) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037084 / 0.037411 (-0.000327) | 0.106648 / 0.014526 (0.092122) | 0.123393 / 0.176557 (-0.053164) | 0.183088 / 0.737135 (-0.554047) | 0.122572 / 0.296338 (-0.173767) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.516003 / 0.215209 (0.300793) | 5.107748 / 2.077655 (3.030093) | 2.778044 / 1.504120 (1.273924) | 2.589944 / 1.541195 (1.048749) | 2.649921 / 1.468490 (1.181431) | 0.572783 / 4.584777 (-4.011994) | 4.211331 / 3.745712 (0.465619) | 3.738859 / 5.269862 (-1.531003) | 2.331628 / 4.565676 (-2.234048) | 0.067347 / 0.424275 (-0.356928) | 0.008513 / 0.007607 (0.000905) | 0.601056 / 0.226044 (0.375012) | 5.990921 / 2.268929 (3.721992) | 3.311544 / 55.444624 (-52.133081) | 2.929850 / 6.876477 (-3.946627) | 3.118741 / 2.142072 (0.976669) | 0.685975 / 4.805227 (-4.119253) | 0.155105 / 6.500664 (-6.345559) | 0.069629 / 0.075469 (-0.005840) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.602367 / 1.841788 (-0.239421) | 22.577072 / 8.074308 (14.502764) | 17.049655 / 10.191392 (6.858263) | 0.182412 / 0.680424 (-0.498011) | 0.023137 / 0.534201 (-0.511064) | 0.466988 / 0.579283 (-0.112295) | 0.483887 / 0.434364 (0.049523) | 0.556099 / 0.540337 (0.015761) | 0.798332 / 1.386936 (-0.588604) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3e6d8318bd73a91852c22d14f1d788ac6dc8ae90 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009086 / 0.011353 (-0.002267) | 0.004755 / 0.011008 (-0.006253) | 0.128866 / 0.038508 (0.090358) | 0.086099 / 0.023109 (0.062990) | 0.378079 / 0.275898 (0.102181) | 0.487431 / 0.323480 (0.163951) | 0.004712 / 0.007986 (-0.003274) | 0.003622 / 0.004328 (-0.000706) | 0.081214 / 0.004250 (0.076963) | 0.057226 / 0.037052 (0.020174) | 0.407655 / 0.258489 (0.149166) | 0.448630 / 0.293841 (0.154789) | 0.049051 / 0.128546 (-0.079495) | 0.014537 / 0.075646 (-0.061110) | 0.467343 / 0.419271 (0.048071) | 0.070482 / 0.043533 (0.026949) | 0.379664 / 0.255139 (0.124525) | 0.464181 / 0.283200 (0.180981) | 0.039973 / 0.141683 (-0.101710) | 1.731164 / 1.452155 (0.279010) | 1.886895 / 1.492716 (0.394178) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251327 / 0.018006 (0.233321) | 0.502670 / 0.000490 (0.502180) | 0.012183 / 0.000200 (0.011984) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028892 / 0.037411 (-0.008519) | 0.093789 / 0.014526 (0.079263) | 0.104255 / 0.176557 (-0.072301) | 0.170257 / 0.737135 (-0.566879) | 0.115430 / 0.296338 (-0.180909) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.573745 / 0.215209 (0.358536) | 5.873732 / 2.077655 (3.796077) | 2.485188 / 1.504120 (0.981068) | 2.018476 / 1.541195 (0.477282) | 2.062765 / 1.468490 (0.594275) | 0.913816 / 4.584777 (-3.670961) | 5.362338 / 3.745712 (1.616626) | 4.698758 / 5.269862 (-0.571103) | 3.132973 / 4.565676 (-1.432703) | 0.093594 / 0.424275 (-0.330681) | 0.008359 / 0.007607 (0.000751) | 0.693997 / 0.226044 (0.467953) | 7.042645 / 2.268929 (4.773717) | 3.196180 / 55.444624 (-52.248445) | 2.384585 / 6.876477 (-4.491892) | 2.301256 / 2.142072 (0.159183) | 1.048025 / 4.805227 (-3.757202) | 0.206931 / 6.500664 (-6.293733) | 0.069401 / 0.075469 (-0.006068) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.598898 / 1.841788 (-0.242889) | 22.963667 / 8.074308 (14.889359) | 20.373688 / 10.191392 (10.182296) | 0.239716 / 0.680424 (-0.440707) | 0.040213 / 0.534201 (-0.493988) | 0.503268 / 0.579283 (-0.076015) | 0.630750 / 0.434364 (0.196386) | 0.578007 / 0.540337 (0.037669) | 0.789564 / 1.386936 (-0.597372) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009129 / 0.011353 (-0.002224) | 0.005453 / 0.011008 (-0.005555) | 0.101040 / 0.038508 (0.062532) | 0.099172 / 0.023109 (0.076062) | 0.508453 / 0.275898 (0.232555) | 0.570858 / 0.323480 (0.247378) | 0.006584 / 0.007986 (-0.001401) | 0.003800 / 0.004328 (-0.000528) | 0.094349 / 0.004250 (0.090098) | 0.064642 / 0.037052 (0.027590) | 0.563008 / 0.258489 (0.304518) | 0.625560 / 0.293841 (0.331719) | 0.050121 / 0.128546 (-0.078426) | 0.014183 / 0.075646 (-0.061463) | 0.106564 / 0.419271 (-0.312707) | 0.061030 / 0.043533 (0.017498) | 0.522311 / 0.255139 (0.267172) | 0.598356 / 0.283200 (0.315156) | 0.042008 / 0.141683 (-0.099675) | 1.879999 / 1.452155 (0.427844) | 1.963879 / 1.492716 (0.471162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270573 / 0.018006 (0.252567) | 0.554356 / 0.000490 (0.553866) | 0.008145 / 0.000200 (0.007945) | 0.000218 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031089 / 0.037411 (-0.006322) | 0.099568 / 0.014526 (0.085043) | 0.118304 / 0.176557 (-0.058253) | 0.182991 / 0.737135 (-0.554144) | 0.115874 / 0.296338 (-0.180465) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.615020 / 0.215209 (0.399811) | 6.279740 / 2.077655 (4.202085) | 2.882094 / 1.504120 (1.377974) | 2.559265 / 1.541195 (1.018070) | 2.639259 / 1.468490 (1.170769) | 0.903727 / 4.584777 (-3.681050) | 5.248555 / 3.745712 (1.502843) | 4.817340 / 5.269862 (-0.452522) | 3.056880 / 4.565676 (-1.508797) | 0.096602 / 0.424275 (-0.327673) | 0.008660 / 0.007607 (0.001053) | 0.794347 / 0.226044 (0.568303) | 7.625127 / 2.268929 (5.356198) | 3.766826 / 55.444624 (-51.677798) | 2.968254 / 6.876477 (-3.908223) | 3.260595 / 2.142072 (1.118523) | 1.066228 / 4.805227 (-3.739000) | 0.207158 / 6.500664 (-6.293506) | 0.076920 / 0.075469 (0.001451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.741442 / 1.841788 (-0.100345) | 23.499552 / 8.074308 (15.425244) | 22.064966 / 10.191392 (11.873574) | 0.239173 / 0.680424 (-0.441251) | 0.032105 / 0.534201 (-0.502096) | 0.484709 / 0.579283 (-0.094574) | 0.583632 / 0.434364 (0.149268) | 0.569018 / 0.540337 (0.028681) | 0.815764 / 1.386936 (-0.571172) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3aeb078ba1afd713e901df43343c160877403d07 \"CML watermark\")\n" ]
2023-10-17T09:00:39
2023-10-18T14:01:52
2023-10-18T13:50:35
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6309", "html_url": "https://github.com/huggingface/datasets/pull/6309", "diff_url": "https://github.com/huggingface/datasets/pull/6309.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6309.patch", "merged_at": "2023-10-18T13:50:35" }
Before the fix, `get_data_patterns` inferred wrongly the split name for paths with the word "data" twice: - For the URL path: `hf://datasets/piuba-bigdata/articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357/data/train-00001-of-00009.parquet` (note the org name `piuba-bigdata/` ending with `data/`) - The inferred split name was: `articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357/data/train` instead of `train` This PR fixes this issue by passing the `base_path` (`hf://datasets/piuba-bigdata/articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357`) to `_get_data_files_patterns` and prepending it to the regex split pattern (`data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9].*\\..*`). Fix #6305. Fix https://huggingface.co/datasets/piuba-bigdata/articles_and_comments/discussions/1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6309/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6309/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6308
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6308/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6308/comments
https://api.github.com/repos/huggingface/datasets/issues/6308/events
https://github.com/huggingface/datasets/issues/6308
1,946,810,625
I_kwDODunzps50CfkB
6,308
module 'resource' has no attribute 'error'
{ "login": "NeoWang9999", "id": 48009681, "node_id": "MDQ6VXNlcjQ4MDA5Njgx", "avatar_url": "https://avatars.githubusercontent.com/u/48009681?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NeoWang9999", "html_url": "https://github.com/NeoWang9999", "followers_url": "https://api.github.com/users/NeoWang9999/followers", "following_url": "https://api.github.com/users/NeoWang9999/following{/other_user}", "gists_url": "https://api.github.com/users/NeoWang9999/gists{/gist_id}", "starred_url": "https://api.github.com/users/NeoWang9999/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeoWang9999/subscriptions", "organizations_url": "https://api.github.com/users/NeoWang9999/orgs", "repos_url": "https://api.github.com/users/NeoWang9999/repos", "events_url": "https://api.github.com/users/NeoWang9999/events{/privacy}", "received_events_url": "https://api.github.com/users/NeoWang9999/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "This (Windows) issue was fixed in `fsspec` in https://github.com/fsspec/filesystem_spec/pull/1275. So, to avoid the error, update the `fsspec` installation with `pip install -U fsspec`.", "> This (Windows) issue was fixed in `fsspec` in [fsspec/filesystem_spec#1275](https://github.com/fsspec/filesystem_spec/pull/1275). So, to avoid the error, update the `fsspec` installation with `pip install -U fsspec`.\r\n\r\nafter I run `pip install -U fsspec`\r\n\r\nit occurs a new error:\r\n```\r\nERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflict\r\ns.\r\ndatasets 2.14.5 requires fsspec[http]<2023.9.0,>=2023.1.0, but you have fsspec 2023.9.2 which is incompatible.\r\n\r\n```", "The `fsspec<2023.9.0` upper bound will be removed in the next release. The `ResourceError` fix is also present in version 2023.6.0, so use that version in the meantime (`pip install fsspec==2023.6.0`).", "> The `fsspec<2023.9.0` upper bound will be removed in the next release. The `ResourceError` fix is also present in version 2023.6.0, so use that version in the meantime (`pip install fsspec==2023.6.0`).\r\n\r\nthanks for reply!" ]
2023-10-17T08:08:54
2023-10-25T17:09:22
2023-10-25T17:09:22
NONE
null
null
### Describe the bug just run import: `from datasets import load_dataset` and then: ``` File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\__init__.py", line 22, in <module> from .arrow_dataset import Dataset File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\arrow_dataset.py", line 66, in <module> from .arrow_reader import ArrowReader File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\arrow_reader.py", line 30, in <module> from .download.download_config import DownloadConfig File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\download\__init__.py", line 10, in <module> from .streaming_download_manager import StreamingDownloadManager File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\download\streaming_download_manager.py", line 21, in <module> from ..filesystems import COMPRESSION_FILESYSTEMS File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\filesystems\__init__.py", line 8, in <module> import fsspec.asyn File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\fsspec\asyn.py", line 157, in <module> ResourceEror = resource.error AttributeError: module 'resource' has no attribute 'error' Process finished with exit code 1 ``` and the error codes are: ``` try: import resource except ImportError: resource = None ResourceError = OSError else: ResourceEror = resource.error ``` 1. miss spelling : "ResourceEror " should be "ResourceErorr" 2. module 'resource' has no attribute 'error' ### Steps to reproduce the bug only one step: `from datasets import load_dataset` ### Expected behavior slove error: module 'resource' has no attribute 'error' ### Environment info python=3.10 datasets==2.14.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6308/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6308/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6307
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6307/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6307/comments
https://api.github.com/repos/huggingface/datasets/issues/6307/events
https://github.com/huggingface/datasets/pull/6307
1,946,414,808
PR_kwDODunzps5c9s0j
6,307
Fix typo in code example in docs
{ "login": "bryant1410", "id": 3905501, "node_id": "MDQ6VXNlcjM5MDU1MDE=", "avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bryant1410", "html_url": "https://github.com/bryant1410", "followers_url": "https://api.github.com/users/bryant1410/followers", "following_url": "https://api.github.com/users/bryant1410/following{/other_user}", "gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}", "starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions", "organizations_url": "https://api.github.com/users/bryant1410/orgs", "repos_url": "https://api.github.com/users/bryant1410/repos", "events_url": "https://api.github.com/users/bryant1410/events{/privacy}", "received_events_url": "https://api.github.com/users/bryant1410/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011548 / 0.011353 (0.000196) | 0.004630 / 0.011008 (-0.006378) | 0.105349 / 0.038508 (0.066841) | 0.110557 / 0.023109 (0.087448) | 0.395463 / 0.275898 (0.119565) | 0.448391 / 0.323480 (0.124912) | 0.005112 / 0.007986 (-0.002873) | 0.003854 / 0.004328 (-0.000474) | 0.088513 / 0.004250 (0.084263) | 0.073081 / 0.037052 (0.036028) | 0.391572 / 0.258489 (0.133083) | 0.459543 / 0.293841 (0.165702) | 0.040424 / 0.128546 (-0.088122) | 0.010306 / 0.075646 (-0.065340) | 0.365493 / 0.419271 (-0.053778) | 0.068154 / 0.043533 (0.024622) | 0.397675 / 0.255139 (0.142536) | 0.447147 / 0.283200 (0.163947) | 0.033482 / 0.141683 (-0.108201) | 1.857087 / 1.452155 (0.404932) | 1.973311 / 1.492716 (0.480595) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257938 / 0.018006 (0.239932) | 0.569572 / 0.000490 (0.569083) | 0.012155 / 0.000200 (0.011955) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033094 / 0.037411 (-0.004318) | 0.102370 / 0.014526 (0.087844) | 0.122421 / 0.176557 (-0.054136) | 0.189983 / 0.737135 (-0.547152) | 0.117902 / 0.296338 (-0.178437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468419 / 0.215209 (0.253210) | 4.671410 / 2.077655 (2.593755) | 2.371136 / 1.504120 (0.867016) | 2.191877 / 1.541195 (0.650682) | 2.301894 / 1.468490 (0.833404) | 0.572260 / 4.584777 (-4.012517) | 4.302031 / 3.745712 (0.556319) | 4.128431 / 5.269862 (-1.141431) | 2.464543 / 4.565676 (-2.101133) | 0.067663 / 0.424275 (-0.356612) | 0.008947 / 0.007607 (0.001340) | 0.570063 / 0.226044 (0.344018) | 5.684460 / 2.268929 (3.415531) | 2.969708 / 55.444624 (-52.474916) | 2.573568 / 6.876477 (-4.302909) | 2.666074 / 2.142072 (0.524001) | 0.710098 / 4.805227 (-4.095129) | 0.158413 / 6.500664 (-6.342251) | 0.072776 / 0.075469 (-0.002693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.564166 / 1.841788 (-0.277622) | 23.612774 / 8.074308 (15.538465) | 17.725070 / 10.191392 (7.533678) | 0.178982 / 0.680424 (-0.501442) | 0.021615 / 0.534201 (-0.512586) | 0.467090 / 0.579283 (-0.112193) | 0.472648 / 0.434364 (0.038284) | 0.578820 / 0.540337 (0.038483) | 0.783533 / 1.386936 (-0.603403) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008895 / 0.011353 (-0.002458) | 0.004617 / 0.011008 (-0.006392) | 0.077677 / 0.038508 (0.039169) | 0.090283 / 0.023109 (0.067174) | 0.491115 / 0.275898 (0.215217) | 0.525189 / 0.323480 (0.201709) | 0.007845 / 0.007986 (-0.000141) | 0.003742 / 0.004328 (-0.000586) | 0.077856 / 0.004250 (0.073606) | 0.067447 / 0.037052 (0.030394) | 0.488423 / 0.258489 (0.229933) | 0.532938 / 0.293841 (0.239097) | 0.041035 / 0.128546 (-0.087511) | 0.009917 / 0.075646 (-0.065730) | 0.085313 / 0.419271 (-0.333958) | 0.063374 / 0.043533 (0.019841) | 0.472287 / 0.255139 (0.217148) | 0.509773 / 0.283200 (0.226573) | 0.028706 / 0.141683 (-0.112977) | 1.775558 / 1.452155 (0.323403) | 1.967778 / 1.492716 (0.475061) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249834 / 0.018006 (0.231828) | 0.467266 / 0.000490 (0.466776) | 0.005837 / 0.000200 (0.005637) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038759 / 0.037411 (0.001347) | 0.113156 / 0.014526 (0.098630) | 0.123936 / 0.176557 (-0.052621) | 0.186831 / 0.737135 (-0.550304) | 0.125195 / 0.296338 (-0.171143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.545666 / 0.215209 (0.330457) | 5.465713 / 2.077655 (3.388058) | 2.941279 / 1.504120 (1.437159) | 2.688377 / 1.541195 (1.147182) | 2.619501 / 1.468490 (1.151010) | 0.577974 / 4.584777 (-4.006803) | 4.300966 / 3.745712 (0.555254) | 3.879552 / 5.269862 (-1.390310) | 2.454932 / 4.565676 (-2.110745) | 0.069233 / 0.424275 (-0.355043) | 0.009729 / 0.007607 (0.002122) | 0.595290 / 0.226044 (0.369245) | 5.945445 / 2.268929 (3.676516) | 3.314607 / 55.444624 (-52.130017) | 2.894474 / 6.876477 (-3.982002) | 3.140790 / 2.142072 (0.998718) | 0.695808 / 4.805227 (-4.109419) | 0.158087 / 6.500664 (-6.342577) | 0.071374 / 0.075469 (-0.004095) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.706482 / 1.841788 (-0.135306) | 24.022666 / 8.074308 (15.948358) | 17.658003 / 10.191392 (7.466611) | 0.196771 / 0.680424 (-0.483653) | 0.023928 / 0.534201 (-0.510273) | 0.471992 / 0.579283 (-0.107291) | 0.510463 / 0.434364 (0.076099) | 0.621250 / 0.540337 (0.080912) | 0.807670 / 1.386936 (-0.579266) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f77539cbd88d00ec1ab2b9d4edfd01d5a58ef88a \"CML watermark\")\n" ]
2023-10-17T02:28:50
2023-10-17T12:59:26
2023-10-17T06:36:19
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6307", "html_url": "https://github.com/huggingface/datasets/pull/6307", "diff_url": "https://github.com/huggingface/datasets/pull/6307.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6307.patch", "merged_at": "2023-10-17T06:36:18" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6307/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6307/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6306
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6306/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6306/comments
https://api.github.com/repos/huggingface/datasets/issues/6306/events
https://github.com/huggingface/datasets/issues/6306
1,946,363,452
I_kwDODunzps50AyY8
6,306
pyinstaller : OSError: could not get source code
{ "login": "dusk877647949", "id": 57702070, "node_id": "MDQ6VXNlcjU3NzAyMDcw", "avatar_url": "https://avatars.githubusercontent.com/u/57702070?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dusk877647949", "html_url": "https://github.com/dusk877647949", "followers_url": "https://api.github.com/users/dusk877647949/followers", "following_url": "https://api.github.com/users/dusk877647949/following{/other_user}", "gists_url": "https://api.github.com/users/dusk877647949/gists{/gist_id}", "starred_url": "https://api.github.com/users/dusk877647949/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dusk877647949/subscriptions", "organizations_url": "https://api.github.com/users/dusk877647949/orgs", "repos_url": "https://api.github.com/users/dusk877647949/repos", "events_url": "https://api.github.com/users/dusk877647949/events{/privacy}", "received_events_url": "https://api.github.com/users/dusk877647949/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "more information:\r\n``` \r\nFile \"text2vec\\__init__.py\", line 8, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"text2vec\\bertmatching_model.py\", line 19, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"text2vec\\bertmatching_dataset.py\", line 7, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\__init__.py\", line 52, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\inspect.py\", line 30, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\load.py\", line 58, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\packaged_modules\\__init__.py\", line 31, in <module>\r\nFile \"inspect.py\", line 1147, in getsource\r\nFile \"inspect.py\", line 1129, in getsourcelines\r\nFile \"inspect.py\", line 958, in findsource\r\nOSError: could not get source code\r\n```\r\n", "Can you share a reproducer? I haven't been able to reproduce the error myself.", "> '\r\n\r\nthanks,I solve it.it's about pyinstaller.", "1", "> > '\r\n> \r\n> thanks,I solve it.it's about pyinstaller.\r\n\r\nI encountered the same error, how to solve it?" ]
2023-10-17T01:41:51
2023-11-02T07:24:51
2023-10-18T14:03:42
NONE
null
null
### Describe the bug I ran a package with pyinstaller and got the following error: ### Steps to reproduce the bug ``` ... File "datasets\__init__.py", line 52, in <module> File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 688, in _load_unlocked File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module File "datasets\inspect.py", line 30, in <module> File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 688, in _load_unlocked File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module File "datasets\load.py", line 58, in <module> File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 688, in _load_unlocked File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module File "datasets\packaged_modules\__init__.py", line 31, in <module> File "inspect.py", line 1147, in getsource File "inspect.py", line 1129, in getsourcelines File "inspect.py", line 958, in findsource OSError: could not get source code ``` ### Expected behavior I have looked up the relevant information, but I can't find a suitable reason ### Environment info ```python python 3.10 datasets 2.14.4 pyinstaller 5.6.2 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6306/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6306/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6305
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6305/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6305/comments
https://api.github.com/repos/huggingface/datasets/issues/6305/events
https://github.com/huggingface/datasets/issues/6305
1,946,010,912
I_kwDODunzps5z_cUg
6,305
Cannot load dataset with `2.14.5`: `FileNotFound` error
{ "login": "finiteautomata", "id": 167943, "node_id": "MDQ6VXNlcjE2Nzk0Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/167943?v=4", "gravatar_id": "", "url": "https://api.github.com/users/finiteautomata", "html_url": "https://github.com/finiteautomata", "followers_url": "https://api.github.com/users/finiteautomata/followers", "following_url": "https://api.github.com/users/finiteautomata/following{/other_user}", "gists_url": "https://api.github.com/users/finiteautomata/gists{/gist_id}", "starred_url": "https://api.github.com/users/finiteautomata/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/finiteautomata/subscriptions", "organizations_url": "https://api.github.com/users/finiteautomata/orgs", "repos_url": "https://api.github.com/users/finiteautomata/repos", "events_url": "https://api.github.com/users/finiteautomata/events{/privacy}", "received_events_url": "https://api.github.com/users/finiteautomata/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[ "Thanks for reporting, @finiteautomata.\r\n\r\nWe are investigating it. ", "There is a bug in `datasets`. You can see our proposed fix:\r\n- #6309 " ]
2023-10-16T20:11:27
2023-10-18T13:50:36
2023-10-18T13:50:36
NONE
null
null
### Describe the bug I'm trying to load [piuba-bigdata/articles_and_comments] and I'm stumbling with this error on `2.14.5`. However, this works on `2.10.0`. ### Steps to reproduce the bug [Colab link](https://colab.research.google.com/drive/1SAftFMQnFE708ikRnJJHIXZV7R5IBOCE#scrollTo=r2R2ipCCDmsg) ```python Downloading readme: 100% 1.19k/1.19k [00:00<00:00, 30.9kB/s] --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) [<ipython-input-2-807c3583d297>](https://localhost:8080/#) in <cell line: 3>() 1 from datasets import load_dataset 2 ----> 3 load_dataset("piuba-bigdata/articles_and_comments", split="train") 2 frames [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs) 2127 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, **config_kwargs) 1813 download_config = download_config.copy() if download_config else DownloadConfig() 1814 download_config.storage_options.update(storage_options) -> 1815 dataset_module = dataset_module_factory( 1816 path, 1817 revision=revision, [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1506 raise e1 from None 1507 if isinstance(e1, FileNotFoundError): -> 1508 raise FileNotFoundError( 1509 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " 1510 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" FileNotFoundError: Couldn't find a dataset script at /content/piuba-bigdata/articles_and_comments/articles_and_comments.py or any data file in the same directory. Couldn't find 'piuba-bigdata/articles_and_comments' on the Hugging Face Hub either: FileNotFoundError: No (supported) data files or dataset script found in piuba-bigdata/articles_and_comments. ``` ### Expected behavior It should load normally. ### Environment info ``` - `datasets` version: 2.14.5 - Platform: Linux-5.15.120+-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.18.0 - PyArrow version: 9.0.0 - Pandas version: 1.5.3 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6305/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6305/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6304
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6304/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6304/comments
https://api.github.com/repos/huggingface/datasets/issues/6304/events
https://github.com/huggingface/datasets/pull/6304
1,945,913,521
PR_kwDODunzps5c7-4q
6,304
Update README.md
{ "login": "smty2018", "id": 74114936, "node_id": "MDQ6VXNlcjc0MTE0OTM2", "avatar_url": "https://avatars.githubusercontent.com/u/74114936?v=4", "gravatar_id": "", "url": "https://api.github.com/users/smty2018", "html_url": "https://github.com/smty2018", "followers_url": "https://api.github.com/users/smty2018/followers", "following_url": "https://api.github.com/users/smty2018/following{/other_user}", "gists_url": "https://api.github.com/users/smty2018/gists{/gist_id}", "starred_url": "https://api.github.com/users/smty2018/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/smty2018/subscriptions", "organizations_url": "https://api.github.com/users/smty2018/orgs", "repos_url": "https://api.github.com/users/smty2018/repos", "events_url": "https://api.github.com/users/smty2018/events{/privacy}", "received_events_url": "https://api.github.com/users/smty2018/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006678 / 0.011353 (-0.004675) | 0.004013 / 0.011008 (-0.006995) | 0.083372 / 0.038508 (0.044864) | 0.070339 / 0.023109 (0.047230) | 0.339026 / 0.275898 (0.063128) | 0.370945 / 0.323480 (0.047465) | 0.004050 / 0.007986 (-0.003935) | 0.003283 / 0.004328 (-0.001046) | 0.064956 / 0.004250 (0.060705) | 0.055427 / 0.037052 (0.018374) | 0.341787 / 0.258489 (0.083297) | 0.385030 / 0.293841 (0.091189) | 0.031791 / 0.128546 (-0.096755) | 0.008511 / 0.075646 (-0.067135) | 0.286538 / 0.419271 (-0.132734) | 0.052893 / 0.043533 (0.009360) | 0.338522 / 0.255139 (0.083383) | 0.371821 / 0.283200 (0.088622) | 0.023731 / 0.141683 (-0.117951) | 1.485857 / 1.452155 (0.033702) | 1.515218 / 1.492716 (0.022502) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232798 / 0.018006 (0.214792) | 0.446783 / 0.000490 (0.446293) | 0.007395 / 0.000200 (0.007195) | 0.000385 / 0.000054 (0.000330) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028866 / 0.037411 (-0.008545) | 0.081653 / 0.014526 (0.067127) | 0.094457 / 0.176557 (-0.082099) | 0.151761 / 0.737135 (-0.585375) | 0.095579 / 0.296338 (-0.200760) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379926 / 0.215209 (0.164717) | 3.801839 / 2.077655 (1.724184) | 1.830302 / 1.504120 (0.326182) | 1.686912 / 1.541195 (0.145717) | 1.803418 / 1.468490 (0.334928) | 0.484431 / 4.584777 (-4.100346) | 3.592748 / 3.745712 (-0.152964) | 3.402578 / 5.269862 (-1.867284) | 2.043434 / 4.565676 (-2.522242) | 0.057274 / 0.424275 (-0.367001) | 0.007211 / 0.007607 (-0.000396) | 0.462611 / 0.226044 (0.236567) | 4.610703 / 2.268929 (2.341775) | 2.397668 / 55.444624 (-53.046956) | 2.149983 / 6.876477 (-4.726494) | 2.199100 / 2.142072 (0.057028) | 0.575883 / 4.805227 (-4.229344) | 0.133421 / 6.500664 (-6.367243) | 0.061168 / 0.075469 (-0.014301) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.246792 / 1.841788 (-0.594995) | 18.974385 / 8.074308 (10.900077) | 14.268859 / 10.191392 (4.077467) | 0.166340 / 0.680424 (-0.514084) | 0.018227 / 0.534201 (-0.515974) | 0.389646 / 0.579283 (-0.189637) | 0.418780 / 0.434364 (-0.015584) | 0.458063 / 0.540337 (-0.082275) | 0.635156 / 1.386936 (-0.751780) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006613 / 0.011353 (-0.004740) | 0.003977 / 0.011008 (-0.007031) | 0.064609 / 0.038508 (0.026101) | 0.070418 / 0.023109 (0.047308) | 0.395814 / 0.275898 (0.119916) | 0.424803 / 0.323480 (0.101323) | 0.005342 / 0.007986 (-0.002644) | 0.003252 / 0.004328 (-0.001076) | 0.065177 / 0.004250 (0.060927) | 0.055299 / 0.037052 (0.018247) | 0.403983 / 0.258489 (0.145494) | 0.438522 / 0.293841 (0.144681) | 0.032336 / 0.128546 (-0.096210) | 0.008524 / 0.075646 (-0.067122) | 0.071645 / 0.419271 (-0.347627) | 0.048137 / 0.043533 (0.004604) | 0.395170 / 0.255139 (0.140031) | 0.421727 / 0.283200 (0.138528) | 0.023028 / 0.141683 (-0.118655) | 1.500739 / 1.452155 (0.048584) | 1.568887 / 1.492716 (0.076170) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227542 / 0.018006 (0.209536) | 0.447882 / 0.000490 (0.447393) | 0.005416 / 0.000200 (0.005216) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032954 / 0.037411 (-0.004457) | 0.091994 / 0.014526 (0.077468) | 0.105957 / 0.176557 (-0.070600) | 0.158728 / 0.737135 (-0.578407) | 0.104734 / 0.296338 (-0.191605) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436275 / 0.215209 (0.221066) | 4.344864 / 2.077655 (2.267209) | 2.304949 / 1.504120 (0.800829) | 2.123963 / 1.541195 (0.582768) | 2.189099 / 1.468490 (0.720609) | 0.492662 / 4.584777 (-4.092115) | 3.633662 / 3.745712 (-0.112051) | 3.251338 / 5.269862 (-2.018524) | 2.061378 / 4.565676 (-2.504299) | 0.058100 / 0.424275 (-0.366175) | 0.007311 / 0.007607 (-0.000297) | 0.516227 / 0.226044 (0.290183) | 5.184228 / 2.268929 (2.915300) | 2.780343 / 55.444624 (-52.664281) | 2.423428 / 6.876477 (-4.453048) | 2.617371 / 2.142072 (0.475298) | 0.590455 / 4.805227 (-4.214772) | 0.131728 / 6.500664 (-6.368936) | 0.059994 / 0.075469 (-0.015475) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354920 / 1.841788 (-0.486868) | 19.427822 / 8.074308 (11.353514) | 15.289037 / 10.191392 (5.097645) | 0.170437 / 0.680424 (-0.509987) | 0.020242 / 0.534201 (-0.513959) | 0.394921 / 0.579283 (-0.184362) | 0.426447 / 0.434364 (-0.007917) | 0.468321 / 0.540337 (-0.072017) | 0.671052 / 1.386936 (-0.715884) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bade7af74437347a760830466eb74f7a8ce0d799 \"CML watermark\")\n" ]
2023-10-16T19:10:39
2023-10-17T15:13:37
2023-10-17T15:04:52
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6304", "html_url": "https://github.com/huggingface/datasets/pull/6304", "diff_url": "https://github.com/huggingface/datasets/pull/6304.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6304.patch", "merged_at": "2023-10-17T15:04:52" }
Fixed typos in ReadMe and added punctuation marks Tensorflow --> TensorFlow
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6304/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6304/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6303
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6303/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6303/comments
https://api.github.com/repos/huggingface/datasets/issues/6303/events
https://github.com/huggingface/datasets/issues/6303
1,943,466,532
I_kwDODunzps5z1vIk
6,303
Parquet uploads off-by-one naming scheme
{ "login": "ZachNagengast", "id": 1981179, "node_id": "MDQ6VXNlcjE5ODExNzk=", "avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ZachNagengast", "html_url": "https://github.com/ZachNagengast", "followers_url": "https://api.github.com/users/ZachNagengast/followers", "following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}", "gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}", "starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions", "organizations_url": "https://api.github.com/users/ZachNagengast/orgs", "repos_url": "https://api.github.com/users/ZachNagengast/repos", "events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}", "received_events_url": "https://api.github.com/users/ZachNagengast/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "You can find the reasoning behind this naming scheme [here](https://github.com/huggingface/transformers/pull/16343#discussion_r931182168).\r\n\r\nThis point has been raised several times, so I'd be okay with starting with `00001-` (also to be consistent with the `transformers` sharding), but I'm not sure @lhoestq agrees.", "We start at 0 in `datasets` for consistency with Apache Spark, Apache Beam, Dask and others.\r\n\r\nAlso note `transformers` isn't a good reference on this topic. I talked with the maintainers when they added shards but it was already released this way. Though we found that there is a backward-compatible way in `transformers` to start at 0, but no request from `transformers` users to changes this AFAIK.", "not sure it would be a good idea to break the consistency now, IMO", "Makes sense to start at 0 for plenty of good reasons so I'm on board.\r\n\r\nWhat about the second part `-of-0000X`? With single commit PR #6269 just getting merged, there was a note about issues with 100+ file edits https://github.com/huggingface/datasets/pull/6269#issuecomment-1755428581.\r\n\r\nThat would be my last remaining concern in the context of the `push_to_hub(..., append=True)` work to be done, where appending a single file to the full dataset will require renaming every other existing file in the dataset. If it doesn't seem like a big issue for this work then all the better 👍" ]
2023-10-14T18:31:03
2023-10-16T16:33:21
null
CONTRIBUTOR
null
null
### Describe the bug I noticed this numbering scheme not matching up in a different project and wanted to raise it as an issue for discussion, what is the actual proper way to have these stored? <img width="425" alt="image" src="https://github.com/huggingface/datasets/assets/1981179/3ffa2144-7c9a-446f-b521-a5e9db71e7ce"> The `-SSSSS-of-NNNNN` seems to be used widely across the codebase. The section that creates the part in my screenshot is here https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L5287 There are also some edits to this section in the single commit branch. ### Steps to reproduce the bug 1. Upload a dataset that requires at least two parquet files in it 2. Observe the naming scheme ### Expected behavior The couple options here are of course **1. keeping it as is** **2. Starting the index at 1:** train-00001-of-00002-{hash}.parquet train-00002-of-00002-{hash}.parquet **3. My preferred option** (which would solve my specific issue), dropping the total entirely: train-00000-{hash}.parquet train-00001-{hash}.parquet This also solves an issue that will occur with an `append` variable for `push_to_hub` (see https://github.com/huggingface/datasets/issues/6290) where as you add a new parquet file, you need to rename everything in the repo as well. However, I know there are parts of the repo that use 0 as the starting file or may require the total, so raising the question for discussion. ### Environment info - `datasets` version: 2.14.6.dev0 - Platform: macOS-14.0-arm64-arm-64bit - Python version: 3.10.12 - Huggingface_hub version: 0.18.0 - PyArrow version: 12.0.1 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6303/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6303/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6302
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6302/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6302/comments
https://api.github.com/repos/huggingface/datasets/issues/6302/events
https://github.com/huggingface/datasets/issues/6302
1,942,096,078
I_kwDODunzps5zwgjO
6,302
ArrowWriter/ParquetWriter `write` method does not increase `_num_bytes` and hence datasets not sharding at `max_shard_size`
{ "login": "Rassibassi", "id": 2855550, "node_id": "MDQ6VXNlcjI4NTU1NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/2855550?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Rassibassi", "html_url": "https://github.com/Rassibassi", "followers_url": "https://api.github.com/users/Rassibassi/followers", "following_url": "https://api.github.com/users/Rassibassi/following{/other_user}", "gists_url": "https://api.github.com/users/Rassibassi/gists{/gist_id}", "starred_url": "https://api.github.com/users/Rassibassi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rassibassi/subscriptions", "organizations_url": "https://api.github.com/users/Rassibassi/orgs", "repos_url": "https://api.github.com/users/Rassibassi/repos", "events_url": "https://api.github.com/users/Rassibassi/events{/privacy}", "received_events_url": "https://api.github.com/users/Rassibassi/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "`writer._num_bytes` is updated every `writer_batch_size`-th call to the `write` method (default `writer_batch_size` is 1000 (examples)). You should be able to see the update by passing a smaller `writer_batch_size` to the `load_dataset_builder`.\r\n\r\nWe could improve this by supporting the string `writer_batch_size` version as we do with `max_shard_size`, and capping `writer_batch_size` to `max_shard_size` in scenarios where the default `writer_batch_size` > `max_shard_size`. ", "Thanks, reducing `writer_batch_size` solved my problem :)" ]
2023-10-13T14:43:36
2023-10-17T06:52:12
2023-10-17T06:52:11
NONE
null
null
### Describe the bug An example from [1], does not work when limiting shards with `max_shard_size`. Try the following example with low `max_shard_size`, such as: ```python builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB") ``` The reason for this is that, in line [2] `writer._num_bytes > max_shard_size` is never true, because the `write` method of `ArrowWriter` [3] does not increase `self._num_bytes`. Such that respective Arrow/Parquet shards are only written to file based on the `writer_batch_size` or `config.DEFAULT_MAX_BATCH_SIZE`, but not based on `max_shard_size`. [1] https://huggingface.co/docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage [2] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/builder.py#L1677 [3] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/arrow_writer.py#L459 ### Steps to reproduce the bug Get example from: https://huggingface.co/docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage Call `builder.download_and_prepare` with low `max_shard_size` such as `10MB`, e.g.: ```python builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB") ``` ### Expected behavior Shards should be written based on `max_shard_size` instead of batch size. ### Environment info ``` >>> import datasets >>> datasets.__version__ '2.14.6.dev0 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6302/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6302/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6301
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6301/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6301/comments
https://api.github.com/repos/huggingface/datasets/issues/6301/events
https://github.com/huggingface/datasets/pull/6301
1,940,183,999
PR_kwDODunzps5cpPVh
6,301
Unpin `tensorflow` maximum version
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006663 / 0.011353 (-0.004690) | 0.004091 / 0.011008 (-0.006918) | 0.084954 / 0.038508 (0.046445) | 0.071869 / 0.023109 (0.048760) | 0.314706 / 0.275898 (0.038808) | 0.352794 / 0.323480 (0.029314) | 0.004027 / 0.007986 (-0.003959) | 0.003371 / 0.004328 (-0.000957) | 0.065456 / 0.004250 (0.061205) | 0.055828 / 0.037052 (0.018775) | 0.316502 / 0.258489 (0.058013) | 0.377979 / 0.293841 (0.084138) | 0.030870 / 0.128546 (-0.097676) | 0.008616 / 0.075646 (-0.067030) | 0.288625 / 0.419271 (-0.130646) | 0.052314 / 0.043533 (0.008781) | 0.322725 / 0.255139 (0.067586) | 0.351810 / 0.283200 (0.068611) | 0.025726 / 0.141683 (-0.115957) | 1.439308 / 1.452155 (-0.012847) | 1.524484 / 1.492716 (0.031768) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235212 / 0.018006 (0.217206) | 0.444926 / 0.000490 (0.444437) | 0.009887 / 0.000200 (0.009687) | 0.000402 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028956 / 0.037411 (-0.008455) | 0.084401 / 0.014526 (0.069875) | 0.339686 / 0.176557 (0.163130) | 0.186785 / 0.737135 (-0.550350) | 0.195017 / 0.296338 (-0.101322) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405480 / 0.215209 (0.190271) | 4.024315 / 2.077655 (1.946661) | 2.056398 / 1.504120 (0.552278) | 1.912099 / 1.541195 (0.370904) | 1.950119 / 1.468490 (0.481629) | 0.486071 / 4.584777 (-4.098706) | 3.578501 / 3.745712 (-0.167211) | 3.268980 / 5.269862 (-2.000881) | 2.018114 / 4.565676 (-2.547563) | 0.057440 / 0.424275 (-0.366835) | 0.007281 / 0.007607 (-0.000326) | 0.474760 / 0.226044 (0.248716) | 4.746908 / 2.268929 (2.477979) | 2.550111 / 55.444624 (-52.894513) | 2.171932 / 6.876477 (-4.704544) | 2.392235 / 2.142072 (0.250162) | 0.585940 / 4.805227 (-4.219287) | 0.136445 / 6.500664 (-6.364219) | 0.062125 / 0.075469 (-0.013344) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270763 / 1.841788 (-0.571025) | 19.213516 / 8.074308 (11.139208) | 13.992620 / 10.191392 (3.801228) | 0.167356 / 0.680424 (-0.513068) | 0.018261 / 0.534201 (-0.515940) | 0.392489 / 0.579283 (-0.186794) | 0.418845 / 0.434364 (-0.015519) | 0.461824 / 0.540337 (-0.078513) | 0.649661 / 1.386936 (-0.737275) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006675 / 0.011353 (-0.004678) | 0.003913 / 0.011008 (-0.007096) | 0.064943 / 0.038508 (0.026435) | 0.072426 / 0.023109 (0.049317) | 0.400785 / 0.275898 (0.124887) | 0.434359 / 0.323480 (0.110879) | 0.005370 / 0.007986 (-0.002616) | 0.003290 / 0.004328 (-0.001038) | 0.065035 / 0.004250 (0.060785) | 0.054924 / 0.037052 (0.017872) | 0.404442 / 0.258489 (0.145953) | 0.439027 / 0.293841 (0.145186) | 0.032467 / 0.128546 (-0.096080) | 0.008565 / 0.075646 (-0.067081) | 0.070653 / 0.419271 (-0.348619) | 0.048034 / 0.043533 (0.004501) | 0.400869 / 0.255139 (0.145730) | 0.423048 / 0.283200 (0.139848) | 0.022757 / 0.141683 (-0.118926) | 1.516956 / 1.452155 (0.064801) | 1.581599 / 1.492716 (0.088883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214761 / 0.018006 (0.196755) | 0.440921 / 0.000490 (0.440431) | 0.007538 / 0.000200 (0.007338) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032313 / 0.037411 (-0.005099) | 0.091365 / 0.014526 (0.076839) | 0.106665 / 0.176557 (-0.069891) | 0.158637 / 0.737135 (-0.578498) | 0.104894 / 0.296338 (-0.191445) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432995 / 0.215209 (0.217786) | 4.339911 / 2.077655 (2.262256) | 2.313139 / 1.504120 (0.809019) | 2.142552 / 1.541195 (0.601357) | 2.279275 / 1.468490 (0.810785) | 0.501133 / 4.584777 (-4.083644) | 3.696160 / 3.745712 (-0.049552) | 3.341886 / 5.269862 (-1.927976) | 2.105972 / 4.565676 (-2.459705) | 0.059268 / 0.424275 (-0.365008) | 0.007568 / 0.007607 (-0.000039) | 0.512546 / 0.226044 (0.286502) | 5.130219 / 2.268929 (2.861290) | 2.808292 / 55.444624 (-52.636332) | 2.478721 / 6.876477 (-4.397755) | 2.679341 / 2.142072 (0.537269) | 0.599022 / 4.805227 (-4.206206) | 0.143761 / 6.500664 (-6.356903) | 0.062061 / 0.075469 (-0.013409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.430507 / 1.841788 (-0.411281) | 20.458085 / 8.074308 (12.383777) | 15.268356 / 10.191392 (5.076964) | 0.163359 / 0.680424 (-0.517065) | 0.020908 / 0.534201 (-0.513293) | 0.396870 / 0.579283 (-0.182413) | 0.432630 / 0.434364 (-0.001733) | 0.475909 / 0.540337 (-0.064429) | 0.681031 / 1.386936 (-0.705905) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fd1dd6aa4c7fa7744c1c1f877573ff59f1529292 \"CML watermark\")\n", "CI failures are unrelated", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005815 / 0.011353 (-0.005538) | 0.003419 / 0.011008 (-0.007589) | 0.080286 / 0.038508 (0.041778) | 0.056487 / 0.023109 (0.033377) | 0.304414 / 0.275898 (0.028516) | 0.341039 / 0.323480 (0.017559) | 0.004392 / 0.007986 (-0.003594) | 0.002852 / 0.004328 (-0.001477) | 0.062339 / 0.004250 (0.058089) | 0.044683 / 0.037052 (0.007630) | 0.311651 / 0.258489 (0.053162) | 0.357249 / 0.293841 (0.063409) | 0.027300 / 0.128546 (-0.101246) | 0.007963 / 0.075646 (-0.067683) | 0.261948 / 0.419271 (-0.157323) | 0.044952 / 0.043533 (0.001419) | 0.309990 / 0.255139 (0.054851) | 0.340735 / 0.283200 (0.057536) | 0.020786 / 0.141683 (-0.120897) | 1.471378 / 1.452155 (0.019224) | 1.517260 / 1.492716 (0.024543) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245447 / 0.018006 (0.227441) | 0.418967 / 0.000490 (0.418477) | 0.007039 / 0.000200 (0.006840) | 0.000196 / 0.000054 (0.000142) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022880 / 0.037411 (-0.014532) | 0.071862 / 0.014526 (0.057337) | 0.083009 / 0.176557 (-0.093547) | 0.143414 / 0.737135 (-0.593722) | 0.082896 / 0.296338 (-0.213442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390645 / 0.215209 (0.175436) | 3.888104 / 2.077655 (1.810450) | 1.859572 / 1.504120 (0.355452) | 1.683803 / 1.541195 (0.142608) | 1.697902 / 1.468490 (0.229412) | 0.499537 / 4.584777 (-4.085239) | 3.015832 / 3.745712 (-0.729881) | 2.805696 / 5.269862 (-2.464166) | 1.830408 / 4.565676 (-2.735268) | 0.058191 / 0.424275 (-0.366085) | 0.006357 / 0.007607 (-0.001250) | 0.462486 / 0.226044 (0.236442) | 4.634951 / 2.268929 (2.366022) | 2.309364 / 55.444624 (-53.135260) | 1.979521 / 6.876477 (-4.896956) | 2.080011 / 2.142072 (-0.062062) | 0.593086 / 4.805227 (-4.212141) | 0.124856 / 6.500664 (-6.375808) | 0.060172 / 0.075469 (-0.015297) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251439 / 1.841788 (-0.590349) | 17.068999 / 8.074308 (8.994691) | 13.527209 / 10.191392 (3.335817) | 0.146636 / 0.680424 (-0.533788) | 0.016866 / 0.534201 (-0.517335) | 0.333202 / 0.579283 (-0.246081) | 0.360444 / 0.434364 (-0.073920) | 0.388378 / 0.540337 (-0.151959) | 0.530519 / 1.386936 (-0.856417) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006043 / 0.011353 (-0.005310) | 0.003612 / 0.011008 (-0.007396) | 0.062644 / 0.038508 (0.024135) | 0.056104 / 0.023109 (0.032995) | 0.446328 / 0.275898 (0.170430) | 0.478044 / 0.323480 (0.154564) | 0.004641 / 0.007986 (-0.003345) | 0.002896 / 0.004328 (-0.001432) | 0.062344 / 0.004250 (0.058093) | 0.046339 / 0.037052 (0.009287) | 0.454866 / 0.258489 (0.196377) | 0.484242 / 0.293841 (0.190401) | 0.028602 / 0.128546 (-0.099944) | 0.008075 / 0.075646 (-0.067571) | 0.067980 / 0.419271 (-0.351291) | 0.041339 / 0.043533 (-0.002194) | 0.452911 / 0.255139 (0.197772) | 0.474180 / 0.283200 (0.190981) | 0.019395 / 0.141683 (-0.122288) | 1.432161 / 1.452155 (-0.019993) | 1.505800 / 1.492716 (0.013083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216983 / 0.018006 (0.198977) | 0.406232 / 0.000490 (0.405743) | 0.005101 / 0.000200 (0.004902) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026295 / 0.037411 (-0.011116) | 0.080490 / 0.014526 (0.065964) | 0.088105 / 0.176557 (-0.088451) | 0.143294 / 0.737135 (-0.593841) | 0.089125 / 0.296338 (-0.207213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465512 / 0.215209 (0.250302) | 4.648656 / 2.077655 (2.571002) | 2.598225 / 1.504120 (1.094105) | 2.409588 / 1.541195 (0.868393) | 2.513745 / 1.468490 (1.045255) | 0.507425 / 4.584777 (-4.077352) | 3.130164 / 3.745712 (-0.615548) | 2.836817 / 5.269862 (-2.433045) | 1.836029 / 4.565676 (-2.729647) | 0.058829 / 0.424275 (-0.365446) | 0.006551 / 0.007607 (-0.001056) | 0.537892 / 0.226044 (0.311848) | 5.401079 / 2.268929 (3.132150) | 3.019817 / 55.444624 (-52.424807) | 2.695131 / 6.876477 (-4.181346) | 2.805321 / 2.142072 (0.663248) | 0.595681 / 4.805227 (-4.209546) | 0.124368 / 6.500664 (-6.376296) | 0.060712 / 0.075469 (-0.014757) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.361508 / 1.841788 (-0.480279) | 17.811373 / 8.074308 (9.737065) | 14.482705 / 10.191392 (4.291313) | 0.153193 / 0.680424 (-0.527231) | 0.018347 / 0.534201 (-0.515854) | 0.330900 / 0.579283 (-0.248383) | 0.374948 / 0.434364 (-0.059416) | 0.385615 / 0.540337 (-0.154722) | 0.568077 / 1.386936 (-0.818859) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18ef408c21f8efbb2142f050a691b5c916455af3 \"CML watermark\")\n" ]
2023-10-12T14:58:07
2023-10-12T15:58:20
2023-10-12T15:49:54
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6301", "html_url": "https://github.com/huggingface/datasets/pull/6301", "diff_url": "https://github.com/huggingface/datasets/pull/6301.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6301.patch", "merged_at": "2023-10-12T15:49:54" }
Removes the temporary pin introduced in #6264
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6301/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6301/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6300
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6300/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6300/comments
https://api.github.com/repos/huggingface/datasets/issues/6300/events
https://github.com/huggingface/datasets/pull/6300
1,940,153,432
PR_kwDODunzps5cpIoG
6,300
Unpin `jax` maximum version
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008410 / 0.011353 (-0.002943) | 0.004888 / 0.011008 (-0.006120) | 0.103342 / 0.038508 (0.064834) | 0.103697 / 0.023109 (0.080587) | 0.416445 / 0.275898 (0.140547) | 0.454604 / 0.323480 (0.131124) | 0.004976 / 0.007986 (-0.003010) | 0.003957 / 0.004328 (-0.000371) | 0.077398 / 0.004250 (0.073148) | 0.069026 / 0.037052 (0.031973) | 0.420484 / 0.258489 (0.161995) | 0.471828 / 0.293841 (0.177987) | 0.037133 / 0.128546 (-0.091413) | 0.010009 / 0.075646 (-0.065637) | 0.349573 / 0.419271 (-0.069698) | 0.063240 / 0.043533 (0.019708) | 0.421554 / 0.255139 (0.166415) | 0.433548 / 0.283200 (0.150348) | 0.029397 / 0.141683 (-0.112286) | 1.716860 / 1.452155 (0.264705) | 1.851264 / 1.492716 (0.358547) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269733 / 0.018006 (0.251727) | 0.493313 / 0.000490 (0.492823) | 0.010438 / 0.000200 (0.010238) | 0.000401 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034690 / 0.037411 (-0.002722) | 0.105304 / 0.014526 (0.090778) | 0.115831 / 0.176557 (-0.060726) | 0.185017 / 0.737135 (-0.552118) | 0.117480 / 0.296338 (-0.178859) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479414 / 0.215209 (0.264205) | 4.785526 / 2.077655 (2.707871) | 2.388412 / 1.504120 (0.884292) | 2.178222 / 1.541195 (0.637027) | 2.248214 / 1.468490 (0.779723) | 0.571723 / 4.584777 (-4.013054) | 4.721250 / 3.745712 (0.975538) | 4.073893 / 5.269862 (-1.195969) | 2.618131 / 4.565676 (-1.947546) | 0.068406 / 0.424275 (-0.355869) | 0.008890 / 0.007607 (0.001283) | 0.564224 / 0.226044 (0.338180) | 5.631412 / 2.268929 (3.362483) | 3.072212 / 55.444624 (-52.372412) | 2.760574 / 6.876477 (-4.115903) | 2.963060 / 2.142072 (0.820987) | 0.708150 / 4.805227 (-4.097077) | 0.160324 / 6.500664 (-6.340340) | 0.075402 / 0.075469 (-0.000067) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.649965 / 1.841788 (-0.191823) | 24.297517 / 8.074308 (16.223209) | 17.658675 / 10.191392 (7.467283) | 0.171399 / 0.680424 (-0.509025) | 0.021172 / 0.534201 (-0.513029) | 0.477196 / 0.579283 (-0.102087) | 0.503900 / 0.434364 (0.069536) | 0.555858 / 0.540337 (0.015520) | 0.824302 / 1.386936 (-0.562634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008613 / 0.011353 (-0.002740) | 0.004848 / 0.011008 (-0.006160) | 0.078344 / 0.038508 (0.039836) | 0.098976 / 0.023109 (0.075867) | 0.520713 / 0.275898 (0.244815) | 0.566350 / 0.323480 (0.242870) | 0.006658 / 0.007986 (-0.001327) | 0.004043 / 0.004328 (-0.000285) | 0.077881 / 0.004250 (0.073631) | 0.070731 / 0.037052 (0.033678) | 0.519717 / 0.258489 (0.261228) | 0.575623 / 0.293841 (0.281782) | 0.038542 / 0.128546 (-0.090004) | 0.010277 / 0.075646 (-0.065369) | 0.084269 / 0.419271 (-0.335002) | 0.058088 / 0.043533 (0.014555) | 0.541790 / 0.255139 (0.286651) | 0.534915 / 0.283200 (0.251715) | 0.027851 / 0.141683 (-0.113831) | 1.814827 / 1.452155 (0.362672) | 1.898208 / 1.492716 (0.405492) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244162 / 0.018006 (0.226156) | 0.482895 / 0.000490 (0.482405) | 0.005734 / 0.000200 (0.005534) | 0.000127 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039328 / 0.037411 (0.001917) | 0.119795 / 0.014526 (0.105269) | 0.128570 / 0.176557 (-0.047986) | 0.191207 / 0.737135 (-0.545929) | 0.127147 / 0.296338 (-0.169192) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.533545 / 0.215209 (0.318336) | 5.320135 / 2.077655 (3.242480) | 2.924573 / 1.504120 (1.420453) | 2.741351 / 1.541195 (1.200156) | 2.824217 / 1.468490 (1.355727) | 0.595842 / 4.584777 (-3.988935) | 4.343499 / 3.745712 (0.597787) | 3.976546 / 5.269862 (-1.293316) | 2.532541 / 4.565676 (-2.033135) | 0.070480 / 0.424275 (-0.353795) | 0.008868 / 0.007607 (0.001260) | 0.634297 / 0.226044 (0.408253) | 6.327314 / 2.268929 (4.058386) | 3.530741 / 55.444624 (-51.913883) | 3.121435 / 6.876477 (-3.755042) | 3.344473 / 2.142072 (1.202401) | 0.719413 / 4.805227 (-4.085814) | 0.162348 / 6.500664 (-6.338316) | 0.074964 / 0.075469 (-0.000505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.679095 / 1.841788 (-0.162693) | 25.071620 / 8.074308 (16.997312) | 18.422398 / 10.191392 (8.231006) | 0.223981 / 0.680424 (-0.456443) | 0.026537 / 0.534201 (-0.507664) | 0.513867 / 0.579283 (-0.065416) | 0.535874 / 0.434364 (0.101510) | 0.567971 / 0.540337 (0.027634) | 0.842545 / 1.386936 (-0.544391) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d8b871016c25cb3b90ac1ff65a4e54f0454f525e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006445 / 0.011353 (-0.004908) | 0.003978 / 0.011008 (-0.007030) | 0.084542 / 0.038508 (0.046034) | 0.069231 / 0.023109 (0.046122) | 0.308794 / 0.275898 (0.032896) | 0.339246 / 0.323480 (0.015766) | 0.005269 / 0.007986 (-0.002716) | 0.003285 / 0.004328 (-0.001043) | 0.065336 / 0.004250 (0.061086) | 0.053480 / 0.037052 (0.016428) | 0.316775 / 0.258489 (0.058286) | 0.357885 / 0.293841 (0.064044) | 0.031309 / 0.128546 (-0.097237) | 0.008450 / 0.075646 (-0.067196) | 0.287911 / 0.419271 (-0.131361) | 0.052756 / 0.043533 (0.009223) | 0.321516 / 0.255139 (0.066377) | 0.331998 / 0.283200 (0.048799) | 0.024129 / 0.141683 (-0.117553) | 1.507718 / 1.452155 (0.055563) | 1.571400 / 1.492716 (0.078683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237536 / 0.018006 (0.219530) | 0.499691 / 0.000490 (0.499201) | 0.007644 / 0.000200 (0.007444) | 0.000284 / 0.000054 (0.000230) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028243 / 0.037411 (-0.009168) | 0.081556 / 0.014526 (0.067030) | 0.096877 / 0.176557 (-0.079680) | 0.149985 / 0.737135 (-0.587150) | 0.095556 / 0.296338 (-0.200783) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383215 / 0.215209 (0.168006) | 3.815800 / 2.077655 (1.738145) | 1.832227 / 1.504120 (0.328107) | 1.664001 / 1.541195 (0.122806) | 1.698786 / 1.468490 (0.230296) | 0.487594 / 4.584777 (-4.097183) | 3.569767 / 3.745712 (-0.175945) | 3.262387 / 5.269862 (-2.007475) | 2.017105 / 4.565676 (-2.548572) | 0.057555 / 0.424275 (-0.366720) | 0.007170 / 0.007607 (-0.000437) | 0.460134 / 0.226044 (0.234090) | 4.629800 / 2.268929 (2.360871) | 2.357126 / 55.444624 (-53.087499) | 1.970144 / 6.876477 (-4.906332) | 2.123520 / 2.142072 (-0.018552) | 0.613058 / 4.805227 (-4.192169) | 0.135869 / 6.500664 (-6.364795) | 0.061292 / 0.075469 (-0.014177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.311294 / 1.841788 (-0.530494) | 18.640807 / 8.074308 (10.566499) | 13.946834 / 10.191392 (3.755442) | 0.163976 / 0.680424 (-0.516448) | 0.018527 / 0.534201 (-0.515674) | 0.390530 / 0.579283 (-0.188753) | 0.412661 / 0.434364 (-0.021703) | 0.459514 / 0.540337 (-0.080823) | 0.635026 / 1.386936 (-0.751910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006645 / 0.011353 (-0.004708) | 0.003943 / 0.011008 (-0.007066) | 0.064470 / 0.038508 (0.025962) | 0.069895 / 0.023109 (0.046786) | 0.411091 / 0.275898 (0.135193) | 0.437628 / 0.323480 (0.114148) | 0.005214 / 0.007986 (-0.002772) | 0.003281 / 0.004328 (-0.001047) | 0.064434 / 0.004250 (0.060183) | 0.054294 / 0.037052 (0.017241) | 0.413576 / 0.258489 (0.155087) | 0.448793 / 0.293841 (0.154952) | 0.031754 / 0.128546 (-0.096793) | 0.008530 / 0.075646 (-0.067117) | 0.069950 / 0.419271 (-0.349322) | 0.047747 / 0.043533 (0.004214) | 0.411241 / 0.255139 (0.156102) | 0.430076 / 0.283200 (0.146876) | 0.023462 / 0.141683 (-0.118220) | 1.519501 / 1.452155 (0.067346) | 1.575782 / 1.492716 (0.083066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231816 / 0.018006 (0.213810) | 0.442802 / 0.000490 (0.442312) | 0.005738 / 0.000200 (0.005539) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031426 / 0.037411 (-0.005985) | 0.090758 / 0.014526 (0.076233) | 0.103414 / 0.176557 (-0.073142) | 0.156409 / 0.737135 (-0.580726) | 0.103900 / 0.296338 (-0.192439) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438897 / 0.215209 (0.223688) | 4.385318 / 2.077655 (2.307663) | 2.352042 / 1.504120 (0.847923) | 2.182228 / 1.541195 (0.641033) | 2.266256 / 1.468490 (0.797766) | 0.492780 / 4.584777 (-4.091997) | 3.665787 / 3.745712 (-0.079925) | 3.315329 / 5.269862 (-1.954533) | 2.027993 / 4.565676 (-2.537684) | 0.058220 / 0.424275 (-0.366055) | 0.007429 / 0.007607 (-0.000178) | 0.508790 / 0.226044 (0.282746) | 5.107093 / 2.268929 (2.838164) | 2.799789 / 55.444624 (-52.644836) | 2.462828 / 6.876477 (-4.413649) | 2.610193 / 2.142072 (0.468120) | 0.588133 / 4.805227 (-4.217094) | 0.133418 / 6.500664 (-6.367246) | 0.059793 / 0.075469 (-0.015676) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.363358 / 1.841788 (-0.478430) | 19.258372 / 8.074308 (11.184064) | 14.730977 / 10.191392 (4.539584) | 0.169493 / 0.680424 (-0.510931) | 0.020462 / 0.534201 (-0.513739) | 0.397980 / 0.579283 (-0.181303) | 0.426638 / 0.434364 (-0.007726) | 0.474249 / 0.540337 (-0.066088) | 0.677640 / 1.386936 (-0.709296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90b3d2619ecb8f01dd12283c30f04dfe6e443795 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006536 / 0.011353 (-0.004817) | 0.003827 / 0.011008 (-0.007181) | 0.084394 / 0.038508 (0.045886) | 0.073166 / 0.023109 (0.050056) | 0.309380 / 0.275898 (0.033482) | 0.338501 / 0.323480 (0.015021) | 0.005346 / 0.007986 (-0.002640) | 0.003273 / 0.004328 (-0.001056) | 0.064606 / 0.004250 (0.060356) | 0.053500 / 0.037052 (0.016447) | 0.313143 / 0.258489 (0.054654) | 0.354364 / 0.293841 (0.060523) | 0.030919 / 0.128546 (-0.097627) | 0.008512 / 0.075646 (-0.067134) | 0.292774 / 0.419271 (-0.126498) | 0.052441 / 0.043533 (0.008908) | 0.310503 / 0.255139 (0.055364) | 0.341211 / 0.283200 (0.058011) | 0.023608 / 0.141683 (-0.118074) | 1.456220 / 1.452155 (0.004065) | 1.540189 / 1.492716 (0.047473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234321 / 0.018006 (0.216315) | 0.451809 / 0.000490 (0.451319) | 0.008560 / 0.000200 (0.008360) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028165 / 0.037411 (-0.009246) | 0.082548 / 0.014526 (0.068023) | 0.752621 / 0.176557 (0.576065) | 0.263949 / 0.737135 (-0.473187) | 0.097635 / 0.296338 (-0.198704) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386611 / 0.215209 (0.171402) | 3.847528 / 2.077655 (1.769873) | 1.859173 / 1.504120 (0.355053) | 1.685269 / 1.541195 (0.144074) | 1.715823 / 1.468490 (0.247333) | 0.485272 / 4.584777 (-4.099505) | 3.500724 / 3.745712 (-0.244988) | 3.252149 / 5.269862 (-2.017713) | 2.052914 / 4.565676 (-2.512762) | 0.056794 / 0.424275 (-0.367481) | 0.007317 / 0.007607 (-0.000291) | 0.457924 / 0.226044 (0.231879) | 4.570092 / 2.268929 (2.301163) | 2.328829 / 55.444624 (-53.115796) | 1.986502 / 6.876477 (-4.889975) | 2.164645 / 2.142072 (0.022573) | 0.580455 / 4.805227 (-4.224772) | 0.134415 / 6.500664 (-6.366249) | 0.060506 / 0.075469 (-0.014963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267423 / 1.841788 (-0.574364) | 18.653450 / 8.074308 (10.579142) | 13.919682 / 10.191392 (3.728290) | 0.144001 / 0.680424 (-0.536423) | 0.018218 / 0.534201 (-0.515983) | 0.389933 / 0.579283 (-0.189350) | 0.418366 / 0.434364 (-0.015998) | 0.456341 / 0.540337 (-0.083997) | 0.631401 / 1.386936 (-0.755535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006838 / 0.011353 (-0.004515) | 0.003973 / 0.011008 (-0.007036) | 0.065217 / 0.038508 (0.026709) | 0.068357 / 0.023109 (0.045248) | 0.407960 / 0.275898 (0.132062) | 0.437794 / 0.323480 (0.114314) | 0.005398 / 0.007986 (-0.002587) | 0.003360 / 0.004328 (-0.000969) | 0.065503 / 0.004250 (0.061253) | 0.055676 / 0.037052 (0.018623) | 0.411381 / 0.258489 (0.152892) | 0.446902 / 0.293841 (0.153061) | 0.032156 / 0.128546 (-0.096390) | 0.008702 / 0.075646 (-0.066944) | 0.072295 / 0.419271 (-0.346976) | 0.047722 / 0.043533 (0.004189) | 0.406125 / 0.255139 (0.150986) | 0.428359 / 0.283200 (0.145160) | 0.021901 / 0.141683 (-0.119782) | 1.464186 / 1.452155 (0.012032) | 1.532809 / 1.492716 (0.040093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218505 / 0.018006 (0.200499) | 0.447450 / 0.000490 (0.446961) | 0.006509 / 0.000200 (0.006309) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031789 / 0.037411 (-0.005622) | 0.091100 / 0.014526 (0.076574) | 0.102812 / 0.176557 (-0.073745) | 0.155988 / 0.737135 (-0.581147) | 0.103983 / 0.296338 (-0.192355) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436431 / 0.215209 (0.221222) | 4.336072 / 2.077655 (2.258417) | 2.344613 / 1.504120 (0.840493) | 2.173513 / 1.541195 (0.632319) | 2.313134 / 1.468490 (0.844644) | 0.493651 / 4.584777 (-4.091126) | 3.657541 / 3.745712 (-0.088171) | 3.289933 / 5.269862 (-1.979928) | 2.040271 / 4.565676 (-2.525406) | 0.058092 / 0.424275 (-0.366183) | 0.007348 / 0.007607 (-0.000259) | 0.507506 / 0.226044 (0.281462) | 5.093477 / 2.268929 (2.824548) | 2.770579 / 55.444624 (-52.674046) | 2.449507 / 6.876477 (-4.426970) | 2.645470 / 2.142072 (0.503397) | 0.590799 / 4.805227 (-4.214429) | 0.133411 / 6.500664 (-6.367253) | 0.059507 / 0.075469 (-0.015962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.381148 / 1.841788 (-0.460639) | 19.188716 / 8.074308 (11.114408) | 14.709111 / 10.191392 (4.517719) | 0.191104 / 0.680424 (-0.489320) | 0.019862 / 0.534201 (-0.514339) | 0.395380 / 0.579283 (-0.183903) | 0.424757 / 0.434364 (-0.009607) | 0.468810 / 0.540337 (-0.071527) | 0.687058 / 1.386936 (-0.699878) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#407169e1ea91ae31f79ff29c4115b04a461279ab \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008872 / 0.011353 (-0.002481) | 0.004824 / 0.011008 (-0.006184) | 0.097012 / 0.038508 (0.058504) | 0.074728 / 0.023109 (0.051619) | 0.400604 / 0.275898 (0.124706) | 0.434316 / 0.323480 (0.110836) | 0.006025 / 0.007986 (-0.001961) | 0.004153 / 0.004328 (-0.000176) | 0.074093 / 0.004250 (0.069842) | 0.057239 / 0.037052 (0.020187) | 0.420611 / 0.258489 (0.162122) | 0.457779 / 0.293841 (0.163938) | 0.047610 / 0.128546 (-0.080936) | 0.014577 / 0.075646 (-0.061069) | 0.414351 / 0.419271 (-0.004921) | 0.063072 / 0.043533 (0.019539) | 0.426141 / 0.255139 (0.171002) | 0.429844 / 0.283200 (0.146644) | 0.034754 / 0.141683 (-0.106929) | 1.620946 / 1.452155 (0.168792) | 1.725831 / 1.492716 (0.233115) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304712 / 0.018006 (0.286706) | 0.646924 / 0.000490 (0.646434) | 0.014486 / 0.000200 (0.014286) | 0.000626 / 0.000054 (0.000572) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034935 / 0.037411 (-0.002477) | 0.085788 / 0.014526 (0.071262) | 0.107749 / 0.176557 (-0.068807) | 0.170924 / 0.737135 (-0.566211) | 0.134985 / 0.296338 (-0.161354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602913 / 0.215209 (0.387704) | 6.041700 / 2.077655 (3.964045) | 2.539970 / 1.504120 (1.035850) | 2.184166 / 1.541195 (0.642972) | 2.241783 / 1.468490 (0.773293) | 0.864601 / 4.584777 (-3.720176) | 5.246955 / 3.745712 (1.501243) | 4.850458 / 5.269862 (-0.419404) | 3.101497 / 4.565676 (-1.464179) | 0.098591 / 0.424275 (-0.325684) | 0.008902 / 0.007607 (0.001295) | 0.732278 / 0.226044 (0.506234) | 7.163557 / 2.268929 (4.894629) | 3.226444 / 55.444624 (-52.218180) | 2.578737 / 6.876477 (-4.297740) | 2.850212 / 2.142072 (0.708140) | 1.026390 / 4.805227 (-3.778837) | 0.217077 / 6.500664 (-6.283587) | 0.080344 / 0.075469 (0.004875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687488 / 1.841788 (-0.154300) | 24.686337 / 8.074308 (16.612029) | 21.315989 / 10.191392 (11.124597) | 0.226176 / 0.680424 (-0.454248) | 0.035774 / 0.534201 (-0.498427) | 0.477807 / 0.579283 (-0.101476) | 0.636305 / 0.434364 (0.201941) | 0.553341 / 0.540337 (0.013003) | 0.797267 / 1.386936 (-0.589669) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008955 / 0.011353 (-0.002398) | 0.006099 / 0.011008 (-0.004909) | 0.086306 / 0.038508 (0.047798) | 0.090783 / 0.023109 (0.067674) | 0.554802 / 0.275898 (0.278904) | 0.598778 / 0.323480 (0.275299) | 0.008656 / 0.007986 (0.000670) | 0.004487 / 0.004328 (0.000159) | 0.084194 / 0.004250 (0.079943) | 0.076048 / 0.037052 (0.038996) | 0.533212 / 0.258489 (0.274723) | 0.584029 / 0.293841 (0.290188) | 0.051913 / 0.128546 (-0.076634) | 0.014253 / 0.075646 (-0.061393) | 0.100500 / 0.419271 (-0.318772) | 0.061092 / 0.043533 (0.017560) | 0.516955 / 0.255139 (0.261816) | 0.562754 / 0.283200 (0.279554) | 0.036673 / 0.141683 (-0.105010) | 1.853655 / 1.452155 (0.401501) | 1.968358 / 1.492716 (0.475642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308258 / 0.018006 (0.290252) | 0.630492 / 0.000490 (0.630002) | 0.010575 / 0.000200 (0.010375) | 0.000271 / 0.000054 (0.000217) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034762 / 0.037411 (-0.002649) | 0.107314 / 0.014526 (0.092788) | 0.132160 / 0.176557 (-0.044396) | 0.178737 / 0.737135 (-0.558398) | 0.125988 / 0.296338 (-0.170351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.730738 / 0.215209 (0.515528) | 7.240393 / 2.077655 (5.162738) | 3.557665 / 1.504120 (2.053545) | 3.541425 / 1.541195 (2.000230) | 3.103849 / 1.468490 (1.635359) | 0.926843 / 4.584777 (-3.657934) | 5.818264 / 3.745712 (2.072552) | 5.012984 / 5.269862 (-0.256878) | 3.286085 / 4.565676 (-1.279591) | 0.104879 / 0.424275 (-0.319396) | 0.009010 / 0.007607 (0.001403) | 0.806145 / 0.226044 (0.580101) | 8.263655 / 2.268929 (5.994727) | 4.108932 / 55.444624 (-51.335693) | 3.454613 / 6.876477 (-3.421864) | 3.629045 / 2.142072 (1.486973) | 1.062325 / 4.805227 (-3.742902) | 0.220482 / 6.500664 (-6.280182) | 0.081440 / 0.075469 (0.005970) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.665587 / 1.841788 (-0.176201) | 23.695299 / 8.074308 (15.620991) | 22.917493 / 10.191392 (12.726101) | 0.259033 / 0.680424 (-0.421391) | 0.040118 / 0.534201 (-0.494083) | 0.487329 / 0.579283 (-0.091954) | 0.607482 / 0.434364 (0.173118) | 0.568383 / 0.540337 (0.028045) | 0.824486 / 1.386936 (-0.562450) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53592bb8f635a1d6ea3e77acc290efdfb28fcbd7 \"CML watermark\")\n", "CI failures are unrelated", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007095 / 0.011353 (-0.004258) | 0.004260 / 0.011008 (-0.006748) | 0.084729 / 0.038508 (0.046221) | 0.076498 / 0.023109 (0.053389) | 0.325981 / 0.275898 (0.050083) | 0.357140 / 0.323480 (0.033661) | 0.004325 / 0.007986 (-0.003660) | 0.003632 / 0.004328 (-0.000696) | 0.065075 / 0.004250 (0.060824) | 0.059058 / 0.037052 (0.022006) | 0.331895 / 0.258489 (0.073406) | 0.370782 / 0.293841 (0.076941) | 0.031886 / 0.128546 (-0.096660) | 0.008782 / 0.075646 (-0.066864) | 0.288159 / 0.419271 (-0.131113) | 0.053012 / 0.043533 (0.009479) | 0.319992 / 0.255139 (0.064853) | 0.347061 / 0.283200 (0.063861) | 0.026365 / 0.141683 (-0.115317) | 1.486112 / 1.452155 (0.033958) | 1.570150 / 1.492716 (0.077434) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277155 / 0.018006 (0.259149) | 0.573507 / 0.000490 (0.573017) | 0.010122 / 0.000200 (0.009922) | 0.000322 / 0.000054 (0.000268) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029076 / 0.037411 (-0.008335) | 0.082517 / 0.014526 (0.067991) | 0.100710 / 0.176557 (-0.075847) | 0.154529 / 0.737135 (-0.582606) | 0.099531 / 0.296338 (-0.196807) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382058 / 0.215209 (0.166849) | 3.803307 / 2.077655 (1.725652) | 1.834107 / 1.504120 (0.329987) | 1.665703 / 1.541195 (0.124508) | 1.739520 / 1.468490 (0.271030) | 0.490544 / 4.584777 (-4.094233) | 3.577874 / 3.745712 (-0.167838) | 3.327631 / 5.269862 (-1.942231) | 2.056634 / 4.565676 (-2.509043) | 0.057871 / 0.424275 (-0.366404) | 0.007326 / 0.007607 (-0.000281) | 0.453993 / 0.226044 (0.227949) | 4.549179 / 2.268929 (2.280250) | 2.320304 / 55.444624 (-53.124321) | 1.966082 / 6.876477 (-4.910395) | 2.189979 / 2.142072 (0.047907) | 0.586678 / 4.805227 (-4.218549) | 0.134919 / 6.500664 (-6.365745) | 0.061649 / 0.075469 (-0.013820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286228 / 1.841788 (-0.555560) | 19.409674 / 8.074308 (11.335366) | 14.290463 / 10.191392 (4.099071) | 0.165766 / 0.680424 (-0.514658) | 0.018200 / 0.534201 (-0.516001) | 0.390526 / 0.579283 (-0.188757) | 0.410953 / 0.434364 (-0.023411) | 0.455921 / 0.540337 (-0.084416) | 0.642271 / 1.386936 (-0.744665) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007288 / 0.011353 (-0.004064) | 0.004348 / 0.011008 (-0.006660) | 0.065935 / 0.038508 (0.027427) | 0.087327 / 0.023109 (0.064218) | 0.413461 / 0.275898 (0.137563) | 0.458904 / 0.323480 (0.135424) | 0.005996 / 0.007986 (-0.001990) | 0.003648 / 0.004328 (-0.000680) | 0.066578 / 0.004250 (0.062328) | 0.062072 / 0.037052 (0.025020) | 0.418469 / 0.258489 (0.159980) | 0.468960 / 0.293841 (0.175119) | 0.032616 / 0.128546 (-0.095930) | 0.008961 / 0.075646 (-0.066686) | 0.072537 / 0.419271 (-0.346734) | 0.048302 / 0.043533 (0.004769) | 0.411845 / 0.255139 (0.156706) | 0.441730 / 0.283200 (0.158530) | 0.025038 / 0.141683 (-0.116645) | 1.519402 / 1.452155 (0.067248) | 1.601791 / 1.492716 (0.109074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322494 / 0.018006 (0.304488) | 0.570210 / 0.000490 (0.569720) | 0.025815 / 0.000200 (0.025615) | 0.000166 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034657 / 0.037411 (-0.002754) | 0.096024 / 0.014526 (0.081498) | 0.109134 / 0.176557 (-0.067422) | 0.162170 / 0.737135 (-0.574965) | 0.110472 / 0.296338 (-0.185866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439032 / 0.215209 (0.223823) | 4.385768 / 2.077655 (2.308113) | 2.343261 / 1.504120 (0.839142) | 2.157926 / 1.541195 (0.616731) | 2.299193 / 1.468490 (0.830703) | 0.498961 / 4.584777 (-4.085816) | 3.651909 / 3.745712 (-0.093803) | 3.387587 / 5.269862 (-1.882275) | 2.144553 / 4.565676 (-2.421123) | 0.058242 / 0.424275 (-0.366033) | 0.007416 / 0.007607 (-0.000191) | 0.512714 / 0.226044 (0.286670) | 5.138569 / 2.268929 (2.869641) | 2.778683 / 55.444624 (-52.665941) | 2.532990 / 6.876477 (-4.343487) | 2.782211 / 2.142072 (0.640139) | 0.591881 / 4.805227 (-4.213346) | 0.135005 / 6.500664 (-6.365660) | 0.060965 / 0.075469 (-0.014504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356311 / 1.841788 (-0.485477) | 20.029994 / 8.074308 (11.955686) | 14.666570 / 10.191392 (4.475178) | 0.164363 / 0.680424 (-0.516061) | 0.020685 / 0.534201 (-0.513516) | 0.396020 / 0.579283 (-0.183263) | 0.429407 / 0.434364 (-0.004957) | 0.476924 / 0.540337 (-0.063413) | 0.693389 / 1.386936 (-0.693547) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#292d627e398e30a538a616395f3b5ce4e89bb1e8 \"CML watermark\")\n" ]
2023-10-12T14:42:40
2023-10-12T16:37:55
2023-10-12T16:28:57
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6300", "html_url": "https://github.com/huggingface/datasets/pull/6300", "diff_url": "https://github.com/huggingface/datasets/pull/6300.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6300.patch", "merged_at": "2023-10-12T16:28:57" }
fix #6299 fix #6202
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6300/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6300/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6299
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6299/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6299/comments
https://api.github.com/repos/huggingface/datasets/issues/6299/events
https://github.com/huggingface/datasets/issues/6299
1,939,649,238
I_kwDODunzps5znLLW
6,299
Support for newer versions of JAX
{ "login": "ddrous", "id": 25456859, "node_id": "MDQ6VXNlcjI1NDU2ODU5", "avatar_url": "https://avatars.githubusercontent.com/u/25456859?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ddrous", "html_url": "https://github.com/ddrous", "followers_url": "https://api.github.com/users/ddrous/followers", "following_url": "https://api.github.com/users/ddrous/following{/other_user}", "gists_url": "https://api.github.com/users/ddrous/gists{/gist_id}", "starred_url": "https://api.github.com/users/ddrous/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ddrous/subscriptions", "organizations_url": "https://api.github.com/users/ddrous/orgs", "repos_url": "https://api.github.com/users/ddrous/repos", "events_url": "https://api.github.com/users/ddrous/events{/privacy}", "received_events_url": "https://api.github.com/users/ddrous/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
[]
2023-10-12T10:03:46
2023-10-12T16:28:59
2023-10-12T16:28:59
NONE
null
null
### Feature request Hi, I like your idea of adapting the datasets library to be usable with JAX. Thank you for that. However, in your [setup.py](https://github.com/huggingface/datasets/blob/main/setup.py), you enforce old versions of JAX <= 0.3... It is very cumbersome ! What is the rationale for such a limitation ? Can you remove it please ? Thanks, ### Motivation This library is unusable with new versions of JAX ? ### Your contribution Yes.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6299/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6299/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6298
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6298/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6298/comments
https://api.github.com/repos/huggingface/datasets/issues/6298/events
https://github.com/huggingface/datasets/pull/6298
1,938,797,389
PR_kwDODunzps5ckg6j
6,298
Doc readme improvements
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006761 / 0.011353 (-0.004592) | 0.004307 / 0.011008 (-0.006701) | 0.084682 / 0.038508 (0.046174) | 0.083994 / 0.023109 (0.060885) | 0.316612 / 0.275898 (0.040714) | 0.346157 / 0.323480 (0.022678) | 0.004490 / 0.007986 (-0.003495) | 0.003699 / 0.004328 (-0.000629) | 0.066144 / 0.004250 (0.061894) | 0.057958 / 0.037052 (0.020906) | 0.319018 / 0.258489 (0.060529) | 0.367597 / 0.293841 (0.073756) | 0.031146 / 0.128546 (-0.097401) | 0.008814 / 0.075646 (-0.066832) | 0.290971 / 0.419271 (-0.128301) | 0.052769 / 0.043533 (0.009236) | 0.313125 / 0.255139 (0.057986) | 0.330473 / 0.283200 (0.047273) | 0.025922 / 0.141683 (-0.115760) | 1.494989 / 1.452155 (0.042834) | 1.556140 / 1.492716 (0.063423) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310580 / 0.018006 (0.292574) | 0.563600 / 0.000490 (0.563110) | 0.012344 / 0.000200 (0.012144) | 0.000382 / 0.000054 (0.000328) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031468 / 0.037411 (-0.005943) | 0.084856 / 0.014526 (0.070331) | 0.101371 / 0.176557 (-0.075186) | 0.158735 / 0.737135 (-0.578400) | 0.102451 / 0.296338 (-0.193888) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402288 / 0.215209 (0.187079) | 4.001351 / 2.077655 (1.923696) | 2.022710 / 1.504120 (0.518590) | 1.850236 / 1.541195 (0.309041) | 1.946779 / 1.468490 (0.478289) | 0.485828 / 4.584777 (-4.098949) | 3.584925 / 3.745712 (-0.160787) | 3.400815 / 5.269862 (-1.869046) | 2.123187 / 4.565676 (-2.442490) | 0.057373 / 0.424275 (-0.366902) | 0.007383 / 0.007607 (-0.000224) | 0.479773 / 0.226044 (0.253729) | 4.805342 / 2.268929 (2.536414) | 2.530151 / 55.444624 (-52.914473) | 2.190136 / 6.876477 (-4.686341) | 2.463666 / 2.142072 (0.321593) | 0.583512 / 4.805227 (-4.221715) | 0.134205 / 6.500664 (-6.366459) | 0.062021 / 0.075469 (-0.013448) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239532 / 1.841788 (-0.602255) | 20.252941 / 8.074308 (12.178633) | 14.265697 / 10.191392 (4.074305) | 0.158745 / 0.680424 (-0.521679) | 0.018605 / 0.534201 (-0.515596) | 0.394246 / 0.579283 (-0.185037) | 0.415260 / 0.434364 (-0.019104) | 0.462636 / 0.540337 (-0.077701) | 0.645318 / 1.386936 (-0.741618) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007063 / 0.011353 (-0.004290) | 0.004388 / 0.011008 (-0.006621) | 0.064997 / 0.038508 (0.026489) | 0.085135 / 0.023109 (0.062026) | 0.424349 / 0.275898 (0.148451) | 0.456033 / 0.323480 (0.132553) | 0.005745 / 0.007986 (-0.002241) | 0.003705 / 0.004328 (-0.000624) | 0.065835 / 0.004250 (0.061585) | 0.058366 / 0.037052 (0.021314) | 0.421654 / 0.258489 (0.163165) | 0.460334 / 0.293841 (0.166493) | 0.032828 / 0.128546 (-0.095718) | 0.008974 / 0.075646 (-0.066673) | 0.072524 / 0.419271 (-0.346747) | 0.048558 / 0.043533 (0.005025) | 0.413546 / 0.255139 (0.158407) | 0.435765 / 0.283200 (0.152565) | 0.023754 / 0.141683 (-0.117929) | 1.476884 / 1.452155 (0.024730) | 1.560011 / 1.492716 (0.067294) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.318279 / 0.018006 (0.300272) | 0.544990 / 0.000490 (0.544501) | 0.007118 / 0.000200 (0.006918) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033352 / 0.037411 (-0.004059) | 0.092921 / 0.014526 (0.078395) | 0.109028 / 0.176557 (-0.067528) | 0.161433 / 0.737135 (-0.575703) | 0.108445 / 0.296338 (-0.187893) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438925 / 0.215209 (0.223716) | 4.400714 / 2.077655 (2.323059) | 2.403727 / 1.504120 (0.899607) | 2.236472 / 1.541195 (0.695277) | 2.319219 / 1.468490 (0.850729) | 0.490159 / 4.584777 (-4.094618) | 3.647474 / 3.745712 (-0.098238) | 3.433144 / 5.269862 (-1.836718) | 2.145367 / 4.565676 (-2.420310) | 0.057994 / 0.424275 (-0.366281) | 0.007452 / 0.007607 (-0.000155) | 0.513808 / 0.226044 (0.287763) | 5.130792 / 2.268929 (2.861863) | 2.861691 / 55.444624 (-52.582934) | 2.473292 / 6.876477 (-4.403185) | 2.756445 / 2.142072 (0.614372) | 0.586783 / 4.805227 (-4.218444) | 0.134170 / 6.500664 (-6.366494) | 0.061149 / 0.075469 (-0.014320) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350144 / 1.841788 (-0.491644) | 21.003528 / 8.074308 (12.929220) | 15.174314 / 10.191392 (4.982922) | 0.186535 / 0.680424 (-0.493888) | 0.020821 / 0.534201 (-0.513380) | 0.399210 / 0.579283 (-0.180073) | 0.431942 / 0.434364 (-0.002422) | 0.475395 / 0.540337 (-0.064942) | 0.677457 / 1.386936 (-0.709479) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6aa5fc278324a253eab43ad1bc048e822e4ae5c7 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007062 / 0.011353 (-0.004291) | 0.004299 / 0.011008 (-0.006710) | 0.086019 / 0.038508 (0.047511) | 0.085166 / 0.023109 (0.062057) | 0.355804 / 0.275898 (0.079906) | 0.381056 / 0.323480 (0.057577) | 0.005500 / 0.007986 (-0.002486) | 0.003496 / 0.004328 (-0.000833) | 0.064866 / 0.004250 (0.060615) | 0.057399 / 0.037052 (0.020346) | 0.357914 / 0.258489 (0.099425) | 0.395387 / 0.293841 (0.101546) | 0.031763 / 0.128546 (-0.096784) | 0.008665 / 0.075646 (-0.066981) | 0.290097 / 0.419271 (-0.129175) | 0.053297 / 0.043533 (0.009765) | 0.355659 / 0.255139 (0.100520) | 0.378232 / 0.283200 (0.095032) | 0.026015 / 0.141683 (-0.115668) | 1.437121 / 1.452155 (-0.015034) | 1.538798 / 1.492716 (0.046082) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243518 / 0.018006 (0.225511) | 0.461361 / 0.000490 (0.460871) | 0.009529 / 0.000200 (0.009329) | 0.000473 / 0.000054 (0.000419) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030379 / 0.037411 (-0.007032) | 0.089851 / 0.014526 (0.075325) | 0.098278 / 0.176557 (-0.078278) | 0.157077 / 0.737135 (-0.580058) | 0.098997 / 0.296338 (-0.197341) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382415 / 0.215209 (0.167206) | 3.801964 / 2.077655 (1.724309) | 1.887680 / 1.504120 (0.383560) | 1.775903 / 1.541195 (0.234709) | 1.851338 / 1.468490 (0.382848) | 0.483616 / 4.584777 (-4.101161) | 3.612977 / 3.745712 (-0.132736) | 3.397700 / 5.269862 (-1.872162) | 2.114572 / 4.565676 (-2.451105) | 0.057250 / 0.424275 (-0.367025) | 0.007362 / 0.007607 (-0.000245) | 0.456873 / 0.226044 (0.230829) | 4.567319 / 2.268929 (2.298391) | 2.399476 / 55.444624 (-53.045148) | 2.054542 / 6.876477 (-4.821935) | 2.343432 / 2.142072 (0.201359) | 0.582319 / 4.805227 (-4.222908) | 0.134045 / 6.500664 (-6.366619) | 0.062726 / 0.075469 (-0.012743) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283390 / 1.841788 (-0.558398) | 20.358511 / 8.074308 (12.284202) | 14.933989 / 10.191392 (4.742597) | 0.164960 / 0.680424 (-0.515464) | 0.018625 / 0.534201 (-0.515576) | 0.394087 / 0.579283 (-0.185196) | 0.416761 / 0.434364 (-0.017603) | 0.466669 / 0.540337 (-0.073669) | 0.643161 / 1.386936 (-0.743775) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007141 / 0.011353 (-0.004212) | 0.004185 / 0.011008 (-0.006824) | 0.066097 / 0.038508 (0.027588) | 0.088436 / 0.023109 (0.065327) | 0.401189 / 0.275898 (0.125291) | 0.440402 / 0.323480 (0.116922) | 0.005729 / 0.007986 (-0.002257) | 0.003527 / 0.004328 (-0.000801) | 0.065278 / 0.004250 (0.061027) | 0.060866 / 0.037052 (0.023813) | 0.407035 / 0.258489 (0.148546) | 0.443923 / 0.293841 (0.150083) | 0.032922 / 0.128546 (-0.095625) | 0.008739 / 0.075646 (-0.066907) | 0.071800 / 0.419271 (-0.347472) | 0.048994 / 0.043533 (0.005461) | 0.403736 / 0.255139 (0.148597) | 0.419566 / 0.283200 (0.136366) | 0.025369 / 0.141683 (-0.116314) | 1.474980 / 1.452155 (0.022825) | 1.553500 / 1.492716 (0.060784) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225224 / 0.018006 (0.207218) | 0.462891 / 0.000490 (0.462401) | 0.006958 / 0.000200 (0.006758) | 0.000163 / 0.000054 (0.000108) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034431 / 0.037411 (-0.002980) | 0.100021 / 0.014526 (0.085495) | 0.108339 / 0.176557 (-0.068217) | 0.162762 / 0.737135 (-0.574374) | 0.108951 / 0.296338 (-0.187388) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435966 / 0.215209 (0.220757) | 4.351744 / 2.077655 (2.274089) | 2.372307 / 1.504120 (0.868187) | 2.192146 / 1.541195 (0.650951) | 2.326839 / 1.468490 (0.858349) | 0.488292 / 4.584777 (-4.096485) | 3.745227 / 3.745712 (-0.000485) | 3.456306 / 5.269862 (-1.813556) | 2.159771 / 4.565676 (-2.405906) | 0.057953 / 0.424275 (-0.366322) | 0.007469 / 0.007607 (-0.000138) | 0.515116 / 0.226044 (0.289071) | 5.162871 / 2.268929 (2.893942) | 2.850336 / 55.444624 (-52.594288) | 2.514700 / 6.876477 (-4.361777) | 2.748843 / 2.142072 (0.606770) | 0.587687 / 4.805227 (-4.217540) | 0.134333 / 6.500664 (-6.366331) | 0.062097 / 0.075469 (-0.013372) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.377082 / 1.841788 (-0.464705) | 21.103127 / 8.074308 (13.028819) | 15.325275 / 10.191392 (5.133883) | 0.166225 / 0.680424 (-0.514199) | 0.020472 / 0.534201 (-0.513729) | 0.395866 / 0.579283 (-0.183417) | 0.444964 / 0.434364 (0.010600) | 0.475367 / 0.540337 (-0.064970) | 0.693325 / 1.386936 (-0.693611) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#79b5bbbd52ffd90dd958c05b333d7c90a03756cc \"CML watermark\")\n" ]
2023-10-11T21:51:12
2023-10-12T12:47:15
2023-10-12T12:38:19
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6298", "html_url": "https://github.com/huggingface/datasets/pull/6298", "diff_url": "https://github.com/huggingface/datasets/pull/6298.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6298.patch", "merged_at": "2023-10-12T12:38:19" }
Changes in the doc READMe: * adds two new sections (to be aligned with `transformers` and `hfh`): "Previewing the documentation" and "Writing documentation examples" * replaces the mentions of `transformers` with `datasets` * fixes some dead links
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6298/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6298/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6297
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6297/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6297/comments
https://api.github.com/repos/huggingface/datasets/issues/6297/events
https://github.com/huggingface/datasets/pull/6297
1,938,752,707
PR_kwDODunzps5ckXBa
6,297
Fix ArrayXD cast
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006920 / 0.011353 (-0.004433) | 0.004306 / 0.011008 (-0.006703) | 0.085961 / 0.038508 (0.047453) | 0.087008 / 0.023109 (0.063899) | 0.308953 / 0.275898 (0.033055) | 0.349919 / 0.323480 (0.026440) | 0.005705 / 0.007986 (-0.002281) | 0.003565 / 0.004328 (-0.000763) | 0.066272 / 0.004250 (0.062022) | 0.056438 / 0.037052 (0.019385) | 0.312927 / 0.258489 (0.054437) | 0.363081 / 0.293841 (0.069240) | 0.031947 / 0.128546 (-0.096600) | 0.008801 / 0.075646 (-0.066845) | 0.288657 / 0.419271 (-0.130615) | 0.053746 / 0.043533 (0.010213) | 0.305815 / 0.255139 (0.050676) | 0.327174 / 0.283200 (0.043975) | 0.024863 / 0.141683 (-0.116820) | 1.489718 / 1.452155 (0.037563) | 1.566726 / 1.492716 (0.074009) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289273 / 0.018006 (0.271266) | 0.555519 / 0.000490 (0.555029) | 0.006522 / 0.000200 (0.006322) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031968 / 0.037411 (-0.005443) | 0.085113 / 0.014526 (0.070587) | 0.103931 / 0.176557 (-0.072625) | 0.158471 / 0.737135 (-0.578665) | 0.102633 / 0.296338 (-0.193705) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399592 / 0.215209 (0.184383) | 4.004453 / 2.077655 (1.926798) | 2.047224 / 1.504120 (0.543104) | 1.896203 / 1.541195 (0.355008) | 1.974056 / 1.468490 (0.505566) | 0.485964 / 4.584777 (-4.098813) | 3.650648 / 3.745712 (-0.095064) | 3.475953 / 5.269862 (-1.793908) | 2.168105 / 4.565676 (-2.397571) | 0.058167 / 0.424275 (-0.366108) | 0.007517 / 0.007607 (-0.000090) | 0.475386 / 0.226044 (0.249342) | 4.758300 / 2.268929 (2.489372) | 2.527540 / 55.444624 (-52.917085) | 2.180544 / 6.876477 (-4.695933) | 2.460148 / 2.142072 (0.318076) | 0.589944 / 4.805227 (-4.215284) | 0.136474 / 6.500664 (-6.364190) | 0.061462 / 0.075469 (-0.014007) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245816 / 1.841788 (-0.595972) | 20.376958 / 8.074308 (12.302650) | 14.764579 / 10.191392 (4.573187) | 0.152436 / 0.680424 (-0.527988) | 0.018580 / 0.534201 (-0.515621) | 0.394680 / 0.579283 (-0.184603) | 0.424162 / 0.434364 (-0.010202) | 0.465604 / 0.540337 (-0.074733) | 0.658531 / 1.386936 (-0.728405) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007105 / 0.011353 (-0.004248) | 0.004441 / 0.011008 (-0.006567) | 0.068792 / 0.038508 (0.030284) | 0.080371 / 0.023109 (0.057262) | 0.430263 / 0.275898 (0.154365) | 0.451743 / 0.323480 (0.128263) | 0.005987 / 0.007986 (-0.001999) | 0.003639 / 0.004328 (-0.000690) | 0.065462 / 0.004250 (0.061212) | 0.059852 / 0.037052 (0.022800) | 0.438390 / 0.258489 (0.179901) | 0.458679 / 0.293841 (0.164838) | 0.033044 / 0.128546 (-0.095502) | 0.008845 / 0.075646 (-0.066802) | 0.071772 / 0.419271 (-0.347500) | 0.048840 / 0.043533 (0.005307) | 0.415707 / 0.255139 (0.160568) | 0.431216 / 0.283200 (0.148017) | 0.024422 / 0.141683 (-0.117260) | 1.502249 / 1.452155 (0.050094) | 1.566767 / 1.492716 (0.074050) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.311352 / 0.018006 (0.293346) | 0.550395 / 0.000490 (0.549906) | 0.005190 / 0.000200 (0.004990) | 0.000116 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034264 / 0.037411 (-0.003147) | 0.098712 / 0.014526 (0.084186) | 0.110906 / 0.176557 (-0.065651) | 0.161670 / 0.737135 (-0.575465) | 0.111023 / 0.296338 (-0.185316) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435296 / 0.215209 (0.220087) | 4.331231 / 2.077655 (2.253576) | 2.305009 / 1.504120 (0.800889) | 2.154492 / 1.541195 (0.613297) | 2.344017 / 1.468490 (0.875527) | 0.496924 / 4.584777 (-4.087853) | 3.750782 / 3.745712 (0.005070) | 3.380193 / 5.269862 (-1.889669) | 2.161239 / 4.565676 (-2.404438) | 0.058456 / 0.424275 (-0.365819) | 0.007395 / 0.007607 (-0.000212) | 0.507824 / 0.226044 (0.281780) | 5.081564 / 2.268929 (2.812635) | 2.824080 / 55.444624 (-52.620544) | 2.458835 / 6.876477 (-4.417642) | 2.747897 / 2.142072 (0.605824) | 0.600727 / 4.805227 (-4.204500) | 0.135085 / 6.500664 (-6.365579) | 0.060506 / 0.075469 (-0.014963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.376873 / 1.841788 (-0.464915) | 21.211922 / 8.074308 (13.137614) | 15.022845 / 10.191392 (4.831453) | 0.195388 / 0.680424 (-0.485036) | 0.020268 / 0.534201 (-0.513933) | 0.398971 / 0.579283 (-0.180312) | 0.427588 / 0.434364 (-0.006776) | 0.478044 / 0.540337 (-0.062293) | 0.687904 / 1.386936 (-0.699033) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7fb5fae8f79b3db4a94013aa2af7c63796ef2d64 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006134 / 0.011353 (-0.005219) | 0.003655 / 0.011008 (-0.007354) | 0.081295 / 0.038508 (0.042787) | 0.060202 / 0.023109 (0.037093) | 0.330005 / 0.275898 (0.054107) | 0.361219 / 0.323480 (0.037739) | 0.004766 / 0.007986 (-0.003220) | 0.002942 / 0.004328 (-0.001386) | 0.063322 / 0.004250 (0.059072) | 0.047844 / 0.037052 (0.010791) | 0.340375 / 0.258489 (0.081886) | 0.406301 / 0.293841 (0.112460) | 0.027474 / 0.128546 (-0.101072) | 0.007991 / 0.075646 (-0.067655) | 0.262746 / 0.419271 (-0.156526) | 0.045575 / 0.043533 (0.002042) | 0.324123 / 0.255139 (0.068984) | 0.344399 / 0.283200 (0.061199) | 0.021806 / 0.141683 (-0.119877) | 1.425390 / 1.452155 (-0.026765) | 1.487920 / 1.492716 (-0.004796) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217504 / 0.018006 (0.199498) | 0.420878 / 0.000490 (0.420388) | 0.007312 / 0.000200 (0.007112) | 0.000218 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023507 / 0.037411 (-0.013905) | 0.073493 / 0.014526 (0.058967) | 0.084857 / 0.176557 (-0.091700) | 0.145130 / 0.737135 (-0.592005) | 0.085204 / 0.296338 (-0.211135) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.388767 / 0.215209 (0.173557) | 3.877998 / 2.077655 (1.800344) | 1.881447 / 1.504120 (0.377327) | 1.714555 / 1.541195 (0.173360) | 1.772551 / 1.468490 (0.304061) | 0.505146 / 4.584777 (-4.079631) | 3.045471 / 3.745712 (-0.700241) | 2.834436 / 5.269862 (-2.435426) | 1.859896 / 4.565676 (-2.705780) | 0.057806 / 0.424275 (-0.366469) | 0.006378 / 0.007607 (-0.001229) | 0.458339 / 0.226044 (0.232294) | 4.588125 / 2.268929 (2.319196) | 2.302215 / 55.444624 (-53.142409) | 1.981297 / 6.876477 (-4.895180) | 2.152967 / 2.142072 (0.010895) | 0.590166 / 4.805227 (-4.215061) | 0.125753 / 6.500664 (-6.374911) | 0.061583 / 0.075469 (-0.013887) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.232195 / 1.841788 (-0.609593) | 17.761159 / 8.074308 (9.686851) | 13.829498 / 10.191392 (3.638106) | 0.131936 / 0.680424 (-0.548488) | 0.016909 / 0.534201 (-0.517292) | 0.332615 / 0.579283 (-0.246668) | 0.358149 / 0.434364 (-0.076215) | 0.384251 / 0.540337 (-0.156087) | 0.536453 / 1.386936 (-0.850483) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006253 / 0.011353 (-0.005100) | 0.003639 / 0.011008 (-0.007370) | 0.062810 / 0.038508 (0.024302) | 0.063761 / 0.023109 (0.040652) | 0.450538 / 0.275898 (0.174640) | 0.483793 / 0.323480 (0.160313) | 0.004973 / 0.007986 (-0.003013) | 0.002918 / 0.004328 (-0.001411) | 0.062140 / 0.004250 (0.057889) | 0.050328 / 0.037052 (0.013275) | 0.455860 / 0.258489 (0.197371) | 0.492399 / 0.293841 (0.198558) | 0.028928 / 0.128546 (-0.099618) | 0.008166 / 0.075646 (-0.067481) | 0.067860 / 0.419271 (-0.351411) | 0.040990 / 0.043533 (-0.002542) | 0.451343 / 0.255139 (0.196204) | 0.473769 / 0.283200 (0.190569) | 0.021585 / 0.141683 (-0.120097) | 1.451040 / 1.452155 (-0.001115) | 1.516065 / 1.492716 (0.023349) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230994 / 0.018006 (0.212988) | 0.428404 / 0.000490 (0.427915) | 0.003777 / 0.000200 (0.003577) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027394 / 0.037411 (-0.010018) | 0.081692 / 0.014526 (0.067166) | 0.091568 / 0.176557 (-0.084988) | 0.146149 / 0.737135 (-0.590987) | 0.092200 / 0.296338 (-0.204139) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.467086 / 0.215209 (0.251877) | 4.664862 / 2.077655 (2.587207) | 2.575703 / 1.504120 (1.071583) | 2.396587 / 1.541195 (0.855392) | 2.506064 / 1.468490 (1.037574) | 0.511942 / 4.584777 (-4.072834) | 3.196320 / 3.745712 (-0.549392) | 2.916627 / 5.269862 (-2.353235) | 1.919372 / 4.565676 (-2.646305) | 0.058769 / 0.424275 (-0.365506) | 0.006487 / 0.007607 (-0.001120) | 0.539095 / 0.226044 (0.313051) | 5.404675 / 2.268929 (3.135746) | 2.988962 / 55.444624 (-52.455662) | 2.670134 / 6.876477 (-4.206343) | 2.837414 / 2.142072 (0.695342) | 0.614776 / 4.805227 (-4.190451) | 0.125806 / 6.500664 (-6.374858) | 0.061593 / 0.075469 (-0.013876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346171 / 1.841788 (-0.495617) | 18.374626 / 8.074308 (10.300318) | 14.508723 / 10.191392 (4.317331) | 0.146771 / 0.680424 (-0.533652) | 0.018438 / 0.534201 (-0.515763) | 0.336944 / 0.579283 (-0.242339) | 0.385631 / 0.434364 (-0.048733) | 0.391922 / 0.540337 (-0.148416) | 0.568904 / 1.386936 (-0.818032) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3e8d420808718c9a1453a2e7ee3484ca12c9c70d \"CML watermark\")\n" ]
2023-10-11T21:14:59
2023-10-13T13:54:00
2023-10-13T13:45:30
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6297", "html_url": "https://github.com/huggingface/datasets/pull/6297", "diff_url": "https://github.com/huggingface/datasets/pull/6297.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6297.patch", "merged_at": "2023-10-13T13:45:30" }
Fix #6291
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6297/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6297/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6296
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6296/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6296/comments
https://api.github.com/repos/huggingface/datasets/issues/6296/events
https://github.com/huggingface/datasets/pull/6296
1,938,453,845
PR_kwDODunzps5cjUs1
6,296
Move `exceptions.py` to `utils/exceptions.py`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006695 / 0.011353 (-0.004658) | 0.004321 / 0.011008 (-0.006687) | 0.084558 / 0.038508 (0.046050) | 0.076290 / 0.023109 (0.053181) | 0.312331 / 0.275898 (0.036433) | 0.349854 / 0.323480 (0.026374) | 0.004267 / 0.007986 (-0.003719) | 0.003595 / 0.004328 (-0.000733) | 0.065077 / 0.004250 (0.060826) | 0.057461 / 0.037052 (0.020409) | 0.314989 / 0.258489 (0.056500) | 0.364767 / 0.293841 (0.070926) | 0.031726 / 0.128546 (-0.096820) | 0.008674 / 0.075646 (-0.066972) | 0.288282 / 0.419271 (-0.130990) | 0.052845 / 0.043533 (0.009312) | 0.317501 / 0.255139 (0.062362) | 0.333241 / 0.283200 (0.050041) | 0.026412 / 0.141683 (-0.115271) | 1.475648 / 1.452155 (0.023493) | 1.551656 / 1.492716 (0.058939) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276512 / 0.018006 (0.258506) | 0.576350 / 0.000490 (0.575861) | 0.009518 / 0.000200 (0.009318) | 0.000280 / 0.000054 (0.000226) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029332 / 0.037411 (-0.008079) | 0.082904 / 0.014526 (0.068379) | 0.102516 / 0.176557 (-0.074041) | 0.159355 / 0.737135 (-0.577780) | 0.104112 / 0.296338 (-0.192226) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379144 / 0.215209 (0.163935) | 3.785283 / 2.077655 (1.707629) | 1.833753 / 1.504120 (0.329633) | 1.667906 / 1.541195 (0.126711) | 1.751551 / 1.468490 (0.283061) | 0.480998 / 4.584777 (-4.103779) | 3.533433 / 3.745712 (-0.212279) | 3.343363 / 5.269862 (-1.926498) | 2.094169 / 4.565676 (-2.471508) | 0.056613 / 0.424275 (-0.367662) | 0.007410 / 0.007607 (-0.000197) | 0.455077 / 0.226044 (0.229033) | 4.541380 / 2.268929 (2.272452) | 2.269151 / 55.444624 (-53.175473) | 1.955663 / 6.876477 (-4.920814) | 2.227663 / 2.142072 (0.085591) | 0.580597 / 4.805227 (-4.224630) | 0.135034 / 6.500664 (-6.365630) | 0.062091 / 0.075469 (-0.013378) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276295 / 1.841788 (-0.565492) | 20.072827 / 8.074308 (11.998519) | 14.296462 / 10.191392 (4.105070) | 0.164936 / 0.680424 (-0.515488) | 0.018415 / 0.534201 (-0.515786) | 0.390894 / 0.579283 (-0.188389) | 0.415515 / 0.434364 (-0.018849) | 0.462798 / 0.540337 (-0.077540) | 0.650099 / 1.386936 (-0.736837) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007218 / 0.011353 (-0.004135) | 0.004246 / 0.011008 (-0.006763) | 0.065818 / 0.038508 (0.027310) | 0.087315 / 0.023109 (0.064206) | 0.406449 / 0.275898 (0.130551) | 0.442008 / 0.323480 (0.118528) | 0.005752 / 0.007986 (-0.002233) | 0.003624 / 0.004328 (-0.000704) | 0.065349 / 0.004250 (0.061099) | 0.062423 / 0.037052 (0.025371) | 0.410099 / 0.258489 (0.151610) | 0.448929 / 0.293841 (0.155088) | 0.032498 / 0.128546 (-0.096048) | 0.008877 / 0.075646 (-0.066770) | 0.071611 / 0.419271 (-0.347661) | 0.048038 / 0.043533 (0.004506) | 0.407957 / 0.255139 (0.152818) | 0.424045 / 0.283200 (0.140846) | 0.025222 / 0.141683 (-0.116461) | 1.496191 / 1.452155 (0.044037) | 1.580765 / 1.492716 (0.088048) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274798 / 0.018006 (0.256792) | 0.581410 / 0.000490 (0.580920) | 0.007302 / 0.000200 (0.007102) | 0.000160 / 0.000054 (0.000106) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034068 / 0.037411 (-0.003343) | 0.096116 / 0.014526 (0.081590) | 0.110234 / 0.176557 (-0.066323) | 0.163246 / 0.737135 (-0.573889) | 0.110250 / 0.296338 (-0.186089) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442381 / 0.215209 (0.227172) | 4.427061 / 2.077655 (2.349406) | 2.361013 / 1.504120 (0.856893) | 2.185048 / 1.541195 (0.643853) | 2.312544 / 1.468490 (0.844054) | 0.498347 / 4.584777 (-4.086430) | 3.640839 / 3.745712 (-0.104873) | 3.353405 / 5.269862 (-1.916457) | 2.082038 / 4.565676 (-2.483638) | 0.058786 / 0.424275 (-0.365489) | 0.007403 / 0.007607 (-0.000205) | 0.517894 / 0.226044 (0.291850) | 5.184257 / 2.268929 (2.915329) | 2.838467 / 55.444624 (-52.606157) | 2.511116 / 6.876477 (-4.365361) | 2.757816 / 2.142072 (0.615743) | 0.644050 / 4.805227 (-4.161177) | 0.136446 / 6.500664 (-6.364218) | 0.062219 / 0.075469 (-0.013250) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350916 / 1.841788 (-0.490872) | 20.549280 / 8.074308 (12.474972) | 14.697569 / 10.191392 (4.506177) | 0.149818 / 0.680424 (-0.530606) | 0.020187 / 0.534201 (-0.514014) | 0.396008 / 0.579283 (-0.183275) | 0.427535 / 0.434364 (-0.006829) | 0.484544 / 0.540337 (-0.055794) | 0.687076 / 1.386936 (-0.699860) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02a0d7cc9bdbc745c355c0bf8a210d8bf0b90327 \"CML watermark\")\n", "I'd rather be consistent with `huggingface_hub` and have this module in `utils/` with the exceptions exposed in `utils/__init__.py` ...", "Ok, I'll close this PR.\r\n\r\n> Maybe we could ask huggingface_hub to align with the rest of open-source libraries and expose the errors/exceptions at the root of the library...\r\n\r\ncc @Wauplin \r\n\r\nIt would be nice to have an HF style guide to ensure consistency across our libraries 🙂. ", "I can expose exceptions at root level yes.\r\n\r\nAbout having guidelines and consistency, let's try to do our best but it's not really in the essence of HF to formalize stuff in libraries :unamused: " ]
2023-10-11T18:28:00
2023-10-17T13:25:33
null
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6296", "html_url": "https://github.com/huggingface/datasets/pull/6296", "diff_url": "https://github.com/huggingface/datasets/pull/6296.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6296.patch", "merged_at": null }
I didn't notice the path while reviewing the PR yesterday :(
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6296/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6296/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6295
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6295/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6295/comments
https://api.github.com/repos/huggingface/datasets/issues/6295/events
https://github.com/huggingface/datasets/pull/6295
1,937,362,102
PR_kwDODunzps5cfiW8
6,295
Fix parquet columns argument in streaming mode
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008112 / 0.011353 (-0.003241) | 0.004762 / 0.011008 (-0.006247) | 0.101349 / 0.038508 (0.062841) | 0.092361 / 0.023109 (0.069252) | 0.418429 / 0.275898 (0.142531) | 0.427332 / 0.323480 (0.103852) | 0.006112 / 0.007986 (-0.001874) | 0.003920 / 0.004328 (-0.000408) | 0.076813 / 0.004250 (0.072563) | 0.064361 / 0.037052 (0.027309) | 0.420526 / 0.258489 (0.162037) | 0.441576 / 0.293841 (0.147735) | 0.044760 / 0.128546 (-0.083787) | 0.010054 / 0.075646 (-0.065592) | 0.346063 / 0.419271 (-0.073209) | 0.077453 / 0.043533 (0.033920) | 0.412871 / 0.255139 (0.157732) | 0.408307 / 0.283200 (0.125107) | 0.033398 / 0.141683 (-0.108285) | 1.755825 / 1.452155 (0.303671) | 1.852347 / 1.492716 (0.359630) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274201 / 0.018006 (0.256194) | 0.536375 / 0.000490 (0.535885) | 0.008076 / 0.000200 (0.007876) | 0.000159 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033567 / 0.037411 (-0.003845) | 0.102378 / 0.014526 (0.087852) | 0.114176 / 0.176557 (-0.062381) | 0.180576 / 0.737135 (-0.556560) | 0.114801 / 0.296338 (-0.181538) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450300 / 0.215209 (0.235091) | 4.490940 / 2.077655 (2.413285) | 2.172412 / 1.504120 (0.668292) | 1.978746 / 1.541195 (0.437551) | 2.065602 / 1.468490 (0.597112) | 0.571260 / 4.584777 (-4.013517) | 4.185485 / 3.745712 (0.439773) | 3.885594 / 5.269862 (-1.384268) | 2.532942 / 4.565676 (-2.032735) | 0.067612 / 0.424275 (-0.356663) | 0.008694 / 0.007607 (0.001087) | 0.533375 / 0.226044 (0.307331) | 5.321261 / 2.268929 (3.052333) | 2.697788 / 55.444624 (-52.746836) | 2.331328 / 6.876477 (-4.545149) | 2.585168 / 2.142072 (0.443096) | 0.681760 / 4.805227 (-4.123467) | 0.157687 / 6.500664 (-6.342977) | 0.071014 / 0.075469 (-0.004455) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.525689 / 1.841788 (-0.316098) | 23.162280 / 8.074308 (15.087972) | 16.644941 / 10.191392 (6.453548) | 0.182588 / 0.680424 (-0.497836) | 0.021653 / 0.534201 (-0.512548) | 0.466556 / 0.579283 (-0.112727) | 0.511902 / 0.434364 (0.077538) | 0.553707 / 0.540337 (0.013370) | 0.777830 / 1.386936 (-0.609106) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007954 / 0.011353 (-0.003399) | 0.004645 / 0.011008 (-0.006363) | 0.079096 / 0.038508 (0.040587) | 0.088200 / 0.023109 (0.065090) | 0.508882 / 0.275898 (0.232984) | 0.545986 / 0.323480 (0.222506) | 0.006233 / 0.007986 (-0.001752) | 0.004016 / 0.004328 (-0.000312) | 0.078103 / 0.004250 (0.073853) | 0.066354 / 0.037052 (0.029302) | 0.504132 / 0.258489 (0.245643) | 0.543714 / 0.293841 (0.249873) | 0.038140 / 0.128546 (-0.090407) | 0.011201 / 0.075646 (-0.064446) | 0.085713 / 0.419271 (-0.333559) | 0.057169 / 0.043533 (0.013637) | 0.488161 / 0.255139 (0.233022) | 0.516231 / 0.283200 (0.233031) | 0.027868 / 0.141683 (-0.113814) | 1.794084 / 1.452155 (0.341930) | 1.884993 / 1.492716 (0.392276) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263108 / 0.018006 (0.245102) | 0.495761 / 0.000490 (0.495272) | 0.007056 / 0.000200 (0.006856) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039089 / 0.037411 (0.001678) | 0.113332 / 0.014526 (0.098806) | 0.130137 / 0.176557 (-0.046419) | 0.189330 / 0.737135 (-0.547805) | 0.125860 / 0.296338 (-0.170479) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.530496 / 0.215209 (0.315287) | 5.349235 / 2.077655 (3.271581) | 2.975886 / 1.504120 (1.471766) | 2.786368 / 1.541195 (1.245173) | 2.920448 / 1.468490 (1.451958) | 0.575677 / 4.584777 (-4.009100) | 4.215535 / 3.745712 (0.469823) | 3.879984 / 5.269862 (-1.389878) | 2.420193 / 4.565676 (-2.145484) | 0.068506 / 0.424275 (-0.355769) | 0.008785 / 0.007607 (0.001178) | 0.611471 / 0.226044 (0.385427) | 6.118399 / 2.268929 (3.849471) | 3.509376 / 55.444624 (-51.935248) | 3.149219 / 6.876477 (-3.727257) | 3.413861 / 2.142072 (1.271788) | 0.697586 / 4.805227 (-4.107641) | 0.157767 / 6.500664 (-6.342897) | 0.071539 / 0.075469 (-0.003930) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625196 / 1.841788 (-0.216591) | 24.347319 / 8.074308 (16.273011) | 17.365789 / 10.191392 (7.174397) | 0.217590 / 0.680424 (-0.462834) | 0.023885 / 0.534201 (-0.510316) | 0.477226 / 0.579283 (-0.102057) | 0.529319 / 0.434364 (0.094955) | 0.622299 / 0.540337 (0.081962) | 0.835295 / 1.386936 (-0.551641) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3de42c8fae86c602fc71ac6d166e5c77f4149446 \"CML watermark\")\n", "CI errors are unrelated or due to flaky tests", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006288 / 0.011353 (-0.005065) | 0.003836 / 0.011008 (-0.007172) | 0.080958 / 0.038508 (0.042450) | 0.065934 / 0.023109 (0.042825) | 0.312597 / 0.275898 (0.036699) | 0.351216 / 0.323480 (0.027736) | 0.004864 / 0.007986 (-0.003121) | 0.002961 / 0.004328 (-0.001368) | 0.063142 / 0.004250 (0.058892) | 0.049822 / 0.037052 (0.012770) | 0.320305 / 0.258489 (0.061816) | 0.363151 / 0.293841 (0.069310) | 0.027561 / 0.128546 (-0.100985) | 0.008176 / 0.075646 (-0.067470) | 0.261290 / 0.419271 (-0.157982) | 0.045517 / 0.043533 (0.001984) | 0.309218 / 0.255139 (0.054079) | 0.340140 / 0.283200 (0.056940) | 0.021000 / 0.141683 (-0.120683) | 1.448699 / 1.452155 (-0.003456) | 1.523904 / 1.492716 (0.031188) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224294 / 0.018006 (0.206288) | 0.434928 / 0.000490 (0.434439) | 0.007541 / 0.000200 (0.007341) | 0.000286 / 0.000054 (0.000232) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025257 / 0.037411 (-0.012154) | 0.077364 / 0.014526 (0.062838) | 0.085825 / 0.176557 (-0.090732) | 0.148121 / 0.737135 (-0.589014) | 0.086838 / 0.296338 (-0.209500) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396900 / 0.215209 (0.181691) | 3.953381 / 2.077655 (1.875727) | 1.933561 / 1.504120 (0.429441) | 1.760549 / 1.541195 (0.219354) | 1.824014 / 1.468490 (0.355523) | 0.495385 / 4.584777 (-4.089392) | 3.005558 / 3.745712 (-0.740154) | 2.931022 / 5.269862 (-2.338840) | 1.905113 / 4.565676 (-2.660563) | 0.057232 / 0.424275 (-0.367043) | 0.006472 / 0.007607 (-0.001135) | 0.464261 / 0.226044 (0.238216) | 4.629388 / 2.268929 (2.360459) | 2.342004 / 55.444624 (-53.102620) | 1.977295 / 6.876477 (-4.899181) | 2.167151 / 2.142072 (0.025079) | 0.582483 / 4.805227 (-4.222744) | 0.129444 / 6.500664 (-6.371220) | 0.061057 / 0.075469 (-0.014412) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259444 / 1.841788 (-0.582344) | 18.189338 / 8.074308 (10.115030) | 14.313174 / 10.191392 (4.121782) | 0.146209 / 0.680424 (-0.534215) | 0.017115 / 0.534201 (-0.517086) | 0.336643 / 0.579283 (-0.242640) | 0.370824 / 0.434364 (-0.063540) | 0.387032 / 0.540337 (-0.153306) | 0.546688 / 1.386936 (-0.840248) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006371 / 0.011353 (-0.004982) | 0.003693 / 0.011008 (-0.007315) | 0.062499 / 0.038508 (0.023991) | 0.066367 / 0.023109 (0.043257) | 0.451481 / 0.275898 (0.175583) | 0.482495 / 0.323480 (0.159015) | 0.005676 / 0.007986 (-0.002310) | 0.002940 / 0.004328 (-0.001389) | 0.063011 / 0.004250 (0.058760) | 0.051500 / 0.037052 (0.014447) | 0.455482 / 0.258489 (0.196993) | 0.488888 / 0.293841 (0.195047) | 0.028714 / 0.128546 (-0.099832) | 0.008178 / 0.075646 (-0.067468) | 0.067218 / 0.419271 (-0.352053) | 0.041323 / 0.043533 (-0.002210) | 0.454007 / 0.255139 (0.198868) | 0.476241 / 0.283200 (0.193041) | 0.021530 / 0.141683 (-0.120153) | 1.457859 / 1.452155 (0.005705) | 1.506437 / 1.492716 (0.013721) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228280 / 0.018006 (0.210274) | 0.427574 / 0.000490 (0.427084) | 0.003793 / 0.000200 (0.003593) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028420 / 0.037411 (-0.008992) | 0.087935 / 0.014526 (0.073409) | 0.092761 / 0.176557 (-0.083796) | 0.148084 / 0.737135 (-0.589051) | 0.095301 / 0.296338 (-0.201037) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462457 / 0.215209 (0.247248) | 4.618016 / 2.077655 (2.540361) | 2.540531 / 1.504120 (1.036412) | 2.384696 / 1.541195 (0.843501) | 2.493108 / 1.468490 (1.024618) | 0.511689 / 4.584777 (-4.073088) | 3.173701 / 3.745712 (-0.572011) | 2.917046 / 5.269862 (-2.352816) | 1.916294 / 4.565676 (-2.649382) | 0.058969 / 0.424275 (-0.365306) | 0.006461 / 0.007607 (-0.001147) | 0.540997 / 0.226044 (0.314952) | 5.406596 / 2.268929 (3.137667) | 3.071189 / 55.444624 (-52.373435) | 2.701982 / 6.876477 (-4.174494) | 2.860194 / 2.142072 (0.718121) | 0.602684 / 4.805227 (-4.202543) | 0.127384 / 6.500664 (-6.373280) | 0.061718 / 0.075469 (-0.013751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340587 / 1.841788 (-0.501201) | 18.543831 / 8.074308 (10.469523) | 14.847319 / 10.191392 (4.655927) | 0.146523 / 0.680424 (-0.533901) | 0.018172 / 0.534201 (-0.516029) | 0.333276 / 0.579283 (-0.246007) | 0.375874 / 0.434364 (-0.058490) | 0.396766 / 0.540337 (-0.143572) | 0.572562 / 1.386936 (-0.814374) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2d9fcc0840f9d94f63635e9b40a1a7f11b34ea2 \"CML watermark\")\n" ]
2023-10-11T10:01:01
2023-10-11T16:30:24
2023-10-11T16:21:36
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6295", "html_url": "https://github.com/huggingface/datasets/pull/6295", "diff_url": "https://github.com/huggingface/datasets/pull/6295.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6295.patch", "merged_at": "2023-10-11T16:21:36" }
It was failing when there's a DatasetInfo with non-None info.features from the YAML (therefore containing columns that should be ignored) Fix https://github.com/huggingface/datasets/issues/6293
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6295/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6295/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6294
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6294/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6294/comments
https://api.github.com/repos/huggingface/datasets/issues/6294/events
https://github.com/huggingface/datasets/issues/6294
1,937,359,605
I_kwDODunzps5zecL1
6,294
IndexError: Invalid key is out of bounds for size 0 despite having a populated dataset
{ "login": "ZYM66", "id": 61892155, "node_id": "MDQ6VXNlcjYxODkyMTU1", "avatar_url": "https://avatars.githubusercontent.com/u/61892155?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ZYM66", "html_url": "https://github.com/ZYM66", "followers_url": "https://api.github.com/users/ZYM66/followers", "following_url": "https://api.github.com/users/ZYM66/following{/other_user}", "gists_url": "https://api.github.com/users/ZYM66/gists{/gist_id}", "starred_url": "https://api.github.com/users/ZYM66/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZYM66/subscriptions", "organizations_url": "https://api.github.com/users/ZYM66/orgs", "repos_url": "https://api.github.com/users/ZYM66/repos", "events_url": "https://api.github.com/users/ZYM66/events{/privacy}", "received_events_url": "https://api.github.com/users/ZYM66/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "It looks to be the same issue as the one reported in https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0.\r\n\r\nCan you check the length of `train_dataset` before the `train_sampler = self._get_train_sampler()` (and after `_remove_unused_columns`) line?" ]
2023-10-11T09:59:38
2023-10-17T11:24:06
2023-10-17T11:24:06
NONE
null
null
### Describe the bug I am encountering an `IndexError` when trying to access data from a DataLoader which wraps around a dataset I've loaded using the `datasets` library. The error suggests that the dataset size is `0`, but when I check the length and print the dataset, it's clear that it has `1166` entries. ### Steps to reproduce the bug 1. Load a dataset with `1166` entries. 2. Create a DataLoader using this dataset. 3. Try iterating over the DataLoader. code: ```python def get_train_dataloader(self) -> DataLoader: if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset data_collator = self.data_collator print(len(train_dataset)) print(train_dataset) if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") else: data_collator = self._get_collator_with_removed_columns(data_collator, description="training") train_sampler = self._get_train_sampler() dl = DataLoader( train_dataset, batch_size=self._train_batch_size, sampler=train_sampler, collate_fn=data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, worker_init_fn=seed_worker, ) print(dl) print(len(dl)) for i in dl: print(i) break return dl ``` output : ``` 1166 Dataset({ features: ['input_ids', 'special_tokens_mask'], num_rows: 1166 }) <torch.utils.data.dataloader.DataLoader object ...> 146 ``` Error: ``` Traceback (most recent call last): File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 266, in <module> train() File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 260, in train trainer.train() File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/transformers/trainer.py", line 1506, in train return inner_training_loop( File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/transformers/trainer.py", line 1520, in _inner_training_loop train_dataloader = self.get_train_dataloader() File "/home/dl/zym/llamaJP/TestUseContinuePretrainLlama.py", line 80, in get_train_dataloader for i in dl: File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 630, in __next__ data = self._next_data() File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 674, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch data = self.dataset.__getitems__(possibly_batched_index) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2807, in __getitems__ batch = self.__getitem__(keys) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2803, in __getitem__ return self._getitem(key) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2787, in _getitem pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 583, in query_table _check_valid_index_key(key, size) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 536, in _check_valid_index_key _check_valid_index_key(int(max(key)), size=size) File "/root/miniconda3/envs/LLM/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 526, in _check_valid_index_key raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") IndexError: Invalid key: 1116 is out of bounds for size 0 ``` ### Expected behavior I expect to be able to iterate over the DataLoader without encountering an IndexError since the dataset is populated. ### Environment info - `datasets` library version: [2.14.5] - Platform: [Linux] - Python version: 3.10 - Other libraries involved: HuggingFace Transformers
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6294/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6294/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6293
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6293/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6293/comments
https://api.github.com/repos/huggingface/datasets/issues/6293/events
https://github.com/huggingface/datasets/issues/6293
1,937,238,047
I_kwDODunzps5zd-gf
6,293
Choose columns to stream parquet data in streaming mode
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
null
[]
[]
2023-10-11T08:59:36
2023-10-11T16:21:38
2023-10-11T16:21:38
MEMBER
null
null
Currently passing columns= to load_dataset in streaming mode fails ``` Tried to load parquet data with columns '['link']' with mismatching features '{'caption': Value(dtype='string', id=None), 'image': {'bytes': Value(dtype='binary', id=None), 'path': Value(dtype='null', id=None)}, 'link': Value(dtype='string', id=None), 'message_id': Value(dtype='string', id=None), 'timestamp': Value(dtype='string', id=None)}' ``` similar to https://github.com/huggingface/datasets/issues/6039 reported at https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/3#65259a09617407d4520f4ad9
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6293/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6293/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6292
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6292/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6292/comments
https://api.github.com/repos/huggingface/datasets/issues/6292/events
https://github.com/huggingface/datasets/issues/6292
1,937,050,470
I_kwDODunzps5zdQtm
6,292
how to load the image of dtype float32 or float64
{ "login": "wanglaofei", "id": 26437644, "node_id": "MDQ6VXNlcjI2NDM3NjQ0", "avatar_url": "https://avatars.githubusercontent.com/u/26437644?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wanglaofei", "html_url": "https://github.com/wanglaofei", "followers_url": "https://api.github.com/users/wanglaofei/followers", "following_url": "https://api.github.com/users/wanglaofei/following{/other_user}", "gists_url": "https://api.github.com/users/wanglaofei/gists{/gist_id}", "starred_url": "https://api.github.com/users/wanglaofei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wanglaofei/subscriptions", "organizations_url": "https://api.github.com/users/wanglaofei/orgs", "repos_url": "https://api.github.com/users/wanglaofei/repos", "events_url": "https://api.github.com/users/wanglaofei/events{/privacy}", "received_events_url": "https://api.github.com/users/wanglaofei/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Hi! Can you provide a code that reproduces the issue?\r\n\r\nAlso, which version of `datasets` are you using? You can check this by running `python -c \"import datasets; print(datasets.__version__)\"` inside the env. We added support for \"float images\" in `datasets 2.9`." ]
2023-10-11T07:27:16
2023-10-11T13:19:11
null
NONE
null
null
_FEATURES = datasets.Features( { "image": datasets.Image(), "text": datasets.Value("string"), }, ) The datasets builder seems only support the unit8 data. How to load the float dtype data?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6292/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6292/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6291
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6291/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6291/comments
https://api.github.com/repos/huggingface/datasets/issues/6291/events
https://github.com/huggingface/datasets/issues/6291
1,936,129,871
I_kwDODunzps5zZv9P
6,291
Casting type from Array2D int to Array2D float crashes
{ "login": "AlanBlanchet", "id": 22567306, "node_id": "MDQ6VXNlcjIyNTY3MzA2", "avatar_url": "https://avatars.githubusercontent.com/u/22567306?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AlanBlanchet", "html_url": "https://github.com/AlanBlanchet", "followers_url": "https://api.github.com/users/AlanBlanchet/followers", "following_url": "https://api.github.com/users/AlanBlanchet/following{/other_user}", "gists_url": "https://api.github.com/users/AlanBlanchet/gists{/gist_id}", "starred_url": "https://api.github.com/users/AlanBlanchet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AlanBlanchet/subscriptions", "organizations_url": "https://api.github.com/users/AlanBlanchet/orgs", "repos_url": "https://api.github.com/users/AlanBlanchet/repos", "events_url": "https://api.github.com/users/AlanBlanchet/events{/privacy}", "received_events_url": "https://api.github.com/users/AlanBlanchet/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Thanks for reporting! I've opened a PR with a fix" ]
2023-10-10T20:10:10
2023-10-13T13:45:31
2023-10-13T13:45:31
NONE
null
null
### Describe the bug I am on a school project and the initial type for feature annotations are `Array2D(shape=(None, 4))`. I am trying to cast this type to a `float64` and pyarrow gives me this error : ``` Traceback (most recent call last): File "/home/alan/dev/ClassezDesImagesAvecDesAlgorithmesDeDeeplearning/src/sdd/data/dataset.py", line 141, in <module> dataset = StanfordDogsDataset(size, 5).original(True).demo() File "<attrs generated init __main__.StanfordDogsDataset>", line 4, in __init__ File "/home/alan/dev/ClassezDesImagesAvecDesAlgorithmesDeDeeplearning/src/sdd/data/dataset.py", line 33, in __attrs_post_init__ self.dataset = self.dataset.cast_column( File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/fingerprint.py", line 511, in wrapper out = func(dataset, *args, **kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2110, in cast_column return self.cast(features) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2055, in cast dataset = dataset.map( File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3097, in map for rank, done, content in Dataset._map_single(**dataset_kwargs): File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3474, in _map_single batch = apply_function_on_filtered_inputs( File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3353, in apply_function_on_filtered_inputs processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 2328, in table_cast return cast_table_to_schema(table, schema) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 2287, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 2287, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1831, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1831, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 2143, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/alan/.cache/pypoetry/virtualenvs/sdd-2XWLAjSi-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 1369, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: double>>, got list<item: list<item: int32>> ``` ### Steps to reproduce the bug ```python dataset = datasets.load_dataset("Alanox/stanford-dogs", split="full") dataset = dataset.cast_column("annotations", Array2D((None, 4), "float64")) ``` ### Expected behavior It should simply cast the column feature type to a `float64` without error ### Environment info datasets == 2.14.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6291/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6291/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6290
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6290/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6290/comments
https://api.github.com/repos/huggingface/datasets/issues/6290/events
https://github.com/huggingface/datasets/issues/6290
1,935,629,679
I_kwDODunzps5zX11v
6,290
Incremental dataset (e.g. `.push_to_hub(..., append=True)`)
{ "login": "Wauplin", "id": 11801849, "node_id": "MDQ6VXNlcjExODAxODQ5", "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Wauplin", "html_url": "https://github.com/Wauplin", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "repos_url": "https://api.github.com/users/Wauplin/repos", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[ "Yea I think waiting for #6269 would be best, or branching from it. For reference, this [PR](https://github.com/LAION-AI/Discord-Scrapers/pull/2) is progressing pretty well which will do similar using the hf hub for our LAION dataset bot https://github.com/LAION-AI/Discord-Scrapers/pull/2. " ]
2023-10-10T15:18:03
2023-10-13T16:05:26
null
CONTRIBUTOR
null
null
### Feature request Have the possibility to do `ds.push_to_hub(..., append=True)`. ### Motivation Requested in this [comment](https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/3#65252597c4edc168202a5eaa) and this [comment](https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/4#6524f675c9607bdffb208d8f). Discussed internally on [slack](https://huggingface.slack.com/archives/C02EMARJ65P/p1696950642610639?thread_ts=1690554266.830949&cid=C02EMARJ65P). ### Your contribution What I suggest to do for parquet datasets is to use `CommitOperationCopy` + `CommitOperationDelete` from `huggingface_hub`: 1. list files 2. copy files from parquet-0001-of-0004 to parquet-0001-of-0005 3. delete files like parquet-0001-of-0004 4. generate + add last parquet file parquet-0005-of-0005 => make a single commit with all commit operations at once I think it should be quite straightforward to implement. Happy to review a PR (maybe conflicting with the ongoing "1 commit push_to_hub" PR https://github.com/huggingface/datasets/pull/6269)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6290/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6290/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6289
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6289/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6289/comments
https://api.github.com/repos/huggingface/datasets/issues/6289/events
https://github.com/huggingface/datasets/pull/6289
1,935,628,506
PR_kwDODunzps5cZiay
6,289
testing doc-builder
{ "login": "mishig25", "id": 11827707, "node_id": "MDQ6VXNlcjExODI3NzA3", "avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mishig25", "html_url": "https://github.com/mishig25", "followers_url": "https://api.github.com/users/mishig25/followers", "following_url": "https://api.github.com/users/mishig25/following{/other_user}", "gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}", "starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mishig25/subscriptions", "organizations_url": "https://api.github.com/users/mishig25/orgs", "repos_url": "https://api.github.com/users/mishig25/repos", "events_url": "https://api.github.com/users/mishig25/events{/privacy}", "received_events_url": "https://api.github.com/users/mishig25/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006424 / 0.011353 (-0.004929) | 0.003960 / 0.011008 (-0.007048) | 0.084022 / 0.038508 (0.045514) | 0.070770 / 0.023109 (0.047661) | 0.320525 / 0.275898 (0.044627) | 0.354507 / 0.323480 (0.031027) | 0.003939 / 0.007986 (-0.004047) | 0.004161 / 0.004328 (-0.000168) | 0.064754 / 0.004250 (0.060503) | 0.053630 / 0.037052 (0.016578) | 0.323948 / 0.258489 (0.065459) | 0.376908 / 0.293841 (0.083067) | 0.031063 / 0.128546 (-0.097483) | 0.008470 / 0.075646 (-0.067177) | 0.288110 / 0.419271 (-0.131161) | 0.053062 / 0.043533 (0.009529) | 0.328176 / 0.255139 (0.073037) | 0.345203 / 0.283200 (0.062003) | 0.024579 / 0.141683 (-0.117104) | 1.471649 / 1.452155 (0.019495) | 1.561458 / 1.492716 (0.068742) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223591 / 0.018006 (0.205585) | 0.450758 / 0.000490 (0.450269) | 0.003751 / 0.000200 (0.003552) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027859 / 0.037411 (-0.009552) | 0.080607 / 0.014526 (0.066081) | 0.093835 / 0.176557 (-0.082722) | 0.150466 / 0.737135 (-0.586669) | 0.094381 / 0.296338 (-0.201957) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394011 / 0.215209 (0.178802) | 3.918318 / 2.077655 (1.840664) | 1.928684 / 1.504120 (0.424564) | 1.765944 / 1.541195 (0.224749) | 1.784716 / 1.468490 (0.316226) | 0.487189 / 4.584777 (-4.097588) | 3.537705 / 3.745712 (-0.208008) | 3.312162 / 5.269862 (-1.957699) | 2.024520 / 4.565676 (-2.541156) | 0.057571 / 0.424275 (-0.366704) | 0.007203 / 0.007607 (-0.000404) | 0.467253 / 0.226044 (0.241208) | 4.659934 / 2.268929 (2.391005) | 2.377764 / 55.444624 (-53.066860) | 2.021984 / 6.876477 (-4.854492) | 2.197468 / 2.142072 (0.055395) | 0.586415 / 4.805227 (-4.218812) | 0.136636 / 6.500664 (-6.364028) | 0.060885 / 0.075469 (-0.014584) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.241879 / 1.841788 (-0.599908) | 18.719327 / 8.074308 (10.645019) | 14.408689 / 10.191392 (4.217297) | 0.155778 / 0.680424 (-0.524646) | 0.018475 / 0.534201 (-0.515726) | 0.392316 / 0.579283 (-0.186967) | 0.409803 / 0.434364 (-0.024561) | 0.458701 / 0.540337 (-0.081637) | 0.630561 / 1.386936 (-0.756375) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006541 / 0.011353 (-0.004812) | 0.003915 / 0.011008 (-0.007094) | 0.064292 / 0.038508 (0.025784) | 0.069174 / 0.023109 (0.046065) | 0.402048 / 0.275898 (0.126150) | 0.423960 / 0.323480 (0.100480) | 0.005355 / 0.007986 (-0.002631) | 0.003295 / 0.004328 (-0.001033) | 0.065212 / 0.004250 (0.060962) | 0.054292 / 0.037052 (0.017240) | 0.402930 / 0.258489 (0.144441) | 0.441840 / 0.293841 (0.147999) | 0.032732 / 0.128546 (-0.095814) | 0.008565 / 0.075646 (-0.067081) | 0.070705 / 0.419271 (-0.348567) | 0.047908 / 0.043533 (0.004375) | 0.401400 / 0.255139 (0.146261) | 0.422682 / 0.283200 (0.139483) | 0.022244 / 0.141683 (-0.119439) | 1.532018 / 1.452155 (0.079864) | 1.597955 / 1.492716 (0.105239) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226277 / 0.018006 (0.208271) | 0.475578 / 0.000490 (0.475088) | 0.005456 / 0.000200 (0.005256) | 0.000140 / 0.000054 (0.000085) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033111 / 0.037411 (-0.004300) | 0.093138 / 0.014526 (0.078613) | 0.104619 / 0.176557 (-0.071937) | 0.157972 / 0.737135 (-0.579164) | 0.105017 / 0.296338 (-0.191321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441771 / 0.215209 (0.226562) | 4.396981 / 2.077655 (2.319326) | 2.410745 / 1.504120 (0.906625) | 2.258359 / 1.541195 (0.717164) | 2.372628 / 1.468490 (0.904138) | 0.491411 / 4.584777 (-4.093366) | 3.650084 / 3.745712 (-0.095628) | 3.279557 / 5.269862 (-1.990304) | 2.011377 / 4.565676 (-2.554300) | 0.058283 / 0.424275 (-0.365992) | 0.007435 / 0.007607 (-0.000172) | 0.507212 / 0.226044 (0.281167) | 5.080104 / 2.268929 (2.811176) | 2.822680 / 55.444624 (-52.621945) | 2.507608 / 6.876477 (-4.368869) | 2.719349 / 2.142072 (0.577277) | 0.586157 / 4.805227 (-4.219071) | 0.132851 / 6.500664 (-6.367813) | 0.059944 / 0.075469 (-0.015525) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.374801 / 1.841788 (-0.466987) | 19.089359 / 8.074308 (11.015051) | 14.525861 / 10.191392 (4.334469) | 0.184758 / 0.680424 (-0.495666) | 0.020206 / 0.534201 (-0.513995) | 0.397309 / 0.579283 (-0.181975) | 0.418120 / 0.434364 (-0.016244) | 0.471817 / 0.540337 (-0.068520) | 0.681691 / 1.386936 (-0.705245) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2076cb857e90cf7a6050bba230f586993c5e034a \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._" ]
2023-10-10T15:17:29
2023-10-13T08:57:14
2023-10-13T08:56:48
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6289", "html_url": "https://github.com/huggingface/datasets/pull/6289", "diff_url": "https://github.com/huggingface/datasets/pull/6289.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6289.patch", "merged_at": null }
testing https://github.com/huggingface/doc-builder/pull/426
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6289/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6289/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6288
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6288/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6288/comments
https://api.github.com/repos/huggingface/datasets/issues/6288/events
https://github.com/huggingface/datasets/issues/6288
1,935,005,457
I_kwDODunzps5zVdcR
6,288
Dataset.from_pandas with a DataFrame of PIL.Images
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[ "A duplicate of https://github.com/huggingface/datasets/issues/4796.\r\n\r\nWe could get this for free by implementing the `Image` feature as an extension type, as shown in [this](https://colab.research.google.com/drive/1Uzm_tXVpGTwbzleDConWcNjacwO1yxE4?usp=sharing) Colab (example with UUIDs).\r\n", "+1 to this\r\nCalling this line with a df that contains a PIL image (as they are returned from load_dataset)\r\n`ds = Dataset.from_pandas(df)`\r\nResults in this error:\r\n`ArrowInvalid: ('Could not convert <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1024x1024 at 0x2B41F2D70> with type PngImageFile: did not recognize Python value type when inferring an Arrow data type', 'Conversion failed for column image with type object')`" ]
2023-10-10T10:29:16
2023-10-20T18:23:05
null
MEMBER
null
null
Currently type inference doesn't know what to do with a Pandas Series of PIL.Image objects, though it would be nice to get a Dataset with the Image type this way
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6288/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6288/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6287
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6287/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6287/comments
https://api.github.com/repos/huggingface/datasets/issues/6287/events
https://github.com/huggingface/datasets/issues/6287
1,932,758,192
I_kwDODunzps5zM4yw
6,287
map() not recognizing "text"
{ "login": "EngineerKhan", "id": 5688359, "node_id": "MDQ6VXNlcjU2ODgzNTk=", "avatar_url": "https://avatars.githubusercontent.com/u/5688359?v=4", "gravatar_id": "", "url": "https://api.github.com/users/EngineerKhan", "html_url": "https://github.com/EngineerKhan", "followers_url": "https://api.github.com/users/EngineerKhan/followers", "following_url": "https://api.github.com/users/EngineerKhan/following{/other_user}", "gists_url": "https://api.github.com/users/EngineerKhan/gists{/gist_id}", "starred_url": "https://api.github.com/users/EngineerKhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/EngineerKhan/subscriptions", "organizations_url": "https://api.github.com/users/EngineerKhan/orgs", "repos_url": "https://api.github.com/users/EngineerKhan/repos", "events_url": "https://api.github.com/users/EngineerKhan/events{/privacy}", "received_events_url": "https://api.github.com/users/EngineerKhan/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "There is no \"text\" column in the `amazon_reviews_multi`, hence the `KeyError`. You can get the column names by running `dataset.column_names`." ]
2023-10-09T10:27:30
2023-10-11T20:28:45
2023-10-11T20:28:45
NONE
null
null
### Describe the bug The [map() documentation](https://huggingface.co/docs/datasets/v2.14.5/en/package_reference/main_classes#datasets.Dataset.map) reads: ` ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)` I have been trying to reproduce it in my code as: `tokenizedDataset = dataset.map(lambda x: tokenizer(x['text']), batched=True)` But it doesn't work as it throws the error: > KeyError: 'text' Can you please guide me on how to fix it? ### Steps to reproduce the bug 1. `from datasets import load_dataset dataset = load_dataset("amazon_reviews_multi")` 2. Then this code: `from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")` 3. The line I quoted above (which I have been trying) ### Expected behavior As mentioned in the documentation, it should run without any error and map the tokenization on the whole dataset. ### Environment info Python 3.10.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6287/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6287/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6286
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6286/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6286/comments
https://api.github.com/repos/huggingface/datasets/issues/6286/events
https://github.com/huggingface/datasets/pull/6286
1,932,640,128
PR_kwDODunzps5cPKNK
6,286
Create DefunctDatasetError
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009157 / 0.011353 (-0.002195) | 0.004275 / 0.011008 (-0.006734) | 0.099341 / 0.038508 (0.060833) | 0.080634 / 0.023109 (0.057525) | 0.373598 / 0.275898 (0.097700) | 0.445048 / 0.323480 (0.121568) | 0.006541 / 0.007986 (-0.001444) | 0.003550 / 0.004328 (-0.000779) | 0.071034 / 0.004250 (0.066784) | 0.062637 / 0.037052 (0.025585) | 0.379110 / 0.258489 (0.120621) | 0.447896 / 0.293841 (0.154055) | 0.047739 / 0.128546 (-0.080807) | 0.012575 / 0.075646 (-0.063071) | 0.332314 / 0.419271 (-0.086957) | 0.065500 / 0.043533 (0.021967) | 0.365919 / 0.255139 (0.110780) | 0.438611 / 0.283200 (0.155412) | 0.034243 / 0.141683 (-0.107440) | 1.628034 / 1.452155 (0.175880) | 1.802970 / 1.492716 (0.310253) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224528 / 0.018006 (0.206522) | 0.482094 / 0.000490 (0.481604) | 0.012752 / 0.000200 (0.012552) | 0.000570 / 0.000054 (0.000515) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025456 / 0.037411 (-0.011956) | 0.082281 / 0.014526 (0.067756) | 0.100050 / 0.176557 (-0.076506) | 0.156931 / 0.737135 (-0.580204) | 0.108229 / 0.296338 (-0.188110) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.560688 / 0.215209 (0.345479) | 5.171711 / 2.077655 (3.094056) | 2.273178 / 1.504120 (0.769058) | 1.948158 / 1.541195 (0.406963) | 1.879744 / 1.468490 (0.411254) | 0.789216 / 4.584777 (-3.795561) | 4.529370 / 3.745712 (0.783658) | 4.008743 / 5.269862 (-1.261118) | 2.633555 / 4.565676 (-1.932121) | 0.085411 / 0.424275 (-0.338864) | 0.007256 / 0.007607 (-0.000351) | 0.623254 / 0.226044 (0.397209) | 6.327256 / 2.268929 (4.058327) | 2.911787 / 55.444624 (-52.532837) | 2.240610 / 6.876477 (-4.635867) | 2.352811 / 2.142072 (0.210738) | 0.930114 / 4.805227 (-3.875114) | 0.185028 / 6.500664 (-6.315636) | 0.062115 / 0.075469 (-0.013354) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.394261 / 1.841788 (-0.447527) | 19.689376 / 8.074308 (11.615067) | 17.242289 / 10.191392 (7.050897) | 0.209122 / 0.680424 (-0.471302) | 0.027205 / 0.534201 (-0.506996) | 0.408613 / 0.579283 (-0.170670) | 0.503836 / 0.434364 (0.069472) | 0.485179 / 0.540337 (-0.055158) | 0.674333 / 1.386936 (-0.712603) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007506 / 0.011353 (-0.003847) | 0.004683 / 0.011008 (-0.006325) | 0.067584 / 0.038508 (0.029076) | 0.065635 / 0.023109 (0.042525) | 0.458814 / 0.275898 (0.182916) | 0.477549 / 0.323480 (0.154069) | 0.005212 / 0.007986 (-0.002774) | 0.003393 / 0.004328 (-0.000936) | 0.075307 / 0.004250 (0.071057) | 0.051989 / 0.037052 (0.014937) | 0.484229 / 0.258489 (0.225740) | 0.470889 / 0.293841 (0.177048) | 0.043528 / 0.128546 (-0.085018) | 0.014685 / 0.075646 (-0.060962) | 0.084199 / 0.419271 (-0.335073) | 0.053970 / 0.043533 (0.010437) | 0.432362 / 0.255139 (0.177223) | 0.467472 / 0.283200 (0.184272) | 0.031109 / 0.141683 (-0.110574) | 1.525938 / 1.452155 (0.073784) | 1.631993 / 1.492716 (0.139276) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200196 / 0.018006 (0.182190) | 0.479316 / 0.000490 (0.478827) | 0.010146 / 0.000200 (0.009947) | 0.000118 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027911 / 0.037411 (-0.009500) | 0.089720 / 0.014526 (0.075194) | 0.097000 / 0.176557 (-0.079557) | 0.157549 / 0.737135 (-0.579587) | 0.098247 / 0.296338 (-0.198092) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.581401 / 0.215209 (0.366192) | 5.703829 / 2.077655 (3.626174) | 2.688272 / 1.504120 (1.184152) | 2.321691 / 1.541195 (0.780496) | 2.355987 / 1.468490 (0.887497) | 0.759109 / 4.584777 (-3.825668) | 4.711288 / 3.745712 (0.965576) | 4.093019 / 5.269862 (-1.176843) | 2.648240 / 4.565676 (-1.917437) | 0.087839 / 0.424275 (-0.336436) | 0.007060 / 0.007607 (-0.000547) | 0.702783 / 0.226044 (0.476739) | 6.986924 / 2.268929 (4.717996) | 3.365970 / 55.444624 (-52.078654) | 2.670876 / 6.876477 (-4.205600) | 2.776431 / 2.142072 (0.634358) | 0.920005 / 4.805227 (-3.885222) | 0.197521 / 6.500664 (-6.303143) | 0.069974 / 0.075469 (-0.005495) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.596947 / 1.841788 (-0.244841) | 20.606007 / 8.074308 (12.531699) | 18.437425 / 10.191392 (8.246033) | 0.222445 / 0.680424 (-0.457978) | 0.028610 / 0.534201 (-0.505591) | 0.419748 / 0.579283 (-0.159535) | 0.513409 / 0.434364 (0.079045) | 0.487517 / 0.540337 (-0.052820) | 0.706637 / 1.386936 (-0.680299) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d664439eb82d62889c21c5236a5869dae75ae779 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007744 / 0.011353 (-0.003609) | 0.004678 / 0.011008 (-0.006330) | 0.101243 / 0.038508 (0.062735) | 0.085653 / 0.023109 (0.062543) | 0.383772 / 0.275898 (0.107874) | 0.422151 / 0.323480 (0.098671) | 0.004566 / 0.007986 (-0.003419) | 0.003900 / 0.004328 (-0.000429) | 0.077778 / 0.004250 (0.073528) | 0.063761 / 0.037052 (0.026709) | 0.385505 / 0.258489 (0.127016) | 0.436186 / 0.293841 (0.142345) | 0.036172 / 0.128546 (-0.092374) | 0.009935 / 0.075646 (-0.065711) | 0.341434 / 0.419271 (-0.077837) | 0.061866 / 0.043533 (0.018333) | 0.385020 / 0.255139 (0.129881) | 0.399455 / 0.283200 (0.116256) | 0.029324 / 0.141683 (-0.112358) | 1.784749 / 1.452155 (0.332594) | 1.845926 / 1.492716 (0.353209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266322 / 0.018006 (0.248316) | 0.508708 / 0.000490 (0.508218) | 0.013680 / 0.000200 (0.013480) | 0.000868 / 0.000054 (0.000814) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033887 / 0.037411 (-0.003525) | 0.096709 / 0.014526 (0.082183) | 0.109472 / 0.176557 (-0.067084) | 0.174422 / 0.737135 (-0.562713) | 0.110830 / 0.296338 (-0.185509) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457533 / 0.215209 (0.242324) | 4.615229 / 2.077655 (2.537575) | 2.418820 / 1.504120 (0.914700) | 2.181079 / 1.541195 (0.639884) | 2.229164 / 1.468490 (0.760674) | 0.554861 / 4.584777 (-4.029916) | 4.323787 / 3.745712 (0.578075) | 3.769396 / 5.269862 (-1.500466) | 2.376850 / 4.565676 (-2.188826) | 0.065030 / 0.424275 (-0.359245) | 0.008397 / 0.007607 (0.000790) | 0.541109 / 0.226044 (0.315065) | 5.477540 / 2.268929 (3.208612) | 2.957049 / 55.444624 (-52.487576) | 2.511732 / 6.876477 (-4.364744) | 2.703953 / 2.142072 (0.561881) | 0.660822 / 4.805227 (-4.144405) | 0.147035 / 6.500664 (-6.353630) | 0.066045 / 0.075469 (-0.009424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.526481 / 1.841788 (-0.315307) | 22.020256 / 8.074308 (13.945948) | 16.854566 / 10.191392 (6.663174) | 0.192958 / 0.680424 (-0.487466) | 0.021505 / 0.534201 (-0.512696) | 0.462867 / 0.579283 (-0.116416) | 0.514813 / 0.434364 (0.080449) | 0.546147 / 0.540337 (0.005809) | 0.767853 / 1.386936 (-0.619083) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007770 / 0.011353 (-0.003583) | 0.004671 / 0.011008 (-0.006337) | 0.080862 / 0.038508 (0.042354) | 0.087049 / 0.023109 (0.063940) | 0.479497 / 0.275898 (0.203599) | 0.559787 / 0.323480 (0.236307) | 0.007168 / 0.007986 (-0.000818) | 0.003829 / 0.004328 (-0.000500) | 0.079018 / 0.004250 (0.074768) | 0.067359 / 0.037052 (0.030307) | 0.516140 / 0.258489 (0.257651) | 0.547000 / 0.293841 (0.253159) | 0.037955 / 0.128546 (-0.090591) | 0.010007 / 0.075646 (-0.065639) | 0.087673 / 0.419271 (-0.331598) | 0.059309 / 0.043533 (0.015777) | 0.473920 / 0.255139 (0.218781) | 0.529216 / 0.283200 (0.246017) | 0.028236 / 0.141683 (-0.113447) | 1.771127 / 1.452155 (0.318972) | 1.918878 / 1.492716 (0.426162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242010 / 0.018006 (0.224004) | 0.494944 / 0.000490 (0.494454) | 0.006319 / 0.000200 (0.006119) | 0.000111 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039220 / 0.037411 (0.001809) | 0.113805 / 0.014526 (0.099279) | 0.125704 / 0.176557 (-0.050853) | 0.189198 / 0.737135 (-0.547937) | 0.126334 / 0.296338 (-0.170004) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.502226 / 0.215209 (0.287017) | 5.039133 / 2.077655 (2.961478) | 2.782352 / 1.504120 (1.278232) | 2.587654 / 1.541195 (1.046460) | 2.692588 / 1.468490 (1.224098) | 0.585672 / 4.584777 (-3.999105) | 4.553078 / 3.745712 (0.807366) | 3.864739 / 5.269862 (-1.405123) | 2.536109 / 4.565676 (-2.029567) | 0.069567 / 0.424275 (-0.354708) | 0.008749 / 0.007607 (0.001142) | 0.620645 / 0.226044 (0.394601) | 6.247286 / 2.268929 (3.978357) | 3.345293 / 55.444624 (-52.099332) | 2.873970 / 6.876477 (-4.002507) | 3.123190 / 2.142072 (0.981118) | 0.687391 / 4.805227 (-4.117837) | 0.159046 / 6.500664 (-6.341618) | 0.071019 / 0.075469 (-0.004450) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.728724 / 1.841788 (-0.113064) | 22.828390 / 8.074308 (14.754082) | 17.305225 / 10.191392 (7.113833) | 0.176571 / 0.680424 (-0.503853) | 0.023837 / 0.534201 (-0.510364) | 0.467935 / 0.579283 (-0.111348) | 0.503701 / 0.434364 (0.069337) | 0.558140 / 0.540337 (0.017803) | 0.789326 / 1.386936 (-0.597610) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7d357eb4b499cd530c3f4e626f2825a50ee6c8aa \"CML watermark\")\n" ]
2023-10-09T09:23:23
2023-10-10T07:13:22
2023-10-10T07:03:04
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6286", "html_url": "https://github.com/huggingface/datasets/pull/6286", "diff_url": "https://github.com/huggingface/datasets/pull/6286.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6286.patch", "merged_at": "2023-10-10T07:03:04" }
Create `DefunctDatasetError` as a specific error to be raised when a dataset is defunct and no longer accessible. See Hub discussion: https://huggingface.co/datasets/the_pile_books3/discussions/7#6523c13a94f3a1a2092d251b
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6286/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6286/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6285
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6285/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6285/comments
https://api.github.com/repos/huggingface/datasets/issues/6285/events
https://github.com/huggingface/datasets/issues/6285
1,932,306,325
I_kwDODunzps5zLKeV
6,285
TypeError: expected str, bytes or os.PathLike object, not dict
{ "login": "andysingal", "id": 20493493, "node_id": "MDQ6VXNlcjIwNDkzNDkz", "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "gravatar_id": "", "url": "https://api.github.com/users/andysingal", "html_url": "https://github.com/andysingal", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "organizations_url": "https://api.github.com/users/andysingal/orgs", "repos_url": "https://api.github.com/users/andysingal/repos", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "received_events_url": "https://api.github.com/users/andysingal/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "You should be able to load the images by modifying the `load_dataset` call like this:\r\n```python\r\ndataset = load_dataset(\"imagefolder\", data_dir=\"/content/datasets/PotholeDetectionYOLOv8-1\")\r\n```\r\n\r\nThe `imagefolder` builder expects the image files to be in `path/label/image_file` (e.g. .`.../train/dog/image_1.jpg`), so the solution for the labels in your case is to create metadata files (one for each split; as explained [here](https://huggingface.co/docs/datasets/image_dataset#imagefolder)) that map the images to their labels.", "> You should be able to load the images by modifying the `load_dataset` call like this:\r\n> \r\n> ```python\r\n> dataset = load_dataset(\"imagefolder\", data_dir=\"/content/datasets/PotholeDetectionYOLOv8-1\")\r\n> ```\r\n> \r\n> The `imagefolder` builder expects the image files to be in `path/label/image_file` (e.g. .`.../train/dog/image_1.jpg`), so the solution for the labels in your case is to create metadata files (one for each split; as explained [here](https://huggingface.co/docs/datasets/image_dataset#imagefolder)) that map the images to their labels.\r\n\r\nI tried like this but only uploads images and not labels, Andyrasika/potholes-dataset", "As explained in my previous comment, you need to define metadata files to load the labels or update the paths to be in the format `train/label/image` (`train- image /n -labels` is not supported by the loader).", "I downloaded my file after annotating using roboflow . It gives train-\r\nimages, labels , test- images, labels , valid- images, labels . I hope it\r\ngives you an idea of the dataset . Please advise on this dataset\r\n\r\nOn Tue, Oct 10, 2023 at 18:12 Mario Šaško ***@***.***> wrote:\r\n\r\n> As explained in my previous comment, you need to define metadata files to\r\n> load the labels or update the paths to be in the format train/label/image\r\n> (train- image /n -labels is not supported by the loader).\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6285#issuecomment-1755335215>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AE4LJNN56FWWTSBYTSTUWHLX6U7CVAVCNFSM6AAAAAA5YHCSTGVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONJVGMZTKMRRGU>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n" ]
2023-10-09T04:56:26
2023-10-10T13:17:33
null
NONE
null
null
### Describe the bug my dataset is in form : train- image /n -labels and tried the code: ``` from datasets import load_dataset data_files = { "train": "/content/datasets/PotholeDetectionYOLOv8-1/train/", "validation": "/content/datasets/PotholeDetectionYOLOv8-1/valid/", "test": "/content/datasets/PotholeDetectionYOLOv8-1/test/" } dataset = load_dataset("imagefolder", data_dir=data_files) dataset ``` got error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-29-2ef1926f73d9>](https://localhost:8080/#) in <cell line: 8>() 6 "test": "/content/datasets/PotholeDetectionYOLOv8-1/test/" 7 } ----> 8 dataset = load_dataset("imagefolder", data_dir=data_files) 9 dataset 6 frames [/usr/lib/python3.10/pathlib.py](https://localhost:8080/#) in _parse_args(cls, args) 576 parts += a._parts 577 else: --> 578 a = os.fspath(a) 579 if isinstance(a, str): 580 # Force-cast str subclasses to str (issue #21127) TypeError: expected str, bytes or os.PathLike object, not dict ``` ### Steps to reproduce the bug as share above ### Expected behavior load images and labels , but my dataset only uploads images - https://huggingface.co/datasets/Andyrasika/potholes-dataset ### Environment info colab pro
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6285/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6285/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6284
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6284/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6284/comments
https://api.github.com/repos/huggingface/datasets/issues/6284/events
https://github.com/huggingface/datasets/issues/6284
1,929,551,712
I_kwDODunzps5zAp9g
6,284
Add Belebele multiple-choice machine reading comprehension (MRC) dataset
{ "login": "rajveer43", "id": 64583161, "node_id": "MDQ6VXNlcjY0NTgzMTYx", "avatar_url": "https://avatars.githubusercontent.com/u/64583161?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rajveer43", "html_url": "https://github.com/rajveer43", "followers_url": "https://api.github.com/users/rajveer43/followers", "following_url": "https://api.github.com/users/rajveer43/following{/other_user}", "gists_url": "https://api.github.com/users/rajveer43/gists{/gist_id}", "starred_url": "https://api.github.com/users/rajveer43/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rajveer43/subscriptions", "organizations_url": "https://api.github.com/users/rajveer43/orgs", "repos_url": "https://api.github.com/users/rajveer43/repos", "events_url": "https://api.github.com/users/rajveer43/events{/privacy}", "received_events_url": "https://api.github.com/users/rajveer43/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
[ "This dataset is already available on the Hub: https://huggingface.co/datasets/facebook/belebele.\r\n" ]
2023-10-06T06:58:03
2023-10-06T13:26:51
2023-10-06T13:26:51
NONE
null
null
### Feature request Belebele is a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. This dataset enables the evaluation of mono- and multi-lingual models in high-, medium-, and low-resource languages. Each question has four multiple-choice answers and is linked to a short passage from the [FLORES-200](https://github.com/facebookresearch/flores/tree/main/flores200) dataset. The human annotation procedure was carefully curated to create questions that discriminate between different levels of generalizable language comprehension and is reinforced by extensive quality checks. While all questions directly relate to the passage, the English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. Belebele opens up new avenues for evaluating and analyzing the multilingual abilities of language models and NLP systems. Please refer to paper for more details, [The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants](https://arxiv.org/abs/2308.16884). ## Composition - 900 questions per language variant - 488 distinct passages, there are 1-2 associated questions for each. - For each question, there is 4 multiple-choice answers, exactly 1 of which is correct. - 122 language/language variants (including English). - 900 x 122 = 109,800 total questions. ### Motivation official repo https://github.com/facebookresearch/belebele ### Your contribution -
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6284/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6284/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6283
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6283/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6283/comments
https://api.github.com/repos/huggingface/datasets/issues/6283/events
https://github.com/huggingface/datasets/pull/6283
1,928,552,257
PR_kwDODunzps5cBlKq
6,283
Fix array cast/embed with null values
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006278 / 0.011353 (-0.005075) | 0.003692 / 0.011008 (-0.007316) | 0.080464 / 0.038508 (0.041956) | 0.064751 / 0.023109 (0.041642) | 0.318586 / 0.275898 (0.042688) | 0.351435 / 0.323480 (0.027955) | 0.005044 / 0.007986 (-0.002942) | 0.003034 / 0.004328 (-0.001295) | 0.063710 / 0.004250 (0.059460) | 0.050607 / 0.037052 (0.013555) | 0.318491 / 0.258489 (0.060001) | 0.365688 / 0.293841 (0.071847) | 0.027818 / 0.128546 (-0.100729) | 0.008119 / 0.075646 (-0.067527) | 0.262141 / 0.419271 (-0.157131) | 0.044710 / 0.043533 (0.001177) | 0.318875 / 0.255139 (0.063736) | 0.344559 / 0.283200 (0.061360) | 0.022861 / 0.141683 (-0.118822) | 1.452402 / 1.452155 (0.000247) | 1.502340 / 1.492716 (0.009624) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219355 / 0.018006 (0.201349) | 0.433311 / 0.000490 (0.432822) | 0.006545 / 0.000200 (0.006345) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024538 / 0.037411 (-0.012874) | 0.073346 / 0.014526 (0.058821) | 0.083824 / 0.176557 (-0.092733) | 0.145176 / 0.737135 (-0.591959) | 0.085941 / 0.296338 (-0.210397) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395153 / 0.215209 (0.179944) | 3.944734 / 2.077655 (1.867080) | 1.883910 / 1.504120 (0.379790) | 1.690560 / 1.541195 (0.149365) | 1.775180 / 1.468490 (0.306690) | 0.506873 / 4.584777 (-4.077904) | 3.111095 / 3.745712 (-0.634617) | 2.915358 / 5.269862 (-2.354504) | 1.892886 / 4.565676 (-2.672791) | 0.058690 / 0.424275 (-0.365585) | 0.006550 / 0.007607 (-0.001057) | 0.463372 / 0.226044 (0.237328) | 4.640511 / 2.268929 (2.371583) | 2.321051 / 55.444624 (-53.123573) | 1.986330 / 6.876477 (-4.890147) | 2.160046 / 2.142072 (0.017973) | 0.597833 / 4.805227 (-4.207394) | 0.127946 / 6.500664 (-6.372718) | 0.059709 / 0.075469 (-0.015760) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278966 / 1.841788 (-0.562822) | 17.863102 / 8.074308 (9.788794) | 13.896057 / 10.191392 (3.704665) | 0.147512 / 0.680424 (-0.532912) | 0.016771 / 0.534201 (-0.517430) | 0.335260 / 0.579283 (-0.244024) | 0.383019 / 0.434364 (-0.051345) | 0.384821 / 0.540337 (-0.155516) | 0.550143 / 1.386936 (-0.836793) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006234 / 0.011353 (-0.005118) | 0.003695 / 0.011008 (-0.007313) | 0.062654 / 0.038508 (0.024146) | 0.059397 / 0.023109 (0.036287) | 0.458375 / 0.275898 (0.182477) | 0.488951 / 0.323480 (0.165471) | 0.004971 / 0.007986 (-0.003014) | 0.002914 / 0.004328 (-0.001415) | 0.061184 / 0.004250 (0.056934) | 0.051246 / 0.037052 (0.014194) | 0.458035 / 0.258489 (0.199546) | 0.490838 / 0.293841 (0.196997) | 0.028746 / 0.128546 (-0.099800) | 0.008167 / 0.075646 (-0.067480) | 0.068006 / 0.419271 (-0.351265) | 0.041809 / 0.043533 (-0.001724) | 0.453896 / 0.255139 (0.198757) | 0.477583 / 0.283200 (0.194383) | 0.020906 / 0.141683 (-0.120777) | 1.443275 / 1.452155 (-0.008879) | 1.493431 / 1.492716 (0.000714) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219903 / 0.018006 (0.201896) | 0.410275 / 0.000490 (0.409785) | 0.003919 / 0.000200 (0.003719) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027850 / 0.037411 (-0.009561) | 0.080444 / 0.014526 (0.065918) | 0.089943 / 0.176557 (-0.086614) | 0.145810 / 0.737135 (-0.591326) | 0.090908 / 0.296338 (-0.205430) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.464386 / 0.215209 (0.249177) | 4.633787 / 2.077655 (2.556133) | 2.581658 / 1.504120 (1.077538) | 2.408486 / 1.541195 (0.867291) | 2.460491 / 1.468490 (0.992001) | 0.507512 / 4.584777 (-4.077265) | 3.190363 / 3.745712 (-0.555349) | 2.895581 / 5.269862 (-2.374280) | 1.871506 / 4.565676 (-2.694171) | 0.058469 / 0.424275 (-0.365806) | 0.006526 / 0.007607 (-0.001082) | 0.537641 / 0.226044 (0.311596) | 5.396660 / 2.268929 (3.127731) | 3.027028 / 55.444624 (-52.417596) | 2.703771 / 6.876477 (-4.172705) | 2.865576 / 2.142072 (0.723503) | 0.600103 / 4.805227 (-4.205124) | 0.127109 / 6.500664 (-6.373555) | 0.060985 / 0.075469 (-0.014484) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365030 / 1.841788 (-0.476758) | 17.988218 / 8.074308 (9.913909) | 14.900796 / 10.191392 (4.709404) | 0.158211 / 0.680424 (-0.522213) | 0.018291 / 0.534201 (-0.515910) | 0.337437 / 0.579283 (-0.241846) | 0.383710 / 0.434364 (-0.050654) | 0.392341 / 0.540337 (-0.147997) | 0.561584 / 1.386936 (-0.825352) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b7571ab4b0d9b67b767c55db400b4ffac0f752f1 \"CML watermark\")\n", "CI failures are unrelated", "I also plan to address https://github.com/huggingface/datasets/issues/6280#issuecomment-1749310065 in this PR :).", "Oh ok, ping me again whenever you want another review :)", "Have you had a chance to continue this ? I can also take a look if you want", "Yes, I'll finish it next week :).", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6283). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@lhoestq Feel free to review this again. I've bumped PyArrow to 12.0.0 to simplify the implementation (no need for custom `array_concat` and less `pa.Array.from_buffers`). However, this makes `apache-beam` complain as it only supports `<12.0.0`. The next `apache-beam` release will set this boundary to `<15.0.0.`, so I think the only solution is to wait for it to be published.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005188 / 0.011353 (-0.006165) | 0.003997 / 0.011008 (-0.007011) | 0.062642 / 0.038508 (0.024134) | 0.028913 / 0.023109 (0.005804) | 0.248289 / 0.275898 (-0.027609) | 0.268084 / 0.323480 (-0.055396) | 0.004093 / 0.007986 (-0.003893) | 0.002822 / 0.004328 (-0.001506) | 0.048263 / 0.004250 (0.044012) | 0.041520 / 0.037052 (0.004468) | 0.263277 / 0.258489 (0.004788) | 0.289835 / 0.293841 (-0.004006) | 0.027621 / 0.128546 (-0.100925) | 0.010793 / 0.075646 (-0.064853) | 0.207624 / 0.419271 (-0.211648) | 0.035597 / 0.043533 (-0.007936) | 0.245706 / 0.255139 (-0.009433) | 0.268157 / 0.283200 (-0.015043) | 0.017310 / 0.141683 (-0.124373) | 1.130656 / 1.452155 (-0.321499) | 1.162134 / 1.492716 (-0.330583) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094081 / 0.018006 (0.076075) | 0.302298 / 0.000490 (0.301809) | 0.000220 / 0.000200 (0.000020) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019072 / 0.037411 (-0.018339) | 0.061162 / 0.014526 (0.046636) | 0.072820 / 0.176557 (-0.103737) | 0.122628 / 0.737135 (-0.614507) | 0.074962 / 0.296338 (-0.221377) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277858 / 0.215209 (0.062649) | 2.688478 / 2.077655 (0.610823) | 1.397366 / 1.504120 (-0.106754) | 1.285078 / 1.541195 (-0.256117) | 1.291559 / 1.468490 (-0.176931) | 0.553646 / 4.584777 (-4.031131) | 2.355737 / 3.745712 (-1.389975) | 2.773025 / 5.269862 (-2.496836) | 1.731195 / 4.565676 (-2.834481) | 0.061372 / 0.424275 (-0.362903) | 0.004928 / 0.007607 (-0.002679) | 0.321703 / 0.226044 (0.095659) | 3.212927 / 2.268929 (0.943999) | 1.727104 / 55.444624 (-53.717521) | 1.479430 / 6.876477 (-5.397047) | 1.513436 / 2.142072 (-0.628637) | 0.629913 / 4.805227 (-4.175315) | 0.114607 / 6.500664 (-6.386057) | 0.041707 / 0.075469 (-0.033762) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976060 / 1.841788 (-0.865727) | 11.575163 / 8.074308 (3.500855) | 9.521390 / 10.191392 (-0.670003) | 0.138725 / 0.680424 (-0.541699) | 0.013752 / 0.534201 (-0.520449) | 0.286252 / 0.579283 (-0.293031) | 0.263420 / 0.434364 (-0.170944) | 0.325531 / 0.540337 (-0.214806) | 0.419466 / 1.386936 (-0.967470) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005615 / 0.011353 (-0.005738) | 0.003884 / 0.011008 (-0.007124) | 0.049563 / 0.038508 (0.011055) | 0.032573 / 0.023109 (0.009464) | 0.276917 / 0.275898 (0.001019) | 0.298403 / 0.323480 (-0.025077) | 0.004367 / 0.007986 (-0.003618) | 0.002794 / 0.004328 (-0.001534) | 0.049105 / 0.004250 (0.044855) | 0.045597 / 0.037052 (0.008545) | 0.289762 / 0.258489 (0.031273) | 0.318440 / 0.293841 (0.024599) | 0.051883 / 0.128546 (-0.076664) | 0.010644 / 0.075646 (-0.065003) | 0.057455 / 0.419271 (-0.361816) | 0.033667 / 0.043533 (-0.009866) | 0.274424 / 0.255139 (0.019285) | 0.295890 / 0.283200 (0.012690) | 0.017029 / 0.141683 (-0.124654) | 1.130123 / 1.452155 (-0.322031) | 1.214827 / 1.492716 (-0.277889) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094882 / 0.018006 (0.076876) | 0.302505 / 0.000490 (0.302015) | 0.000228 / 0.000200 (0.000028) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021695 / 0.037411 (-0.015716) | 0.075196 / 0.014526 (0.060670) | 0.086641 / 0.176557 (-0.089915) | 0.124893 / 0.737135 (-0.612243) | 0.088765 / 0.296338 (-0.207574) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.303388 / 0.215209 (0.088179) | 2.934506 / 2.077655 (0.856852) | 1.608607 / 1.504120 (0.104487) | 1.494632 / 1.541195 (-0.046563) | 1.512801 / 1.468490 (0.044310) | 0.558563 / 4.584777 (-4.026214) | 2.383212 / 3.745712 (-1.362500) | 2.634629 / 5.269862 (-2.635233) | 1.729319 / 4.565676 (-2.836357) | 0.062345 / 0.424275 (-0.361930) | 0.004981 / 0.007607 (-0.002626) | 0.358333 / 0.226044 (0.132289) | 3.484229 / 2.268929 (1.215301) | 2.010043 / 55.444624 (-53.434581) | 1.693733 / 6.876477 (-5.182744) | 1.824150 / 2.142072 (-0.317922) | 0.650835 / 4.805227 (-4.154392) | 0.115933 / 6.500664 (-6.384732) | 0.041270 / 0.075469 (-0.034199) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.007949 / 1.841788 (-0.833838) | 12.000085 / 8.074308 (3.925776) | 10.453119 / 10.191392 (0.261727) | 0.143583 / 0.680424 (-0.536840) | 0.015937 / 0.534201 (-0.518264) | 0.286653 / 0.579283 (-0.292631) | 0.272359 / 0.434364 (-0.162005) | 0.330520 / 0.540337 (-0.209818) | 0.417015 / 1.386936 (-0.969921) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ac05bac20fcc8e0e22a852707162e15a7e2ae357 \"CML watermark\")\n" ]
2023-10-05T15:24:05
2024-02-06T19:30:25
2024-02-06T19:24:19
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6283", "html_url": "https://github.com/huggingface/datasets/pull/6283", "diff_url": "https://github.com/huggingface/datasets/pull/6283.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6283.patch", "merged_at": "2024-02-06T19:24:18" }
Fixes issues with casting/embedding PyArrow list arrays with null values. It also bumps the required PyArrow version to 12.0.0 (over 9 months old) to simplify the implementation. Fix #6280, fix #6311, fix #6360 (Also fixes https://github.com/huggingface/datasets/issues/5430 to make Beam compatible with PyArrow>=12.0.0)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6283/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6283/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6282
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6282/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6282/comments
https://api.github.com/repos/huggingface/datasets/issues/6282/events
https://github.com/huggingface/datasets/pull/6282
1,928,473,630
PR_kwDODunzps5cBT5p
6,282
Drop data_files duplicates
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006934 / 0.011353 (-0.004419) | 0.004097 / 0.011008 (-0.006911) | 0.084662 / 0.038508 (0.046154) | 0.077106 / 0.023109 (0.053996) | 0.355035 / 0.275898 (0.079137) | 0.381466 / 0.323480 (0.057986) | 0.004182 / 0.007986 (-0.003803) | 0.003411 / 0.004328 (-0.000917) | 0.065279 / 0.004250 (0.061029) | 0.058192 / 0.037052 (0.021140) | 0.372363 / 0.258489 (0.113874) | 0.401621 / 0.293841 (0.107780) | 0.031719 / 0.128546 (-0.096827) | 0.008753 / 0.075646 (-0.066893) | 0.287125 / 0.419271 (-0.132146) | 0.052943 / 0.043533 (0.009410) | 0.349680 / 0.255139 (0.094541) | 0.364004 / 0.283200 (0.080805) | 0.026705 / 0.141683 (-0.114977) | 1.472708 / 1.452155 (0.020553) | 1.556559 / 1.492716 (0.063842) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224868 / 0.018006 (0.206862) | 0.458793 / 0.000490 (0.458304) | 0.009434 / 0.000200 (0.009234) | 0.000356 / 0.000054 (0.000301) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029670 / 0.037411 (-0.007741) | 0.086517 / 0.014526 (0.071991) | 0.097342 / 0.176557 (-0.079215) | 0.153722 / 0.737135 (-0.583413) | 0.098465 / 0.296338 (-0.197874) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400739 / 0.215209 (0.185530) | 3.998087 / 2.077655 (1.920432) | 2.025772 / 1.504120 (0.521652) | 1.858679 / 1.541195 (0.317485) | 1.951573 / 1.468490 (0.483083) | 0.483028 / 4.584777 (-4.101749) | 3.554085 / 3.745712 (-0.191627) | 3.306983 / 5.269862 (-1.962879) | 2.087043 / 4.565676 (-2.478633) | 0.057127 / 0.424275 (-0.367148) | 0.007252 / 0.007607 (-0.000355) | 0.480180 / 0.226044 (0.254136) | 4.787183 / 2.268929 (2.518255) | 2.489667 / 55.444624 (-52.954957) | 2.150774 / 6.876477 (-4.725703) | 2.403197 / 2.142072 (0.261124) | 0.581843 / 4.805227 (-4.223384) | 0.134915 / 6.500664 (-6.365749) | 0.061283 / 0.075469 (-0.014186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285700 / 1.841788 (-0.556088) | 19.474093 / 8.074308 (11.399785) | 14.336349 / 10.191392 (4.144957) | 0.170932 / 0.680424 (-0.509492) | 0.018348 / 0.534201 (-0.515853) | 0.391909 / 0.579283 (-0.187374) | 0.414706 / 0.434364 (-0.019658) | 0.458156 / 0.540337 (-0.082182) | 0.656303 / 1.386936 (-0.730633) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006738 / 0.011353 (-0.004615) | 0.004029 / 0.011008 (-0.006979) | 0.064411 / 0.038508 (0.025903) | 0.078225 / 0.023109 (0.055116) | 0.408468 / 0.275898 (0.132569) | 0.445585 / 0.323480 (0.122105) | 0.005490 / 0.007986 (-0.002495) | 0.003419 / 0.004328 (-0.000910) | 0.063966 / 0.004250 (0.059715) | 0.056779 / 0.037052 (0.019727) | 0.415258 / 0.258489 (0.156769) | 0.461258 / 0.293841 (0.167418) | 0.032051 / 0.128546 (-0.096495) | 0.008471 / 0.075646 (-0.067176) | 0.071004 / 0.419271 (-0.348267) | 0.049068 / 0.043533 (0.005536) | 0.409575 / 0.255139 (0.154436) | 0.430748 / 0.283200 (0.147548) | 0.023784 / 0.141683 (-0.117899) | 1.507894 / 1.452155 (0.055739) | 1.586575 / 1.492716 (0.093859) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228574 / 0.018006 (0.210568) | 0.451389 / 0.000490 (0.450900) | 0.006312 / 0.000200 (0.006112) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033391 / 0.037411 (-0.004020) | 0.096816 / 0.014526 (0.082290) | 0.107269 / 0.176557 (-0.069288) | 0.159749 / 0.737135 (-0.577387) | 0.108240 / 0.296338 (-0.188098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437643 / 0.215209 (0.222434) | 4.378173 / 2.077655 (2.300518) | 2.367218 / 1.504120 (0.863098) | 2.229493 / 1.541195 (0.688298) | 2.329849 / 1.468490 (0.861359) | 0.494985 / 4.584777 (-4.089792) | 3.578540 / 3.745712 (-0.167172) | 3.338220 / 5.269862 (-1.931642) | 2.092482 / 4.565676 (-2.473194) | 0.058495 / 0.424275 (-0.365780) | 0.007396 / 0.007607 (-0.000211) | 0.511001 / 0.226044 (0.284957) | 5.113497 / 2.268929 (2.844568) | 2.806215 / 55.444624 (-52.638409) | 2.485428 / 6.876477 (-4.391048) | 2.764907 / 2.142072 (0.622835) | 0.598824 / 4.805227 (-4.206404) | 0.134988 / 6.500664 (-6.365676) | 0.061752 / 0.075469 (-0.013717) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365583 / 1.841788 (-0.476205) | 20.270297 / 8.074308 (12.195989) | 15.331673 / 10.191392 (5.140281) | 0.166152 / 0.680424 (-0.514272) | 0.020678 / 0.534201 (-0.513523) | 0.394821 / 0.579283 (-0.184462) | 0.420493 / 0.434364 (-0.013871) | 0.468551 / 0.540337 (-0.071787) | 0.654903 / 1.386936 (-0.732033) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f268dd4ad4fb6dada15937d57fb367cb2810162 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007803 / 0.011353 (-0.003550) | 0.004664 / 0.011008 (-0.006344) | 0.099908 / 0.038508 (0.061400) | 0.090674 / 0.023109 (0.067565) | 0.406009 / 0.275898 (0.130111) | 0.465098 / 0.323480 (0.141618) | 0.004667 / 0.007986 (-0.003319) | 0.003880 / 0.004328 (-0.000449) | 0.076552 / 0.004250 (0.072301) | 0.066345 / 0.037052 (0.029292) | 0.419195 / 0.258489 (0.160706) | 0.478581 / 0.293841 (0.184741) | 0.036967 / 0.128546 (-0.091579) | 0.010000 / 0.075646 (-0.065647) | 0.347126 / 0.419271 (-0.072145) | 0.062265 / 0.043533 (0.018733) | 0.406653 / 0.255139 (0.151514) | 0.439044 / 0.283200 (0.155845) | 0.031289 / 0.141683 (-0.110394) | 1.797674 / 1.452155 (0.345520) | 1.835183 / 1.492716 (0.342467) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268194 / 0.018006 (0.250187) | 0.493614 / 0.000490 (0.493124) | 0.015636 / 0.000200 (0.015436) | 0.000417 / 0.000054 (0.000362) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034188 / 0.037411 (-0.003223) | 0.099127 / 0.014526 (0.084601) | 0.113949 / 0.176557 (-0.062607) | 0.181209 / 0.737135 (-0.555926) | 0.114943 / 0.296338 (-0.181395) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455767 / 0.215209 (0.240558) | 4.542947 / 2.077655 (2.465293) | 2.214605 / 1.504120 (0.710485) | 2.015163 / 1.541195 (0.473969) | 2.084945 / 1.468490 (0.616455) | 0.583827 / 4.584777 (-4.000950) | 4.187009 / 3.745712 (0.441297) | 3.920841 / 5.269862 (-1.349020) | 2.447260 / 4.565676 (-2.118417) | 0.069139 / 0.424275 (-0.355137) | 0.008734 / 0.007607 (0.001127) | 0.544673 / 0.226044 (0.318629) | 5.445094 / 2.268929 (3.176165) | 2.788284 / 55.444624 (-52.656340) | 2.395863 / 6.876477 (-4.480614) | 2.622632 / 2.142072 (0.480560) | 0.703931 / 4.805227 (-4.101297) | 0.160502 / 6.500664 (-6.340162) | 0.073734 / 0.075469 (-0.001735) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.498992 / 1.841788 (-0.342795) | 22.761476 / 8.074308 (14.687168) | 17.123919 / 10.191392 (6.932527) | 0.170272 / 0.680424 (-0.510151) | 0.021307 / 0.534201 (-0.512894) | 0.467548 / 0.579283 (-0.111735) | 0.480777 / 0.434364 (0.046413) | 0.542168 / 0.540337 (0.001830) | 0.771092 / 1.386936 (-0.615844) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007923 / 0.011353 (-0.003430) | 0.004664 / 0.011008 (-0.006344) | 0.077795 / 0.038508 (0.039286) | 0.090293 / 0.023109 (0.067184) | 0.494682 / 0.275898 (0.218784) | 0.539973 / 0.323480 (0.216494) | 0.006302 / 0.007986 (-0.001684) | 0.003794 / 0.004328 (-0.000535) | 0.076567 / 0.004250 (0.072317) | 0.067141 / 0.037052 (0.030089) | 0.501279 / 0.258489 (0.242790) | 0.555670 / 0.293841 (0.261829) | 0.037773 / 0.128546 (-0.090773) | 0.009930 / 0.075646 (-0.065716) | 0.084839 / 0.419271 (-0.334433) | 0.056876 / 0.043533 (0.013344) | 0.499329 / 0.255139 (0.244190) | 0.518449 / 0.283200 (0.235249) | 0.026041 / 0.141683 (-0.115642) | 1.787259 / 1.452155 (0.335105) | 1.853505 / 1.492716 (0.360788) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238413 / 0.018006 (0.220407) | 0.488889 / 0.000490 (0.488399) | 0.007476 / 0.000200 (0.007277) | 0.000141 / 0.000054 (0.000087) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038701 / 0.037411 (0.001290) | 0.115391 / 0.014526 (0.100865) | 0.125553 / 0.176557 (-0.051004) | 0.190267 / 0.737135 (-0.546868) | 0.126401 / 0.296338 (-0.169937) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.509270 / 0.215209 (0.294061) | 5.087631 / 2.077655 (3.009976) | 2.745863 / 1.504120 (1.241743) | 2.560259 / 1.541195 (1.019064) | 2.653124 / 1.468490 (1.184634) | 0.582118 / 4.584777 (-4.002659) | 4.181144 / 3.745712 (0.435431) | 3.871179 / 5.269862 (-1.398683) | 2.459849 / 4.565676 (-2.105827) | 0.068844 / 0.424275 (-0.355431) | 0.008672 / 0.007607 (0.001065) | 0.604898 / 0.226044 (0.378854) | 6.073263 / 2.268929 (3.804334) | 3.366638 / 55.444624 (-52.077986) | 2.937261 / 6.876477 (-3.939215) | 3.181173 / 2.142072 (1.039100) | 0.700478 / 4.805227 (-4.104750) | 0.158361 / 6.500664 (-6.342303) | 0.072860 / 0.075469 (-0.002609) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.621363 / 1.841788 (-0.220425) | 23.614315 / 8.074308 (15.540007) | 17.607213 / 10.191392 (7.415821) | 0.198031 / 0.680424 (-0.482393) | 0.023859 / 0.534201 (-0.510342) | 0.474674 / 0.579283 (-0.104609) | 0.491173 / 0.434364 (0.056809) | 0.581995 / 0.540337 (0.041658) | 0.792168 / 1.386936 (-0.594768) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#56fa9645fd24e083adee3cfd0f7d972fce391f0e \"CML watermark\")\n", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6282). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004779 / 0.011353 (-0.006574) | 0.002916 / 0.011008 (-0.008092) | 0.061962 / 0.038508 (0.023454) | 0.029537 / 0.023109 (0.006428) | 0.242574 / 0.275898 (-0.033324) | 0.268585 / 0.323480 (-0.054894) | 0.004006 / 0.007986 (-0.003979) | 0.002434 / 0.004328 (-0.001895) | 0.048289 / 0.004250 (0.044039) | 0.045534 / 0.037052 (0.008481) | 0.248251 / 0.258489 (-0.010239) | 0.277037 / 0.293841 (-0.016804) | 0.023728 / 0.128546 (-0.104818) | 0.007295 / 0.075646 (-0.068351) | 0.205813 / 0.419271 (-0.213459) | 0.059093 / 0.043533 (0.015560) | 0.244336 / 0.255139 (-0.010803) | 0.262865 / 0.283200 (-0.020335) | 0.017232 / 0.141683 (-0.124451) | 1.126729 / 1.452155 (-0.325426) | 1.198987 / 1.492716 (-0.293729) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091246 / 0.018006 (0.073240) | 0.300747 / 0.000490 (0.300258) | 0.000202 / 0.000200 (0.000003) | 0.000041 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018681 / 0.037411 (-0.018731) | 0.063567 / 0.014526 (0.049041) | 0.074019 / 0.176557 (-0.102538) | 0.120856 / 0.737135 (-0.616279) | 0.076525 / 0.296338 (-0.219814) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282230 / 0.215209 (0.067021) | 2.731502 / 2.077655 (0.653847) | 1.473901 / 1.504120 (-0.030219) | 1.351165 / 1.541195 (-0.190030) | 1.390582 / 1.468490 (-0.077908) | 0.398443 / 4.584777 (-4.186334) | 2.360497 / 3.745712 (-1.385215) | 2.548158 / 5.269862 (-2.721703) | 1.552416 / 4.565676 (-3.013260) | 0.045659 / 0.424275 (-0.378616) | 0.004778 / 0.007607 (-0.002829) | 0.330191 / 0.226044 (0.104146) | 3.262510 / 2.268929 (0.993582) | 1.823076 / 55.444624 (-53.621549) | 1.541206 / 6.876477 (-5.335271) | 1.589069 / 2.142072 (-0.553004) | 0.472265 / 4.805227 (-4.332963) | 0.099712 / 6.500664 (-6.400952) | 0.042803 / 0.075469 (-0.032666) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963022 / 1.841788 (-0.878766) | 11.998807 / 8.074308 (3.924499) | 10.526006 / 10.191392 (0.334614) | 0.140965 / 0.680424 (-0.539459) | 0.014197 / 0.534201 (-0.520004) | 0.271668 / 0.579283 (-0.307615) | 0.263993 / 0.434364 (-0.170371) | 0.307213 / 0.540337 (-0.233124) | 0.427411 / 1.386936 (-0.959525) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004761 / 0.011353 (-0.006592) | 0.002652 / 0.011008 (-0.008357) | 0.047949 / 0.038508 (0.009441) | 0.049714 / 0.023109 (0.026604) | 0.274021 / 0.275898 (-0.001877) | 0.292413 / 0.323480 (-0.031067) | 0.003912 / 0.007986 (-0.004074) | 0.002290 / 0.004328 (-0.002038) | 0.047320 / 0.004250 (0.043069) | 0.038061 / 0.037052 (0.001009) | 0.279318 / 0.258489 (0.020829) | 0.305167 / 0.293841 (0.011326) | 0.024595 / 0.128546 (-0.103952) | 0.006976 / 0.075646 (-0.068671) | 0.052987 / 0.419271 (-0.366285) | 0.032454 / 0.043533 (-0.011079) | 0.273986 / 0.255139 (0.018847) | 0.297641 / 0.283200 (0.014442) | 0.017680 / 0.141683 (-0.124003) | 1.141218 / 1.452155 (-0.310937) | 1.222543 / 1.492716 (-0.270173) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092880 / 0.018006 (0.074873) | 0.305080 / 0.000490 (0.304590) | 0.000215 / 0.000200 (0.000016) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021050 / 0.037411 (-0.016362) | 0.069676 / 0.014526 (0.055150) | 0.081082 / 0.176557 (-0.095475) | 0.119234 / 0.737135 (-0.617902) | 0.081242 / 0.296338 (-0.215096) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295916 / 0.215209 (0.080707) | 2.909769 / 2.077655 (0.832115) | 1.623118 / 1.504120 (0.118998) | 1.502297 / 1.541195 (-0.038898) | 1.540290 / 1.468490 (0.071800) | 0.401176 / 4.584777 (-4.183601) | 2.427764 / 3.745712 (-1.317948) | 2.568610 / 5.269862 (-2.701252) | 1.550486 / 4.565676 (-3.015190) | 0.046895 / 0.424275 (-0.377380) | 0.004800 / 0.007607 (-0.002807) | 0.344524 / 0.226044 (0.118479) | 3.429189 / 2.268929 (1.160261) | 1.949738 / 55.444624 (-53.494887) | 1.681440 / 6.876477 (-5.195037) | 1.675304 / 2.142072 (-0.466769) | 0.469663 / 4.805227 (-4.335564) | 0.097470 / 6.500664 (-6.403194) | 0.040121 / 0.075469 (-0.035348) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957947 / 1.841788 (-0.883841) | 11.968455 / 8.074308 (3.894147) | 10.809763 / 10.191392 (0.618371) | 0.140603 / 0.680424 (-0.539820) | 0.015562 / 0.534201 (-0.518638) | 0.276406 / 0.579283 (-0.302877) | 0.295267 / 0.434364 (-0.139097) | 0.315744 / 0.540337 (-0.224593) | 0.417985 / 1.386936 (-0.968951) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12e01642a6978cbb9d5778c8b7f1c6b20a9887d5 \"CML watermark\")\n" ]
2023-10-05T14:43:08
2023-11-14T17:24:50
null
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6282", "html_url": "https://github.com/huggingface/datasets/pull/6282", "diff_url": "https://github.com/huggingface/datasets/pull/6282.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6282.patch", "merged_at": null }
I just added drop_duplicates=True to `.from_patterns`. I used a dict to deduplicate and preserve the order close https://github.com/huggingface/datasets/issues/6259 close https://github.com/huggingface/datasets/issues/6272
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6282/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6282/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6281
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6281/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6281/comments
https://api.github.com/repos/huggingface/datasets/issues/6281/events
https://github.com/huggingface/datasets/pull/6281
1,928,456,959
PR_kwDODunzps5cBQPd
6,281
Improve documentation of dataset.from_generator
{ "login": "hartmans", "id": 53510, "node_id": "MDQ6VXNlcjUzNTEw", "avatar_url": "https://avatars.githubusercontent.com/u/53510?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hartmans", "html_url": "https://github.com/hartmans", "followers_url": "https://api.github.com/users/hartmans/followers", "following_url": "https://api.github.com/users/hartmans/following{/other_user}", "gists_url": "https://api.github.com/users/hartmans/gists{/gist_id}", "starred_url": "https://api.github.com/users/hartmans/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hartmans/subscriptions", "organizations_url": "https://api.github.com/users/hartmans/orgs", "repos_url": "https://api.github.com/users/hartmans/repos", "events_url": "https://api.github.com/users/hartmans/events{/privacy}", "received_events_url": "https://api.github.com/users/hartmans/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "I have looked at the doc failures, and I do not think that my change caused the doc build failure, but I'm not 100% sure about that.\r\nI have high confidence that the integration test failures are not something I introduced:-)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008557 / 0.011353 (-0.002796) | 0.005224 / 0.011008 (-0.005784) | 0.109402 / 0.038508 (0.070893) | 0.075008 / 0.023109 (0.051899) | 0.388910 / 0.275898 (0.113012) | 0.425481 / 0.323480 (0.102002) | 0.005046 / 0.007986 (-0.002939) | 0.004166 / 0.004328 (-0.000162) | 0.079890 / 0.004250 (0.075639) | 0.061992 / 0.037052 (0.024940) | 0.409933 / 0.258489 (0.151444) | 0.444096 / 0.293841 (0.150255) | 0.043958 / 0.128546 (-0.084588) | 0.013655 / 0.075646 (-0.061991) | 0.402620 / 0.419271 (-0.016651) | 0.062784 / 0.043533 (0.019251) | 0.399653 / 0.255139 (0.144514) | 0.432926 / 0.283200 (0.149727) | 0.034631 / 0.141683 (-0.107052) | 1.801450 / 1.452155 (0.349296) | 1.965007 / 1.492716 (0.472290) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305744 / 0.018006 (0.287738) | 0.590825 / 0.000490 (0.590335) | 0.014561 / 0.000200 (0.014361) | 0.000430 / 0.000054 (0.000375) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030449 / 0.037411 (-0.006962) | 0.091753 / 0.014526 (0.077227) | 0.106259 / 0.176557 (-0.070298) | 0.174599 / 0.737135 (-0.562537) | 0.107069 / 0.296338 (-0.189269) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.607544 / 0.215209 (0.392335) | 6.182592 / 2.077655 (4.104937) | 2.699782 / 1.504120 (1.195663) | 2.386915 / 1.541195 (0.845720) | 2.441763 / 1.468490 (0.973273) | 0.811360 / 4.584777 (-3.773417) | 5.253799 / 3.745712 (1.508087) | 4.762054 / 5.269862 (-0.507807) | 3.045161 / 4.565676 (-1.520515) | 0.095983 / 0.424275 (-0.328292) | 0.008653 / 0.007607 (0.001046) | 0.714218 / 0.226044 (0.488174) | 7.279325 / 2.268929 (5.010397) | 3.356107 / 55.444624 (-52.088517) | 2.765867 / 6.876477 (-4.110610) | 2.997756 / 2.142072 (0.855684) | 1.008740 / 4.805227 (-3.796487) | 0.201462 / 6.500664 (-6.299202) | 0.075780 / 0.075469 (0.000311) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.677034 / 1.841788 (-0.164754) | 23.546919 / 8.074308 (15.472610) | 21.576985 / 10.191392 (11.385593) | 0.239253 / 0.680424 (-0.441171) | 0.028740 / 0.534201 (-0.505460) | 0.468519 / 0.579283 (-0.110765) | 0.593935 / 0.434364 (0.159571) | 0.536830 / 0.540337 (-0.003507) | 0.779925 / 1.386936 (-0.607011) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009582 / 0.011353 (-0.001771) | 0.004971 / 0.011008 (-0.006037) | 0.081304 / 0.038508 (0.042796) | 0.077588 / 0.023109 (0.054478) | 0.486610 / 0.275898 (0.210712) | 0.580228 / 0.323480 (0.256748) | 0.006707 / 0.007986 (-0.001279) | 0.004325 / 0.004328 (-0.000004) | 0.086170 / 0.004250 (0.081920) | 0.060591 / 0.037052 (0.023539) | 0.501723 / 0.258489 (0.243234) | 0.548633 / 0.293841 (0.254793) | 0.050306 / 0.128546 (-0.078240) | 0.017458 / 0.075646 (-0.058188) | 0.093295 / 0.419271 (-0.325977) | 0.064588 / 0.043533 (0.021056) | 0.519395 / 0.255139 (0.264256) | 0.526021 / 0.283200 (0.242821) | 0.035795 / 0.141683 (-0.105888) | 1.792927 / 1.452155 (0.340772) | 1.956499 / 1.492716 (0.463783) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.296249 / 0.018006 (0.278243) | 0.594482 / 0.000490 (0.593992) | 0.007318 / 0.000200 (0.007118) | 0.000182 / 0.000054 (0.000128) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036110 / 0.037411 (-0.001301) | 0.107924 / 0.014526 (0.093399) | 0.119975 / 0.176557 (-0.056582) | 0.177499 / 0.737135 (-0.559636) | 0.123299 / 0.296338 (-0.173039) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.632994 / 0.215209 (0.417785) | 6.481663 / 2.077655 (4.404008) | 3.231259 / 1.504120 (1.727139) | 2.768298 / 1.541195 (1.227103) | 2.694543 / 1.468490 (1.226053) | 0.837384 / 4.584777 (-3.747393) | 5.405278 / 3.745712 (1.659566) | 4.639424 / 5.269862 (-0.630437) | 2.944251 / 4.565676 (-1.621426) | 0.094978 / 0.424275 (-0.329297) | 0.008716 / 0.007607 (0.001108) | 0.795820 / 0.226044 (0.569776) | 8.514233 / 2.268929 (6.245304) | 3.800463 / 55.444624 (-51.644161) | 3.000005 / 6.876477 (-3.876472) | 3.298853 / 2.142072 (1.156781) | 0.994112 / 4.805227 (-3.811115) | 0.209435 / 6.500664 (-6.291229) | 0.075610 / 0.075469 (0.000141) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.681127 / 1.841788 (-0.160661) | 23.874465 / 8.074308 (15.800156) | 21.638567 / 10.191392 (11.447175) | 0.233303 / 0.680424 (-0.447121) | 0.032504 / 0.534201 (-0.501697) | 0.460462 / 0.579283 (-0.118821) | 0.560043 / 0.434364 (0.125679) | 0.555059 / 0.540337 (0.014721) | 0.831444 / 1.386936 (-0.555492) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#faada1742e1f25fce9cc5691ec11d3f91d4aa120 \"CML watermark\")\n" ]
2023-10-05T14:34:49
2023-10-05T19:09:07
2023-10-05T18:57:41
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6281", "html_url": "https://github.com/huggingface/datasets/pull/6281", "diff_url": "https://github.com/huggingface/datasets/pull/6281.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6281.patch", "merged_at": "2023-10-05T18:57:41" }
Improve documentation to clarify sharding behavior (#6270)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6281/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6281/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6280
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6280/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6280/comments
https://api.github.com/repos/huggingface/datasets/issues/6280/events
https://github.com/huggingface/datasets/issues/6280
1,928,215,278
I_kwDODunzps5y7jru
6,280
Couldn't cast array of type fixed_size_list to Sequence(Value(float64))
{ "login": "jmif", "id": 1000442, "node_id": "MDQ6VXNlcjEwMDA0NDI=", "avatar_url": "https://avatars.githubusercontent.com/u/1000442?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jmif", "html_url": "https://github.com/jmif", "followers_url": "https://api.github.com/users/jmif/followers", "following_url": "https://api.github.com/users/jmif/following{/other_user}", "gists_url": "https://api.github.com/users/jmif/gists{/gist_id}", "starred_url": "https://api.github.com/users/jmif/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jmif/subscriptions", "organizations_url": "https://api.github.com/users/jmif/orgs", "repos_url": "https://api.github.com/users/jmif/repos", "events_url": "https://api.github.com/users/jmif/events{/privacy}", "received_events_url": "https://api.github.com/users/jmif/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Thanks for reporting! I've opened a PR with a fix.", "Thanks for the quick response @mariosasko! I just installed your branch via `poetry add 'git+https://github.com/huggingface/datasets#fix-array_values'` and I can confirm it works on the example provided.\r\n\r\nFollow up question for you, should `None`s be supported in these types of features as they are in others?\r\n\r\nFor example, the following script:\r\n\r\n```\r\nfrom datasets import Features, Value, Sequence, ClassLabel, Dataset\r\n\r\ndataset_features = Features({\r\n 'text': Value('string'),\r\n 'embedding': Sequence(Value('double'), length=2),\r\n 'categories': Sequence(ClassLabel(names=sorted([\r\n 'one',\r\n 'two',\r\n 'three'\r\n ]))),\r\n})\r\n\r\ndataset = Dataset.from_dict(\r\n {\r\n 'text': ['A'] * 10000,\r\n \"embedding\": [None] * 10000, # THIS LINE CHANGED\r\n 'categories': [[0]] * 10000,\r\n },\r\n features=dataset_features\r\n)\r\n\r\ndef test_mapper(r):\r\n r['text'] = list(map(lambda t: t + ' b', r['text']))\r\n return r\r\n\r\n\r\ndataset = dataset.map(test_mapper, batched=True, batch_size=10, features=dataset_features, num_proc=2)\r\n```\r\n\r\nfails with\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/multiprocess/pool.py\", line 125, in worker\r\n result = (True, func(*args, **kwds))\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py\", line 1354, in _write_generator_to_queue\r\n for i, result in enumerate(func(**kwargs)):\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_dataset.py\", line 3493, in _map_single\r\n writer.write_batch(batch)\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_writer.py\", line 549, in write_batch\r\n array = cast_array_to_feature(col_values, col_type) if col_type is not None else col_values\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 1831, in wrapper\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 1831, in <listcomp>\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 2160, in cast_array_to_feature\r\n raise TypeError(f\"Couldn't cast array of type\\n{array.type}\\nto\\n{feature}\")\r\nTypeError: Couldn't cast array of type\r\nfixed_size_list<item: double>[2]\r\nto\r\nSequence(feature=Value(dtype='float64', id=None), length=2, id=None)\r\n```\r\n\r\nIdeally we can have empty embedding columns as well!", "This part of PyArrow is buggy and inconsistent regarding features implemented across the types, so the only option is to operate on the Arrow buffer level to fix issues such as the above one.", "Ok - can you take the POC I did [here](https://github.com/huggingface/datasets/commit/15443098e9ce053943172f7ec6fce3769d7dff6e)? Happy to turn this into an actual PR but would appreciate feedback on the implementation before I take another pass!" ]
2023-10-05T12:48:31
2024-02-06T19:24:20
2024-02-06T19:24:20
NONE
null
null
### Describe the bug I have a dataset with an embedding column, when I try to map that dataset I get the following exception: ``` Traceback (most recent call last): File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3189, in map for rank, done, content in iflatmap_unordered( File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1387, in iflatmap_unordered [async_result.get(timeout=0.05) for async_result in async_results] File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1387, in <listcomp> [async_result.get(timeout=0.05) for async_result in async_results] File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/multiprocess/pool.py", line 774, in get raise self._value TypeError: Couldn't cast array of type fixed_size_list<item: float>[2] to Sequence(feature=Value(dtype='float32', id=None), length=2, id=None) ``` ### Steps to reproduce the bug Here's a simple repro script: ``` from datasets import Features, Value, Sequence, ClassLabel, Dataset dataset_features = Features({ 'text': Value('string'), 'embedding': Sequence(Value('double'), length=2), 'categories': Sequence(ClassLabel(names=sorted([ 'one', 'two', 'three' ]))), }) dataset = Dataset.from_dict( { 'text': ['A'] * 10000, 'embedding': [[0.0, 0.1]] * 10000, 'categories': [[0]] * 10000, }, features=dataset_features ) def test_mapper(r): r['text'] = list(map(lambda t: t + ' b', r['text'])) return r dataset = dataset.map(test_mapper, batched=True, batch_size=10, features=dataset_features, num_proc=2) ``` Removing the embedding column fixes the issue! ### Expected behavior The mapping completes successfully. ### Environment info - `datasets` version: 2.14.4 - Platform: macOS-14.0-arm64-arm-64bit - Python version: 3.10.12 - Huggingface_hub version: 0.17.1 - PyArrow version: 13.0.0 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6280/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6280/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6279
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6279/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6279/comments
https://api.github.com/repos/huggingface/datasets/issues/6279/events
https://github.com/huggingface/datasets/issues/6279
1,928,028,226
I_kwDODunzps5y62BC
6,279
Batched IterableDataset
{ "login": "lneukom", "id": 7010688, "node_id": "MDQ6VXNlcjcwMTA2ODg=", "avatar_url": "https://avatars.githubusercontent.com/u/7010688?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lneukom", "html_url": "https://github.com/lneukom", "followers_url": "https://api.github.com/users/lneukom/followers", "following_url": "https://api.github.com/users/lneukom/following{/other_user}", "gists_url": "https://api.github.com/users/lneukom/gists{/gist_id}", "starred_url": "https://api.github.com/users/lneukom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lneukom/subscriptions", "organizations_url": "https://api.github.com/users/lneukom/orgs", "repos_url": "https://api.github.com/users/lneukom/repos", "events_url": "https://api.github.com/users/lneukom/events{/privacy}", "received_events_url": "https://api.github.com/users/lneukom/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[ "This is exactly what I was looking for. It would also be very useful for me :-)" ]
2023-10-05T11:12:49
2023-10-05T11:50:28
null
NONE
null
null
### Feature request Hi, could you add an implementation of a batched `IterableDataset`. It already support an option to do batch iteration via `.iter(batch_size=...)` but this cannot be used in combination with a torch `DataLoader` since it just returns an iterator. ### Motivation The current implementation loads each element of a batch individually which can be very slow in cases of a big batch_size. I did some experiments [here](https://discuss.huggingface.co/t/slow-dataloader-with-big-batch-size/57224) and using a batched iteration would speed up data loading significantly. ### Your contribution N/A
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6279/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6279/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6278
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6278/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6278/comments
https://api.github.com/repos/huggingface/datasets/issues/6278/events
https://github.com/huggingface/datasets/pull/6278
1,927,957,877
PR_kwDODunzps5b_iKb
6,278
No data files duplicates
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009624 / 0.011353 (-0.001729) | 0.005121 / 0.011008 (-0.005887) | 0.105560 / 0.038508 (0.067052) | 0.090749 / 0.023109 (0.067640) | 0.430274 / 0.275898 (0.154376) | 0.443399 / 0.323480 (0.119919) | 0.006575 / 0.007986 (-0.001411) | 0.004396 / 0.004328 (0.000068) | 0.080900 / 0.004250 (0.076649) | 0.064921 / 0.037052 (0.027868) | 0.410092 / 0.258489 (0.151603) | 0.470058 / 0.293841 (0.176217) | 0.054160 / 0.128546 (-0.074386) | 0.014367 / 0.075646 (-0.061279) | 0.384844 / 0.419271 (-0.034428) | 0.072818 / 0.043533 (0.029285) | 0.429341 / 0.255139 (0.174202) | 0.430968 / 0.283200 (0.147769) | 0.038437 / 0.141683 (-0.103246) | 1.814456 / 1.452155 (0.362301) | 1.832122 / 1.492716 (0.339406) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329266 / 0.018006 (0.311260) | 0.596848 / 0.000490 (0.596358) | 0.018291 / 0.000200 (0.018091) | 0.000113 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030505 / 0.037411 (-0.006907) | 0.097394 / 0.014526 (0.082869) | 0.127144 / 0.176557 (-0.049412) | 0.190251 / 0.737135 (-0.546884) | 0.116543 / 0.296338 (-0.179795) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.592124 / 0.215209 (0.376915) | 5.979801 / 2.077655 (3.902146) | 2.837753 / 1.504120 (1.333633) | 2.492942 / 1.541195 (0.951747) | 2.548083 / 1.468490 (1.079593) | 0.870446 / 4.584777 (-3.714330) | 5.493718 / 3.745712 (1.748006) | 4.945135 / 5.269862 (-0.324727) | 3.133994 / 4.565676 (-1.431683) | 0.097742 / 0.424275 (-0.326533) | 0.008750 / 0.007607 (0.001143) | 0.723304 / 0.226044 (0.497260) | 7.353766 / 2.268929 (5.084838) | 3.504808 / 55.444624 (-51.939816) | 2.872490 / 6.876477 (-4.003987) | 3.186628 / 2.142072 (1.044556) | 1.035470 / 4.805227 (-3.769758) | 0.211980 / 6.500664 (-6.288684) | 0.080356 / 0.075469 (0.004887) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623389 / 1.841788 (-0.218399) | 23.492350 / 8.074308 (15.418042) | 21.053525 / 10.191392 (10.862133) | 0.225668 / 0.680424 (-0.454756) | 0.028311 / 0.534201 (-0.505890) | 0.472672 / 0.579283 (-0.106611) | 0.581536 / 0.434364 (0.147172) | 0.525180 / 0.540337 (-0.015158) | 0.790420 / 1.386936 (-0.596516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009091 / 0.011353 (-0.002262) | 0.004978 / 0.011008 (-0.006030) | 0.077633 / 0.038508 (0.039125) | 0.103189 / 0.023109 (0.080080) | 0.500194 / 0.275898 (0.224296) | 0.524310 / 0.323480 (0.200831) | 0.006656 / 0.007986 (-0.001329) | 0.004586 / 0.004328 (0.000257) | 0.075535 / 0.004250 (0.071284) | 0.065100 / 0.037052 (0.028048) | 0.513776 / 0.258489 (0.255287) | 0.528483 / 0.293841 (0.234642) | 0.049877 / 0.128546 (-0.078669) | 0.012494 / 0.075646 (-0.063152) | 0.090225 / 0.419271 (-0.329046) | 0.054648 / 0.043533 (0.011116) | 0.510369 / 0.255139 (0.255230) | 0.540042 / 0.283200 (0.256842) | 0.035966 / 0.141683 (-0.105717) | 1.825965 / 1.452155 (0.373810) | 1.965647 / 1.492716 (0.472931) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.295921 / 0.018006 (0.277914) | 0.605751 / 0.000490 (0.605262) | 0.007243 / 0.000200 (0.007043) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032954 / 0.037411 (-0.004457) | 0.093613 / 0.014526 (0.079087) | 0.120010 / 0.176557 (-0.056546) | 0.176168 / 0.737135 (-0.560967) | 0.113978 / 0.296338 (-0.182360) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.682904 / 0.215209 (0.467695) | 6.674640 / 2.077655 (4.596986) | 3.360660 / 1.504120 (1.856540) | 3.227246 / 1.541195 (1.686051) | 3.188852 / 1.468490 (1.720362) | 0.862293 / 4.584777 (-3.722484) | 5.518455 / 3.745712 (1.772743) | 4.881904 / 5.269862 (-0.387957) | 3.066964 / 4.565676 (-1.498712) | 0.099284 / 0.424275 (-0.324991) | 0.008644 / 0.007607 (0.001037) | 0.789231 / 0.226044 (0.563186) | 7.872017 / 2.268929 (5.603089) | 4.037105 / 55.444624 (-51.407519) | 3.318921 / 6.876477 (-3.557555) | 3.621953 / 2.142072 (1.479881) | 1.012049 / 4.805227 (-3.793178) | 0.204541 / 6.500664 (-6.296123) | 0.074509 / 0.075469 (-0.000960) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748215 / 1.841788 (-0.093573) | 24.274974 / 8.074308 (16.200665) | 20.582389 / 10.191392 (10.390997) | 0.251001 / 0.680424 (-0.429423) | 0.032390 / 0.534201 (-0.501811) | 0.479211 / 0.579283 (-0.100072) | 0.607482 / 0.434364 (0.173118) | 0.587867 / 0.540337 (0.047530) | 0.822399 / 1.386936 (-0.564537) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2b6b2fd90ba47f19e9ab125f6f7656903dd065f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009715 / 0.011353 (-0.001638) | 0.005449 / 0.011008 (-0.005559) | 0.108556 / 0.038508 (0.070048) | 0.080512 / 0.023109 (0.057403) | 0.450736 / 0.275898 (0.174838) | 0.487771 / 0.323480 (0.164291) | 0.005155 / 0.007986 (-0.002830) | 0.004213 / 0.004328 (-0.000115) | 0.087247 / 0.004250 (0.082997) | 0.063962 / 0.037052 (0.026909) | 0.454153 / 0.258489 (0.195664) | 0.499917 / 0.293841 (0.206076) | 0.052605 / 0.128546 (-0.075942) | 0.013019 / 0.075646 (-0.062627) | 0.379716 / 0.419271 (-0.039555) | 0.073241 / 0.043533 (0.029708) | 0.473488 / 0.255139 (0.218349) | 0.482944 / 0.283200 (0.199745) | 0.041541 / 0.141683 (-0.100142) | 1.829415 / 1.452155 (0.377261) | 1.953280 / 1.492716 (0.460564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313725 / 0.018006 (0.295719) | 0.591336 / 0.000490 (0.590847) | 0.021224 / 0.000200 (0.021025) | 0.000969 / 0.000054 (0.000914) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031874 / 0.037411 (-0.005537) | 0.099786 / 0.014526 (0.085260) | 0.116987 / 0.176557 (-0.059569) | 0.205538 / 0.737135 (-0.531597) | 0.118716 / 0.296338 (-0.177622) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.617145 / 0.215209 (0.401936) | 6.079144 / 2.077655 (4.001489) | 2.567233 / 1.504120 (1.063113) | 2.265301 / 1.541195 (0.724107) | 2.314001 / 1.468490 (0.845511) | 0.871561 / 4.584777 (-3.713216) | 5.477049 / 3.745712 (1.731337) | 4.720552 / 5.269862 (-0.549309) | 3.107515 / 4.565676 (-1.458162) | 0.100438 / 0.424275 (-0.323838) | 0.008586 / 0.007607 (0.000979) | 0.716913 / 0.226044 (0.490869) | 7.108417 / 2.268929 (4.839489) | 3.391336 / 55.444624 (-52.053288) | 2.734052 / 6.876477 (-4.142425) | 2.857226 / 2.142072 (0.715153) | 1.024121 / 4.805227 (-3.781106) | 0.216735 / 6.500664 (-6.283929) | 0.081605 / 0.075469 (0.006136) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.678176 / 1.841788 (-0.163611) | 23.606037 / 8.074308 (15.531729) | 21.485331 / 10.191392 (11.293939) | 0.218312 / 0.680424 (-0.462112) | 0.027061 / 0.534201 (-0.507140) | 0.481188 / 0.579283 (-0.098096) | 0.620592 / 0.434364 (0.186228) | 0.574778 / 0.540337 (0.034441) | 0.831529 / 1.386936 (-0.555407) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011666 / 0.011353 (0.000313) | 0.005187 / 0.011008 (-0.005821) | 0.080692 / 0.038508 (0.042184) | 0.079159 / 0.023109 (0.056049) | 0.530823 / 0.275898 (0.254925) | 0.577807 / 0.323480 (0.254327) | 0.006246 / 0.007986 (-0.001740) | 0.004355 / 0.004328 (0.000026) | 0.080702 / 0.004250 (0.076452) | 0.062279 / 0.037052 (0.025226) | 0.553712 / 0.258489 (0.295223) | 0.579112 / 0.293841 (0.285271) | 0.056374 / 0.128546 (-0.072172) | 0.014681 / 0.075646 (-0.060966) | 0.097110 / 0.419271 (-0.322161) | 0.061040 / 0.043533 (0.017507) | 0.524718 / 0.255139 (0.269579) | 0.568586 / 0.283200 (0.285386) | 0.035774 / 0.141683 (-0.105909) | 1.864590 / 1.452155 (0.412435) | 1.953715 / 1.492716 (0.460998) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271315 / 0.018006 (0.253309) | 0.571343 / 0.000490 (0.570854) | 0.015812 / 0.000200 (0.015612) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038582 / 0.037411 (0.001170) | 0.117523 / 0.014526 (0.102997) | 0.128864 / 0.176557 (-0.047693) | 0.191164 / 0.737135 (-0.545971) | 0.133161 / 0.296338 (-0.163178) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.679305 / 0.215209 (0.464096) | 6.814451 / 2.077655 (4.736796) | 3.377431 / 1.504120 (1.873311) | 3.011008 / 1.541195 (1.469813) | 3.093200 / 1.468490 (1.624710) | 0.905827 / 4.584777 (-3.678950) | 5.456094 / 3.745712 (1.710382) | 4.848511 / 5.269862 (-0.421351) | 3.064230 / 4.565676 (-1.501447) | 0.107478 / 0.424275 (-0.316798) | 0.009234 / 0.007607 (0.001627) | 0.833944 / 0.226044 (0.607899) | 8.286100 / 2.268929 (6.017171) | 4.241455 / 55.444624 (-51.203169) | 3.405460 / 6.876477 (-3.471017) | 3.660618 / 2.142072 (1.518546) | 1.046310 / 4.805227 (-3.758917) | 0.210891 / 6.500664 (-6.289773) | 0.079413 / 0.075469 (0.003944) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.825448 / 1.841788 (-0.016340) | 24.639059 / 8.074308 (16.564750) | 21.970417 / 10.191392 (11.779025) | 0.247708 / 0.680424 (-0.432715) | 0.033810 / 0.534201 (-0.500391) | 0.495517 / 0.579283 (-0.083766) | 0.601820 / 0.434364 (0.167456) | 0.585618 / 0.540337 (0.045280) | 0.858722 / 1.386936 (-0.528214) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0477e20dccb77b68f0add77fd5c9b4cb05473235 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006137 / 0.011353 (-0.005216) | 0.003685 / 0.011008 (-0.007324) | 0.079985 / 0.038508 (0.041476) | 0.060937 / 0.023109 (0.037828) | 0.390583 / 0.275898 (0.114685) | 0.425307 / 0.323480 (0.101827) | 0.003433 / 0.007986 (-0.004552) | 0.002868 / 0.004328 (-0.001461) | 0.062572 / 0.004250 (0.058322) | 0.048642 / 0.037052 (0.011590) | 0.401096 / 0.258489 (0.142607) | 0.436988 / 0.293841 (0.143147) | 0.027645 / 0.128546 (-0.100901) | 0.007973 / 0.075646 (-0.067673) | 0.261997 / 0.419271 (-0.157275) | 0.045393 / 0.043533 (0.001860) | 0.394266 / 0.255139 (0.139127) | 0.414448 / 0.283200 (0.131248) | 0.022551 / 0.141683 (-0.119131) | 1.438458 / 1.452155 (-0.013697) | 1.501568 / 1.492716 (0.008852) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224335 / 0.018006 (0.206329) | 0.421918 / 0.000490 (0.421428) | 0.006883 / 0.000200 (0.006683) | 0.000210 / 0.000054 (0.000155) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023505 / 0.037411 (-0.013906) | 0.072438 / 0.014526 (0.057912) | 0.083576 / 0.176557 (-0.092981) | 0.142906 / 0.737135 (-0.594229) | 0.083910 / 0.296338 (-0.212428) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396004 / 0.215209 (0.180795) | 3.969852 / 2.077655 (1.892197) | 1.966000 / 1.504120 (0.461880) | 1.786453 / 1.541195 (0.245258) | 1.866082 / 1.468490 (0.397592) | 0.502633 / 4.584777 (-4.082144) | 3.114331 / 3.745712 (-0.631382) | 2.940003 / 5.269862 (-2.329859) | 1.901844 / 4.565676 (-2.663832) | 0.058109 / 0.424275 (-0.366166) | 0.006502 / 0.007607 (-0.001105) | 0.463465 / 0.226044 (0.237420) | 4.641531 / 2.268929 (2.372603) | 2.315759 / 55.444624 (-53.128865) | 2.253088 / 6.876477 (-4.623389) | 2.151399 / 2.142072 (0.009326) | 0.592225 / 4.805227 (-4.213002) | 0.125072 / 6.500664 (-6.375592) | 0.059966 / 0.075469 (-0.015503) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231392 / 1.841788 (-0.610396) | 17.533893 / 8.074308 (9.459585) | 13.710478 / 10.191392 (3.519086) | 0.147389 / 0.680424 (-0.533035) | 0.017932 / 0.534201 (-0.516269) | 0.334144 / 0.579283 (-0.245139) | 0.368817 / 0.434364 (-0.065547) | 0.383790 / 0.540337 (-0.156547) | 0.540262 / 1.386936 (-0.846674) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006066 / 0.011353 (-0.005287) | 0.003804 / 0.011008 (-0.007205) | 0.062474 / 0.038508 (0.023966) | 0.060547 / 0.023109 (0.037437) | 0.448643 / 0.275898 (0.172745) | 0.487005 / 0.323480 (0.163525) | 0.004884 / 0.007986 (-0.003102) | 0.002911 / 0.004328 (-0.001418) | 0.062950 / 0.004250 (0.058700) | 0.049672 / 0.037052 (0.012620) | 0.477491 / 0.258489 (0.219002) | 0.488234 / 0.293841 (0.194393) | 0.028711 / 0.128546 (-0.099835) | 0.008101 / 0.075646 (-0.067545) | 0.068333 / 0.419271 (-0.350939) | 0.040959 / 0.043533 (-0.002574) | 0.450716 / 0.255139 (0.195577) | 0.471089 / 0.283200 (0.187890) | 0.020710 / 0.141683 (-0.120973) | 1.474850 / 1.452155 (0.022695) | 1.540115 / 1.492716 (0.047399) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229811 / 0.018006 (0.211805) | 0.419526 / 0.000490 (0.419036) | 0.003818 / 0.000200 (0.003618) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026045 / 0.037411 (-0.011366) | 0.080325 / 0.014526 (0.065799) | 0.091549 / 0.176557 (-0.085007) | 0.145253 / 0.737135 (-0.591882) | 0.091849 / 0.296338 (-0.204489) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463047 / 0.215209 (0.247838) | 4.598727 / 2.077655 (2.521072) | 2.558996 / 1.504120 (1.054877) | 2.405896 / 1.541195 (0.864701) | 2.447291 / 1.468490 (0.978801) | 0.510393 / 4.584777 (-4.074384) | 3.173344 / 3.745712 (-0.572368) | 2.901201 / 5.269862 (-2.368661) | 1.896440 / 4.565676 (-2.669236) | 0.058374 / 0.424275 (-0.365901) | 0.006449 / 0.007607 (-0.001158) | 0.539653 / 0.226044 (0.313608) | 5.408217 / 2.268929 (3.139289) | 3.042453 / 55.444624 (-52.402172) | 2.656724 / 6.876477 (-4.219753) | 2.838165 / 2.142072 (0.696092) | 0.598663 / 4.805227 (-4.206565) | 0.126211 / 6.500664 (-6.374453) | 0.062830 / 0.075469 (-0.012639) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.392412 / 1.841788 (-0.449376) | 18.195170 / 8.074308 (10.120862) | 14.788251 / 10.191392 (4.596859) | 0.132579 / 0.680424 (-0.547845) | 0.017867 / 0.534201 (-0.516334) | 0.340020 / 0.579283 (-0.239263) | 0.386719 / 0.434364 (-0.047645) | 0.398863 / 0.540337 (-0.141475) | 0.579320 / 1.386936 (-0.807617) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a2569fdfcf387f8885974a35fafa409fbc6dd059 \"CML watermark\")\n", "closing in favor of https://github.com/huggingface/datasets/pull/6282" ]
2023-10-05T10:31:58
2024-01-11T06:32:49
2023-10-05T14:43:17
MEMBER
true
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6278", "html_url": "https://github.com/huggingface/datasets/pull/6278", "diff_url": "https://github.com/huggingface/datasets/pull/6278.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6278.patch", "merged_at": null }
I added a new DataFilesSet class to disallow duplicate data files. I also deprecated DataFilesList. EDIT: actually I might just add drop_duplicates=True to `.from_patterns` close https://github.com/huggingface/datasets/issues/6259 close https://github.com/huggingface/datasets/issues/6272 TODO: - [ ] tests - [ ] preserve data files order
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6278/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6278/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6277
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6277/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6277/comments
https://api.github.com/repos/huggingface/datasets/issues/6277/events
https://github.com/huggingface/datasets/issues/6277
1,927,044,546
I_kwDODunzps5y3F3C
6,277
FileNotFoundError: Couldn't find a module script at /content/paws-x/paws-x.py. Module 'paws-x' doesn't exist on the Hugging Face Hub either.
{ "login": "diegogonzalezc", "id": 66733346, "node_id": "MDQ6VXNlcjY2NzMzMzQ2", "avatar_url": "https://avatars.githubusercontent.com/u/66733346?v=4", "gravatar_id": "", "url": "https://api.github.com/users/diegogonzalezc", "html_url": "https://github.com/diegogonzalezc", "followers_url": "https://api.github.com/users/diegogonzalezc/followers", "following_url": "https://api.github.com/users/diegogonzalezc/following{/other_user}", "gists_url": "https://api.github.com/users/diegogonzalezc/gists{/gist_id}", "starred_url": "https://api.github.com/users/diegogonzalezc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/diegogonzalezc/subscriptions", "organizations_url": "https://api.github.com/users/diegogonzalezc/orgs", "repos_url": "https://api.github.com/users/diegogonzalezc/repos", "events_url": "https://api.github.com/users/diegogonzalezc/events{/privacy}", "received_events_url": "https://api.github.com/users/diegogonzalezc/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "`evaluate.load(\"paws-x\", \"es\")` throws the error because there is no such metric in the `evaluate` lib.\r\n\r\nSo, this is unrelated to our lib." ]
2023-10-04T22:01:25
2023-10-08T17:05:46
2023-10-08T17:05:46
NONE
null
null
### Describe the bug I'm encountering a "FileNotFoundError" while attempting to use the "paws-x" dataset to retrain the DistilRoBERTa-base model. The error message is as follows: FileNotFoundError: Couldn't find a module script at /content/paws-x/paws-x.py. Module 'paws-x' doesn't exist on the Hugging Face Hub either. ### Steps to reproduce the bug https://colab.research.google.com/drive/11xUUFxloClpmqLvDy_Xxfmo3oUzjY5nx#scrollTo=kUn74FigzhHm ### Expected behavior The the trained model ### Environment info colab, "paws-x" dataset , DistilRoBERTa-base model
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6277/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6277/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6276
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6276/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6276/comments
https://api.github.com/repos/huggingface/datasets/issues/6276/events
https://github.com/huggingface/datasets/issues/6276
1,925,961,878
I_kwDODunzps5yy9iW
6,276
I'm trying to fine tune the openai/whisper model from huggingface using jupyter notebook and i keep getting this error
{ "login": "valaofficial", "id": 50768065, "node_id": "MDQ6VXNlcjUwNzY4MDY1", "avatar_url": "https://avatars.githubusercontent.com/u/50768065?v=4", "gravatar_id": "", "url": "https://api.github.com/users/valaofficial", "html_url": "https://github.com/valaofficial", "followers_url": "https://api.github.com/users/valaofficial/followers", "following_url": "https://api.github.com/users/valaofficial/following{/other_user}", "gists_url": "https://api.github.com/users/valaofficial/gists{/gist_id}", "starred_url": "https://api.github.com/users/valaofficial/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/valaofficial/subscriptions", "organizations_url": "https://api.github.com/users/valaofficial/orgs", "repos_url": "https://api.github.com/users/valaofficial/repos", "events_url": "https://api.github.com/users/valaofficial/events{/privacy}", "received_events_url": "https://api.github.com/users/valaofficial/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Since you are using Windows, maybe moving the `map` call inside `if __name__ == \"__main__\"` can fix the issue:\r\n```python\r\nif __name__ == \"__main__\":\r\n common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=4)\r\n```\r\n\r\nOtherwise, the only solution is to set `num_proc=1`.", "> Since you are using Windows, maybe moving the `map` call inside `if __name__ == \"__main__\"` can fix the issue:\r\n> \r\n> ```python\r\n> if __name__ == \"__main__\":\r\n> common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=4)\r\n> ```\r\n> \r\n> Otherwise, the only solution is to set `num_proc=1`.\r\n\r\nThank you very much for the response, i eventually tried setting `num_proc=1` and now the jupyter notebook kernel keers dying after running the command, what do you think the issue could be, could it be that my system is not capable of running the command \"i'm using a Lenovo Thinkpad T440 with no GPU\"", "Firstly, you didn't define feature_extractor variable. Secondly, it is large nlp model. Hence you should use proper gpu, otherwise your machine's cpu will be overclock and you can do nothing." ]
2023-10-04T11:03:41
2023-11-27T10:39:16
null
NONE
null
null
### Describe the bug I'm trying to fine tune the openai/whisper model from huggingface using jupyter notebook and i keep getting this error, i'm following the steps in this blog post https://huggingface.co/blog/fine-tune-whisper I tried google collab and it works but because I'm on the free version the training doesn't complete the error comes in jupyter notebook when i run this line `common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=4)` here is the error message ``` Map (num_proc=4): 0% 0/2506 [00:52<?, ? examples/s] The above exception was the direct cause of the following exception: NameError Traceback (most recent call last) Cell In[19], line 1 ----> 1 common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=4) File ~\anaconda\Lib\site-packages\datasets\dataset_dict.py:853, in DatasetDict.map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, desc) 850 if cache_file_names is None: 851 cache_file_names = {k: None for k in self} 852 return DatasetDict( --> 853 { 854 k: dataset.map( 855 function=function, 856 with_indices=with_indices, 857 with_rank=with_rank, 858 input_columns=input_columns, 859 batched=batched, 860 batch_size=batch_size, 861 drop_last_batch=drop_last_batch, 862 remove_columns=remove_columns, 863 keep_in_memory=keep_in_memory, 864 load_from_cache_file=load_from_cache_file, 865 cache_file_name=cache_file_names[k], 866 writer_batch_size=writer_batch_size, 867 features=features, 868 disable_nullable=disable_nullable, 869 fn_kwargs=fn_kwargs, 870 num_proc=num_proc, 871 desc=desc, 872 ) 873 for k, dataset in self.items() 874 } 875 ) File ~\anaconda\Lib\site-packages\datasets\dataset_dict.py:854, in <dictcomp>(.0) 850 if cache_file_names is None: 851 cache_file_names = {k: None for k in self} 852 return DatasetDict( 853 { --> 854 k: dataset.map( 855 function=function, 856 with_indices=with_indices, 857 with_rank=with_rank, 858 input_columns=input_columns, 859 batched=batched, 860 batch_size=batch_size, 861 drop_last_batch=drop_last_batch, 862 remove_columns=remove_columns, 863 keep_in_memory=keep_in_memory, 864 load_from_cache_file=load_from_cache_file, 865 cache_file_name=cache_file_names[k], 866 writer_batch_size=writer_batch_size, 867 features=features, 868 disable_nullable=disable_nullable, 869 fn_kwargs=fn_kwargs, 870 num_proc=num_proc, 871 desc=desc, 872 ) 873 for k, dataset in self.items() 874 } 875 ) File ~\anaconda\Lib\site-packages\datasets\arrow_dataset.py:592, in transmit_tasks.<locals>.wrapper(*args, **kwargs) 590 self: "Dataset" = kwargs.pop("self") 591 # apply actual function --> 592 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 593 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 594 for dataset in datasets: 595 # Remove task templates if a column mapping of the template is no longer valid File ~\anaconda\Lib\site-packages\datasets\arrow_dataset.py:557, in transmit_format.<locals>.wrapper(*args, **kwargs) 550 self_format = { 551 "type": self._format_type, 552 "format_kwargs": self._format_kwargs, 553 "columns": self._format_columns, 554 "output_all_columns": self._output_all_columns, 555 } 556 # apply actual function --> 557 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 558 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 559 # re-apply format to the output File ~\anaconda\Lib\site-packages\datasets\arrow_dataset.py:3189, in Dataset.map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 3182 logger.info(f"Spawning {num_proc} processes") 3183 with logging.tqdm( 3184 disable=not logging.is_progress_bar_enabled(), 3185 unit=" examples", 3186 total=pbar_total, 3187 desc=(desc or "Map") + f" (num_proc={num_proc})", 3188 ) as pbar: -> 3189 for rank, done, content in iflatmap_unordered( 3190 pool, Dataset._map_single, kwargs_iterable=kwargs_per_job 3191 ): 3192 if done: 3193 shards_done += 1 File ~\anaconda\Lib\site-packages\datasets\utils\py_utils.py:1394, in iflatmap_unordered(pool, func, kwargs_iterable) 1391 finally: 1392 if not pool_changed: 1393 # we get the result in case there's an error to raise -> 1394 [async_result.get(timeout=0.05) for async_result in async_results] File ~\anaconda\Lib\site-packages\datasets\utils\py_utils.py:1394, in <listcomp>(.0) 1391 finally: 1392 if not pool_changed: 1393 # we get the result in case there's an error to raise -> 1394 [async_result.get(timeout=0.05) for async_result in async_results] File ~\anaconda\Lib\site-packages\multiprocess\pool.py:774, in ApplyResult.get(self, timeout) 772 return self._value 773 else: --> 774 raise self._value NameError: name 'feature_extractor' is not defined ``` ### Steps to reproduce the bug 1. follow the steps in this blog post https://huggingface.co/blog/fine-tune-whisper 2. run this line of code `common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=4)` 3. I'm using jupyter notebook from anaconda ### Expected behavior No error message ### Environment info datasets version: 2.8.0 Python version: 3.11 Windows 10
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6276/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6276/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6275
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6275/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6275/comments
https://api.github.com/repos/huggingface/datasets/issues/6275/events
https://github.com/huggingface/datasets/issues/6275
1,921,354,680
I_kwDODunzps5yhYu4
6,275
Would like to Contribute a dataset
{ "login": "vikas70607", "id": 97907750, "node_id": "U_kgDOBdX0Jg", "avatar_url": "https://avatars.githubusercontent.com/u/97907750?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vikas70607", "html_url": "https://github.com/vikas70607", "followers_url": "https://api.github.com/users/vikas70607/followers", "following_url": "https://api.github.com/users/vikas70607/following{/other_user}", "gists_url": "https://api.github.com/users/vikas70607/gists{/gist_id}", "starred_url": "https://api.github.com/users/vikas70607/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vikas70607/subscriptions", "organizations_url": "https://api.github.com/users/vikas70607/orgs", "repos_url": "https://api.github.com/users/vikas70607/repos", "events_url": "https://api.github.com/users/vikas70607/events{/privacy}", "received_events_url": "https://api.github.com/users/vikas70607/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Hi! The process of contributing a dataset is explained here: https://huggingface.co/docs/datasets/upload_dataset. Also, check https://huggingface.co/docs/datasets/image_dataset for a more detailed explanation of how to share an image dataset." ]
2023-10-02T07:00:21
2023-10-10T16:27:54
2023-10-10T16:27:54
NONE
null
null
I have a dataset of 2500 images that can be used for color-blind machine-learning algorithms. Since , there was no dataset available online , I made this dataset myself and would like to contribute this now to community
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6275/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6275/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6274
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6274/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6274/comments
https://api.github.com/repos/huggingface/datasets/issues/6274/events
https://github.com/huggingface/datasets/issues/6274
1,921,036,328
I_kwDODunzps5ygLAo
6,274
FileNotFoundError for dataset with multiple builder config
{ "login": "LouisChen15", "id": 97120485, "node_id": "U_kgDOBcnw5Q", "avatar_url": "https://avatars.githubusercontent.com/u/97120485?v=4", "gravatar_id": "", "url": "https://api.github.com/users/LouisChen15", "html_url": "https://github.com/LouisChen15", "followers_url": "https://api.github.com/users/LouisChen15/followers", "following_url": "https://api.github.com/users/LouisChen15/following{/other_user}", "gists_url": "https://api.github.com/users/LouisChen15/gists{/gist_id}", "starred_url": "https://api.github.com/users/LouisChen15/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LouisChen15/subscriptions", "organizations_url": "https://api.github.com/users/LouisChen15/orgs", "repos_url": "https://api.github.com/users/LouisChen15/repos", "events_url": "https://api.github.com/users/LouisChen15/events{/privacy}", "received_events_url": "https://api.github.com/users/LouisChen15/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Please tell me if the above info is not enough for solving the problem. I will then make my dataset public temporarily so that you can really reproduce the bug. " ]
2023-10-01T23:45:56
2023-10-02T20:09:38
2023-10-02T20:09:38
NONE
null
null
### Describe the bug When there is only one config and only the dataset name is entered when using datasets.load_dataset(), it works fine. But if I create a second builder_config for my dataset and enter the config name when using datasets.load_dataset(), the following error will happen. FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/chenx/.cache/huggingface/datasets/my_dataset/0_shot_multiple_choice/1.0.0/97c3854a012cfd6b045e3be4c864739902af2d818bb9235b047baa94c302e9a2.incomplete/my_dataset-test-00000-00000-of-NNNNN.arrow' The "XXX.incomplete folder" in the cache folder of my dataset will disappear before "generating test split", which does not happen when config name is not entered and the config name is "default" C:\Users\chenx\.cache\huggingface\datasets\my_dataset\0_shot_multiple_choice\1.0.0 The folder that is supposed to remain under the above directory will disappear, and the data generator will not have a place to generate data into. ### Steps to reproduce the bug test = load_dataset('my_dataset', '0_shot_multiple_choice') ### Expected behavior FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/chenx/.cache/huggingface/datasets/my_dataset/0_shot_multiple_choice/1.0.0/97c3854a012cfd6b045e3be4c864739902af2d818bb9235b047baa94c302e9a2.incomplete/my_dataset-test-00000-00000-of-NNNNN.arrow' ### Environment info datasets 2.14.5 python 3.8.18
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6274/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6274/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6273
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6273/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6273/comments
https://api.github.com/repos/huggingface/datasets/issues/6273/events
https://github.com/huggingface/datasets/issues/6273
1,920,922,260
I_kwDODunzps5yfvKU
6,273
Broken Link to PubMed Abstracts dataset .
{ "login": "sameemqureshi", "id": 100606327, "node_id": "U_kgDOBf8hdw", "avatar_url": "https://avatars.githubusercontent.com/u/100606327?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sameemqureshi", "html_url": "https://github.com/sameemqureshi", "followers_url": "https://api.github.com/users/sameemqureshi/followers", "following_url": "https://api.github.com/users/sameemqureshi/following{/other_user}", "gists_url": "https://api.github.com/users/sameemqureshi/gists{/gist_id}", "starred_url": "https://api.github.com/users/sameemqureshi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sameemqureshi/subscriptions", "organizations_url": "https://api.github.com/users/sameemqureshi/orgs", "repos_url": "https://api.github.com/users/sameemqureshi/repos", "events_url": "https://api.github.com/users/sameemqureshi/events{/privacy}", "received_events_url": "https://api.github.com/users/sameemqureshi/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "This has already been reported in the HF Course repo (https://github.com/huggingface/course/issues/623).", "@lhoestq @albertvillanova @lewtun I don't think we are allowed to host these data files on the Hub (due to DMCA), which means the only option is to use a different dataset in the course (and to re-record the video 🙂), no?", "Keeping the video is maybe fine, we can add a note on youtube to suggest to load a dataset with a different name. Maybe C4 ? And update the code snippets on the website ?", "Maybe you want to try it with the PUBMED dataset that I reproduced based on the The [PubMed Abstract GitHub Site](http://github.com/thoppe/The-Pile-PubMed) and uploaded on the HuggingFace:\r\n\r\n```\r\nfrom datasets import load_dataset\r\npubmed_dataset = load_dataset(\"hwang2006/PUBMED_title_abstracts_2020_baseline\")\r\npubmed_dataset\r\n\r\n#Downloading data: 100%\r\n#7.98G/7.98G [11:47<00:00, 9.68MB/s]\r\n#Generating train split: 17722096/0 [00:36<00:00, 505376.37 examples/s]\r\n\r\n#DatasetDict({\r\n# train: Dataset({\r\n# features: ['meta', 'text'],\r\n# num_rows: 17722096\r\n# })\r\n#})\r\n```" ]
2023-10-01T19:08:48
2024-01-09T05:48:01
null
NONE
null
null
### Describe the bug The link provided for the dataset is broken, data_files = [https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst](url) The ### Steps to reproduce the bug Steps to reproduce: 1) Head over to [https://huggingface.co/learn/nlp-course/chapter5/4?fw=pt#big-data-datasets-to-the-rescue](url) 2) In the Section "What is the Pile?", you can see a code snippet that contains the broken link. ### Expected behavior The link should Redirect to the "PubMed Abstracts dataset" as expected . ### Environment info .
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6273/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6273/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6272
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6272/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6272/comments
https://api.github.com/repos/huggingface/datasets/issues/6272/events
https://github.com/huggingface/datasets/issues/6272
1,920,831,487
I_kwDODunzps5yfY__
6,272
Duplicate `data_files` when named `<split>/<split>.parquet`
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
null
[]
[ "Also reported in https://github.com/huggingface/datasets/issues/6259", "I think it's best to drop duplicates with a `set` (as a temporary fix) and improve the patterns when/if https://github.com/fsspec/filesystem_spec/pull/1382 gets merged. @lhoestq Do you have some other ideas?", "Alternatively we could just use this no ?\r\n\r\n```python\r\nif config.FSSPEC_VERSION < version.parse(\"2023.9.0\"):\r\n KEYWORDS_IN_PATH_NAME_BASE_PATTERNS = [\r\n \"{keyword}[{sep}/]**\",\r\n \"**[{sep}]{keyword}[{sep}/]**\",\r\n \"**/{keyword}[{sep}/]**\",\r\n ]\r\nelse:\r\n KEYWORDS_IN_PATH_NAME_BASE_PATTERNS = [\r\n \"{keyword}[{sep}/]**\",\r\n \"**/*[{sep}]{keyword}[{sep}/]**\",\r\n \"**/*/{keyword}[{sep}/]**\",\r\n ]\r\n```\r\n\r\nThis way no need to implement sets, which would require a bit of work since we've always considered a list of pattern to be resolved as the concatenated list of resolved files for each pattern (including duplicates)\r\n", "Arf `\"**/*/{keyword}[{sep}/]**\"` does return `data/keyword.txt` in latest `fsspec` but not in `glob.glob`\r\n\r\nEDIT: actually forgot to set `recursive=True`", "Actually `glob.glob` does return it with `recursive=True` ! my bad", "Pff just tested and my idea sucks, pattern 1 and 3 obviously give duplicates ", "> I think it's best to drop duplicates with a set (as a temporary fix)\r\n\r\nI started https://github.com/huggingface/datasets/pull/6278 to use DataFilesSet objects instead of DataFilesList" ]
2023-10-01T15:43:56
2023-10-05T10:32:27
null
MEMBER
null
null
e.g. with `u23429/stock_1_minute_ticker` ```ipython In [1]: from datasets import * In [2]: b = load_dataset_builder("u23429/stock_1_minute_ticker") Downloading readme: 100%|██████████████████████████| 627/627 [00:00<00:00, 246kB/s] In [3]: b.config.data_files Out[3]: {NamedSplit('train'): ['hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/train/train.parquet', 'hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/train/train.parquet'], NamedSplit('validation'): ['hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/validation/validation.parquet', 'hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/validation/validation.parquet'], NamedSplit('test'): ['hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/test/test.parquet', 'hf://datasets/u23429/stock_1_minute_ticker@65c973cf4ec061f01a363b40da4c1bb128ba4166/test/test.parquet']} ``` This bug issue is present in the current `datasets` 2.14.5 and also on `main` even after https://github.com/huggingface/datasets/pull/6244 cc @mariosasko
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6272/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6272/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6271
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6271/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6271/comments
https://api.github.com/repos/huggingface/datasets/issues/6271/events
https://github.com/huggingface/datasets/issues/6271
1,920,420,295
I_kwDODunzps5yd0nH
6,271
Overwriting Split overwrites data but not metadata, corrupting dataset
{ "login": "govindrai", "id": 13859249, "node_id": "MDQ6VXNlcjEzODU5MjQ5", "avatar_url": "https://avatars.githubusercontent.com/u/13859249?v=4", "gravatar_id": "", "url": "https://api.github.com/users/govindrai", "html_url": "https://github.com/govindrai", "followers_url": "https://api.github.com/users/govindrai/followers", "following_url": "https://api.github.com/users/govindrai/following{/other_user}", "gists_url": "https://api.github.com/users/govindrai/gists{/gist_id}", "starred_url": "https://api.github.com/users/govindrai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/govindrai/subscriptions", "organizations_url": "https://api.github.com/users/govindrai/orgs", "repos_url": "https://api.github.com/users/govindrai/repos", "events_url": "https://api.github.com/users/govindrai/events{/privacy}", "received_events_url": "https://api.github.com/users/govindrai/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-09-30T22:37:31
2023-10-16T13:30:50
2023-10-16T13:30:50
NONE
null
null
### Describe the bug I want to be able to overwrite/update/delete splits in my dataset. Currently the only way to do is to manually go into the dataset and delete the split. If I try to overwrite programmatically I end up in an error state and (somewhat) corrupting the dataset. Read below. **Current Behavior** When I push to an existing split I get this error: `ValueError: Split complexRoofLocation_01Apr2023_to_31May2023test already present` This seems to suggest that the library doesn't support overwriting splits. **Potential Bug** What’s strange is that datasets, despite the operation erroring out with the ValueError above, does, in fact, overwrite the split: `Pushing dataset shards to the dataset hub: 100% [.....................] 1/1 [00:00<00:00, 55.04it/s]` Even though you got an error message and your code fails, your dataset is now changed. That seems like a bug. Either don't change the dataset, or don't throw the error and allow the script to proceed. Additional Bug While it overwrites the split, it doesn’t overwrite the split’s information. Because of this when you pull down the dataset you may end up getting a `NonMatchingSplitsSizesError` if the size of the dataset during the overwrite is different. For example, my original split had 5 rows, but on my overwrite, I only had 4. Then when I try to download the dataset, I get a `NonMatchingSplitsSizesError` because the dataset's data.json states there’s 5 but only 4 exist in the split. Expected Behavior This corrupts the dataset rendering it unusable (until you take manual intervention). Either the library should let the overwrite happen (which it does but should also update the metadata) or it shouldn’t do anything. ### Steps to reproduce the bug [Colab Notebook](https://colab.research.google.com/drive/1bqVkD06Ngs9MQNdSk_ygCG6y1UqXA4pC?usp=sharing) ### Expected behavior The split should be overwritten and I should be able to use the new version of the dataset without issue. ### Environment info - `datasets` version: 2.14.5 - Platform: Linux-5.15.120+-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.17.3 - PyArrow version: 9.0.0 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6271/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6271/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6270
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6270/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6270/comments
https://api.github.com/repos/huggingface/datasets/issues/6270/events
https://github.com/huggingface/datasets/issues/6270
1,920,329,373
I_kwDODunzps5ydead
6,270
Dataset.from_generator raises with sharded gen_args
{ "login": "hartmans", "id": 53510, "node_id": "MDQ6VXNlcjUzNTEw", "avatar_url": "https://avatars.githubusercontent.com/u/53510?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hartmans", "html_url": "https://github.com/hartmans", "followers_url": "https://api.github.com/users/hartmans/followers", "following_url": "https://api.github.com/users/hartmans/following{/other_user}", "gists_url": "https://api.github.com/users/hartmans/gists{/gist_id}", "starred_url": "https://api.github.com/users/hartmans/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hartmans/subscriptions", "organizations_url": "https://api.github.com/users/hartmans/orgs", "repos_url": "https://api.github.com/users/hartmans/repos", "events_url": "https://api.github.com/users/hartmans/events{/privacy}", "received_events_url": "https://api.github.com/users/hartmans/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "`gen_kwargs` should be a `dict`, as stated in the docstring, but you are passing a `list`.\r\n\r\nSo, to fix the error, replace the list of dicts with a dict of lists (and slightly modify the generator function):\r\n```python\r\nfrom pathlib import Path\r\nimport datasets\r\n\r\ndef process_yaml(files):\r\n for f in files:\r\n # process\r\n yield dict(...)\r\n\r\n\r\nif __name__ == '__main__':\r\n import sys\r\n dir = Path(sys.argv[0]).parent\r\n ds = datasets.Dataset.from_generator(process_yaml, gen_kwargs={'files': [f for f in dir.glob('*.yml')]})\r\n ds.to_json('training.jsonl')\r\n```", "That runs, and because my dataset is small, it's what I did to get past the problem.\r\nHowever, it does not produce a sharded dataset. From the doc string I expect there ought to be a way to call from_generator such that num_shards in the resulting data set is equal to the number of items in the list.\r\nThe part of the doc string that your suggestion is not responsive to is:\r\n` You can define a sharded dataset by passing the list of shards in *g\r\nen_kwargs*.\r\n`\r\n\r\nWhat your suggestion does is calls the generator once, with the list argument, and produces a single shard dataset.\r\n", "The sharding mentioned here refers to using this function with `num_proc` (multiprocessing splits the `kwargs` into shards and passes them to the generator function)\r\n\r\n> That runs, and because my dataset is small, it's what I did to get past the problem.\r\n\r\n`from_generator` generates a memory-mapped dataset (can be larger than RAM), so the dataset size should not be an issue unless the generator function's implementation does not properly free the memory.\r\n", "It sounds like you are saying that num_proc affects the form of gen_kwargs.\r\nAre you saying that for non-zero num_proc gen_kwargs should be a list whose length is the same as num_proc?\r\nOr are you saying that for non-zero num_proc, gen_kwargs should be a dict whose elements are lists the length of num_proc?\r\n", "I ran some tests. So, it looks like with num_proc greater than 1, gen_kwargs is expected to be a dict of lists. It calls the generator also with a dict of lists, but the lists are split.\r\nI.E. if my original has `gen_kwargs=dict(a=[0,1,2])`, then my generator might get called with `gen_kwalrgs=dict([0])`.\r\nThat all makes sense, but I definitely think there is room for improvement in the doc string here.\r\nIn order to suggest improvements to the doc string, I need to look at how the gen_kwargs are split, and figure out if:\r\n* num_proc needs to exactly equal the length of the lists\r\n* num_proc needs to evenly divide the length of the lists\r\n* Or there's no required relationship.\r\nI'll look into that and then propose an improved doc string if no one else gets to it first.", "Okay, that was fun; I took a dive through the dataset code and feel like I have a much better understanding.\r\nHere is my understanding of the behavior:\r\n* max_proc is an upper limit on the number of shards that `from_generator` produces\r\n* If `max_proc` is greater than 1, then all lists in *gen_kwargs* must be the same length\r\n* If the lists in *gen_kwargs* are shorter than *num_proc* elements, *num_proc* will be reduced and a warning produced. Put another way, `min(list_length, num_shards)` shards will be produced\r\n* The members of the lists in *gen_kwargs* will be partitioned among the created jobs.\r\nTo validate the above, take a look at\r\n`_number_of_shards_in_gen_kwargs` and `_distribute_shards` and `_split_gen_kwargs` in utils/sharding.py.\r\nI've also chased down starting at *from_generator* all the way through to GeneratorBuilder and the calls to the functions in sharding.py.\r\nTomorrow I'll take a look at the contributing guidelines and see what's involved in putting together a PR to improve the doc string." ]
2023-09-30T16:50:06
2023-10-11T20:29:12
2023-10-11T20:29:11
CONTRIBUTOR
null
null
### Describe the bug According to the docs of Datasets.from_generator: ``` gen_kwargs(`dict`, *optional*): Keyword arguments to be passed to the `generator` callable. You can define a sharded dataset by passing the list of shards in `gen_kwargs`. ``` So I'd expect that if gen_kwargs was a list, then my generator would be called once for each element in the list with the dict in the list for that element. It doesn't work that way though. ### Steps to reproduce the bug ```python #!/usr/bin/python from pathlib import Path import datasets def process_yaml(file): yield dict(example=42) if __name__ == '__main__': import sys dir = Path(sys.argv[0]).parent ds = datasets.Dataset.from_generator(process_yaml, gen_kwargs=[{'file':f} for f in dir.glob('*.yml')], ) ds.to_json('training.jsonl') ``` ``` Generating train split: 0 examples [00:00, ? examples/s] Traceback (most recent call last): File "/tmp/dataset_bug.py", line 13, in <module> ds = datasets.Dataset.from_generator(process_yaml, gen_kwargs=[{'file':f} for f in dir.glob('*.yml')], ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 1072, in from_generator ).read() ^^^^^^ File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/io/generator.py", line 47, in read self.builder.download_and_prepare( File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 954, in download_and_prepare self._download_and_prepare( File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 1717, in _download_and_prepare super()._download_and_prepare( File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 1049, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 1555, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/hartmans/ai/venv/lib/python3.11/site-packages/datasets/builder.py", line 1656, in _prepare_split_single generator = self._generate_examples(**gen_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: datasets.packaged_modules.generator.generator.Generator._generate_examples() argument after ** must be a ``` mapping, not list ### Expected behavior I would expect that process_yaml would be called once for each yaml file in the directory where the script is run. I also tried with the list being in gen_kwargs, but in that case process_yaml gets called with a list. ### Environment info - `datasets` version: 2.14.6.dev0 (git commit 0cc77d7f45c7369; also tested with 2.14.0) - Platform: Linux-6.1.0-10-amd64-x86_64-with-glibc2.36 - Python version: 3.11.2 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6270/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6270/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6269
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6269/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6269/comments
https://api.github.com/repos/huggingface/datasets/issues/6269/events
https://github.com/huggingface/datasets/pull/6269
1,919,572,790
PR_kwDODunzps5bjbDc
6,269
Reduce the number of commits in `push_to_hub`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005864 / 0.011353 (-0.005489) | 0.003535 / 0.011008 (-0.007474) | 0.080732 / 0.038508 (0.042224) | 0.057072 / 0.023109 (0.033963) | 0.334342 / 0.275898 (0.058444) | 0.361345 / 0.323480 (0.037865) | 0.003290 / 0.007986 (-0.004696) | 0.003794 / 0.004328 (-0.000534) | 0.063414 / 0.004250 (0.059163) | 0.046901 / 0.037052 (0.009848) | 0.335973 / 0.258489 (0.077484) | 0.377929 / 0.293841 (0.084088) | 0.027199 / 0.128546 (-0.101348) | 0.008049 / 0.075646 (-0.067597) | 0.261810 / 0.419271 (-0.157462) | 0.044669 / 0.043533 (0.001136) | 0.333600 / 0.255139 (0.078461) | 0.356362 / 0.283200 (0.073162) | 0.020325 / 0.141683 (-0.121358) | 1.458138 / 1.452155 (0.005984) | 1.505923 / 1.492716 (0.013207) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216456 / 0.018006 (0.198450) | 0.421750 / 0.000490 (0.421261) | 0.007359 / 0.000200 (0.007159) | 0.000246 / 0.000054 (0.000191) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023400 / 0.037411 (-0.014012) | 0.073363 / 0.014526 (0.058838) | 0.083533 / 0.176557 (-0.093023) | 0.144045 / 0.737135 (-0.593090) | 0.084050 / 0.296338 (-0.212288) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398354 / 0.215209 (0.183145) | 3.982875 / 2.077655 (1.905220) | 2.047299 / 1.504120 (0.543180) | 1.873780 / 1.541195 (0.332585) | 1.977044 / 1.468490 (0.508554) | 0.497038 / 4.584777 (-4.087739) | 3.039743 / 3.745712 (-0.705969) | 2.832885 / 5.269862 (-2.436977) | 1.827300 / 4.565676 (-2.738377) | 0.057503 / 0.424275 (-0.366772) | 0.006272 / 0.007607 (-0.001335) | 0.468681 / 0.226044 (0.242637) | 4.696551 / 2.268929 (2.427622) | 2.413805 / 55.444624 (-53.030819) | 2.157199 / 6.876477 (-4.719278) | 2.345986 / 2.142072 (0.203914) | 0.584632 / 4.805227 (-4.220595) | 0.124684 / 6.500664 (-6.375980) | 0.060090 / 0.075469 (-0.015379) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293551 / 1.841788 (-0.548236) | 17.198292 / 8.074308 (9.123984) | 13.677910 / 10.191392 (3.486518) | 0.146633 / 0.680424 (-0.533791) | 0.016711 / 0.534201 (-0.517490) | 0.331644 / 0.579283 (-0.247639) | 0.360148 / 0.434364 (-0.074215) | 0.381194 / 0.540337 (-0.159143) | 0.537952 / 1.386936 (-0.848984) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006020 / 0.011353 (-0.005333) | 0.003557 / 0.011008 (-0.007451) | 0.061926 / 0.038508 (0.023418) | 0.056246 / 0.023109 (0.033137) | 0.446679 / 0.275898 (0.170781) | 0.479843 / 0.323480 (0.156363) | 0.004656 / 0.007986 (-0.003330) | 0.002823 / 0.004328 (-0.001505) | 0.061366 / 0.004250 (0.057115) | 0.045793 / 0.037052 (0.008740) | 0.460807 / 0.258489 (0.202318) | 0.485467 / 0.293841 (0.191626) | 0.028555 / 0.128546 (-0.099991) | 0.007973 / 0.075646 (-0.067674) | 0.068305 / 0.419271 (-0.350966) | 0.040844 / 0.043533 (-0.002689) | 0.463715 / 0.255139 (0.208576) | 0.474553 / 0.283200 (0.191354) | 0.019959 / 0.141683 (-0.121723) | 1.432527 / 1.452155 (-0.019628) | 1.485410 / 1.492716 (-0.007307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205555 / 0.018006 (0.187549) | 0.408271 / 0.000490 (0.407781) | 0.004325 / 0.000200 (0.004125) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026338 / 0.037411 (-0.011074) | 0.080534 / 0.014526 (0.066008) | 0.093935 / 0.176557 (-0.082622) | 0.146446 / 0.737135 (-0.590689) | 0.092890 / 0.296338 (-0.203448) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463879 / 0.215209 (0.248670) | 4.646411 / 2.077655 (2.568756) | 2.567320 / 1.504120 (1.063200) | 2.384376 / 1.541195 (0.843181) | 2.412738 / 1.468490 (0.944248) | 0.510240 / 4.584777 (-4.074537) | 3.094988 / 3.745712 (-0.650724) | 2.837700 / 5.269862 (-2.432161) | 1.850163 / 4.565676 (-2.715513) | 0.059320 / 0.424275 (-0.364955) | 0.006330 / 0.007607 (-0.001277) | 0.537770 / 0.226044 (0.311726) | 5.385556 / 2.268929 (3.116627) | 3.036088 / 55.444624 (-52.408536) | 2.650464 / 6.876477 (-4.226013) | 2.755676 / 2.142072 (0.613603) | 0.607353 / 4.805227 (-4.197875) | 0.124589 / 6.500664 (-6.376075) | 0.060778 / 0.075469 (-0.014691) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.343243 / 1.841788 (-0.498545) | 17.630281 / 8.074308 (9.555973) | 14.401219 / 10.191392 (4.209827) | 0.143252 / 0.680424 (-0.537172) | 0.017880 / 0.534201 (-0.516321) | 0.337391 / 0.579283 (-0.241892) | 0.373531 / 0.434364 (-0.060833) | 0.398408 / 0.540337 (-0.141929) | 0.558925 / 1.386936 (-0.828011) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a8f511638b486b9f83b17fd69a505fe606ad257b \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006552 / 0.011353 (-0.004801) | 0.003853 / 0.011008 (-0.007155) | 0.077673 / 0.038508 (0.039165) | 0.066043 / 0.023109 (0.042934) | 0.289858 / 0.275898 (0.013960) | 0.299009 / 0.323480 (-0.024471) | 0.004806 / 0.007986 (-0.003179) | 0.003517 / 0.004328 (-0.000811) | 0.058227 / 0.004250 (0.053977) | 0.052134 / 0.037052 (0.015082) | 0.328800 / 0.258489 (0.070311) | 0.317616 / 0.293841 (0.023776) | 0.028344 / 0.128546 (-0.100202) | 0.007853 / 0.075646 (-0.067794) | 0.291207 / 0.419271 (-0.128065) | 0.052977 / 0.043533 (0.009444) | 0.287548 / 0.255139 (0.032409) | 0.307647 / 0.283200 (0.024448) | 0.023899 / 0.141683 (-0.117784) | 1.382267 / 1.452155 (-0.069888) | 1.589915 / 1.492716 (0.097199) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246244 / 0.018006 (0.228238) | 0.478255 / 0.000490 (0.477766) | 0.014115 / 0.000200 (0.013915) | 0.000305 / 0.000054 (0.000250) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027033 / 0.037411 (-0.010378) | 0.073988 / 0.014526 (0.059462) | 0.088337 / 0.176557 (-0.088219) | 0.144067 / 0.737135 (-0.593069) | 0.091295 / 0.296338 (-0.205043) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.365904 / 0.215209 (0.150695) | 3.537330 / 2.077655 (1.459675) | 1.678341 / 1.504120 (0.174221) | 1.530297 / 1.541195 (-0.010898) | 1.605634 / 1.468490 (0.137144) | 0.437461 / 4.584777 (-4.147316) | 3.419040 / 3.745712 (-0.326672) | 3.203549 / 5.269862 (-2.066312) | 1.913214 / 4.565676 (-2.652463) | 0.052675 / 0.424275 (-0.371600) | 0.006681 / 0.007607 (-0.000926) | 0.429269 / 0.226044 (0.203225) | 4.214051 / 2.268929 (1.945122) | 2.217928 / 55.444624 (-53.226696) | 1.842679 / 6.876477 (-5.033798) | 1.867961 / 2.142072 (-0.274111) | 0.550566 / 4.805227 (-4.254661) | 0.118015 / 6.500664 (-6.382649) | 0.054749 / 0.075469 (-0.020720) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.170547 / 1.841788 (-0.671241) | 18.410567 / 8.074308 (10.336259) | 12.729992 / 10.191392 (2.538600) | 0.160426 / 0.680424 (-0.519998) | 0.021259 / 0.534201 (-0.512942) | 0.369573 / 0.579283 (-0.209710) | 0.440350 / 0.434364 (0.005986) | 0.443755 / 0.540337 (-0.096582) | 0.645614 / 1.386936 (-0.741322) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005913 / 0.011353 (-0.005440) | 0.003542 / 0.011008 (-0.007466) | 0.057621 / 0.038508 (0.019113) | 0.065822 / 0.023109 (0.042713) | 0.390847 / 0.275898 (0.114949) | 0.393127 / 0.323480 (0.069647) | 0.005040 / 0.007986 (-0.002945) | 0.002944 / 0.004328 (-0.001384) | 0.069058 / 0.004250 (0.064808) | 0.051594 / 0.037052 (0.014542) | 0.383745 / 0.258489 (0.125256) | 0.414372 / 0.293841 (0.120531) | 0.030038 / 0.128546 (-0.098508) | 0.008109 / 0.075646 (-0.067538) | 0.065444 / 0.419271 (-0.353828) | 0.045974 / 0.043533 (0.002441) | 0.401695 / 0.255139 (0.146556) | 0.417834 / 0.283200 (0.134635) | 0.020137 / 0.141683 (-0.121546) | 1.452130 / 1.452155 (-0.000025) | 1.455259 / 1.492716 (-0.037458) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228262 / 0.018006 (0.210255) | 0.455155 / 0.000490 (0.454665) | 0.006667 / 0.000200 (0.006467) | 0.000207 / 0.000054 (0.000153) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030159 / 0.037411 (-0.007252) | 0.098478 / 0.014526 (0.083952) | 0.101409 / 0.176557 (-0.075147) | 0.148689 / 0.737135 (-0.588446) | 0.103067 / 0.296338 (-0.193272) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444095 / 0.215209 (0.228886) | 3.991588 / 2.077655 (1.913934) | 2.147845 / 1.504120 (0.643725) | 2.007871 / 1.541195 (0.466676) | 2.042074 / 1.468490 (0.573584) | 0.451592 / 4.584777 (-4.133185) | 3.439400 / 3.745712 (-0.306312) | 3.107756 / 5.269862 (-2.162106) | 1.909785 / 4.565676 (-2.655891) | 0.051718 / 0.424275 (-0.372558) | 0.006597 / 0.007607 (-0.001010) | 0.480822 / 0.226044 (0.254777) | 4.913235 / 2.268929 (2.644307) | 2.631882 / 55.444624 (-52.812742) | 2.397209 / 6.876477 (-4.479267) | 2.487191 / 2.142072 (0.345119) | 0.566321 / 4.805227 (-4.238906) | 0.121741 / 6.500664 (-6.378924) | 0.053399 / 0.075469 (-0.022070) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256599 / 1.841788 (-0.585189) | 18.891127 / 8.074308 (10.816819) | 13.219662 / 10.191392 (3.028270) | 0.154570 / 0.680424 (-0.525854) | 0.022599 / 0.534201 (-0.511602) | 0.361998 / 0.579283 (-0.217286) | 0.413287 / 0.434364 (-0.021077) | 0.464867 / 0.540337 (-0.075470) | 0.638880 / 1.386936 (-0.748056) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#869e6bc775cf4dff1b92834426e1a286b104432b \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010625 / 0.011353 (-0.000728) | 0.005129 / 0.011008 (-0.005879) | 0.119975 / 0.038508 (0.081467) | 0.100128 / 0.023109 (0.077019) | 0.448678 / 0.275898 (0.172780) | 0.533150 / 0.323480 (0.209670) | 0.005881 / 0.007986 (-0.002105) | 0.007451 / 0.004328 (0.003123) | 0.090792 / 0.004250 (0.086542) | 0.073416 / 0.037052 (0.036363) | 0.455395 / 0.258489 (0.196906) | 0.497572 / 0.293841 (0.203731) | 0.053112 / 0.128546 (-0.075434) | 0.014619 / 0.075646 (-0.061027) | 0.388023 / 0.419271 (-0.031248) | 0.074004 / 0.043533 (0.030471) | 0.435319 / 0.255139 (0.180180) | 0.465985 / 0.283200 (0.182785) | 0.046991 / 0.141683 (-0.094692) | 1.895717 / 1.452155 (0.443563) | 2.086600 / 1.492716 (0.593884) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.334412 / 0.018006 (0.316406) | 0.645510 / 0.000490 (0.645020) | 0.019175 / 0.000200 (0.018975) | 0.000429 / 0.000054 (0.000374) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034385 / 0.037411 (-0.003026) | 0.108939 / 0.014526 (0.094413) | 0.125937 / 0.176557 (-0.050619) | 0.205643 / 0.737135 (-0.531493) | 0.127662 / 0.296338 (-0.168676) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.674093 / 0.215209 (0.458884) | 6.646554 / 2.077655 (4.568900) | 2.837698 / 1.504120 (1.333578) | 2.397199 / 1.541195 (0.856004) | 2.485856 / 1.468490 (1.017366) | 0.955142 / 4.584777 (-3.629635) | 5.667462 / 3.745712 (1.921750) | 5.354129 / 5.269862 (0.084268) | 3.301609 / 4.565676 (-1.264068) | 0.106051 / 0.424275 (-0.318224) | 0.009287 / 0.007607 (0.001680) | 0.766678 / 0.226044 (0.540634) | 7.786701 / 2.268929 (5.517772) | 3.665463 / 55.444624 (-51.779161) | 2.982912 / 6.876477 (-3.893564) | 3.053363 / 2.142072 (0.911290) | 1.141090 / 4.805227 (-3.664137) | 0.223975 / 6.500664 (-6.276689) | 0.093024 / 0.075469 (0.017555) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.728175 / 1.841788 (-0.113613) | 25.640134 / 8.074308 (17.565826) | 22.124769 / 10.191392 (11.933377) | 0.237489 / 0.680424 (-0.442935) | 0.030353 / 0.534201 (-0.503848) | 0.509371 / 0.579283 (-0.069913) | 0.642320 / 0.434364 (0.207956) | 0.576889 / 0.540337 (0.036552) | 0.899377 / 1.386936 (-0.487559) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010846 / 0.011353 (-0.000507) | 0.005876 / 0.011008 (-0.005132) | 0.090810 / 0.038508 (0.052302) | 0.106651 / 0.023109 (0.083542) | 0.551064 / 0.275898 (0.275166) | 0.608328 / 0.323480 (0.284848) | 0.007563 / 0.007986 (-0.000423) | 0.004595 / 0.004328 (0.000267) | 0.089125 / 0.004250 (0.084874) | 0.076577 / 0.037052 (0.039525) | 0.579970 / 0.258489 (0.321481) | 0.620214 / 0.293841 (0.326373) | 0.052577 / 0.128546 (-0.075970) | 0.013734 / 0.075646 (-0.061912) | 0.099825 / 0.419271 (-0.319447) | 0.068391 / 0.043533 (0.024858) | 0.564733 / 0.255139 (0.309594) | 0.593925 / 0.283200 (0.310726) | 0.037201 / 0.141683 (-0.104482) | 1.880969 / 1.452155 (0.428815) | 2.065094 / 1.492716 (0.572377) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.426148 / 0.018006 (0.408141) | 0.673935 / 0.000490 (0.673445) | 0.124190 / 0.000200 (0.123990) | 0.001219 / 0.000054 (0.001164) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.040280 / 0.037411 (0.002868) | 0.122042 / 0.014526 (0.107516) | 0.131333 / 0.176557 (-0.045223) | 0.203039 / 0.737135 (-0.534096) | 0.134851 / 0.296338 (-0.161487) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.684599 / 0.215209 (0.469390) | 6.727529 / 2.077655 (4.649874) | 3.255228 / 1.504120 (1.751108) | 2.925865 / 1.541195 (1.384670) | 2.978762 / 1.468490 (1.510272) | 0.931769 / 4.584777 (-3.653008) | 5.988956 / 3.745712 (2.243244) | 5.228049 / 5.269862 (-0.041812) | 3.341470 / 4.565676 (-1.224206) | 0.106737 / 0.424275 (-0.317539) | 0.009847 / 0.007607 (0.002240) | 0.813954 / 0.226044 (0.587909) | 8.137071 / 2.268929 (5.868143) | 4.140725 / 55.444624 (-51.303899) | 3.500579 / 6.876477 (-3.375898) | 3.623120 / 2.142072 (1.481047) | 1.096634 / 4.805227 (-3.708593) | 0.236938 / 6.500664 (-6.263726) | 0.083099 / 0.075469 (0.007630) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.856112 / 1.841788 (0.014324) | 26.531325 / 8.074308 (18.457017) | 24.435866 / 10.191392 (14.244474) | 0.264093 / 0.680424 (-0.416331) | 0.034872 / 0.534201 (-0.499329) | 0.520682 / 0.579283 (-0.058601) | 0.635010 / 0.434364 (0.200646) | 0.645451 / 0.540337 (0.105113) | 0.914616 / 1.386936 (-0.472320) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d8c29b9416371283e8aaabee235a91b2f45a05ee \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005928 / 0.011353 (-0.005425) | 0.003633 / 0.011008 (-0.007375) | 0.079554 / 0.038508 (0.041046) | 0.057093 / 0.023109 (0.033984) | 0.311374 / 0.275898 (0.035476) | 0.343778 / 0.323480 (0.020298) | 0.004634 / 0.007986 (-0.003352) | 0.002886 / 0.004328 (-0.001443) | 0.061888 / 0.004250 (0.057637) | 0.045895 / 0.037052 (0.008843) | 0.316447 / 0.258489 (0.057958) | 0.358141 / 0.293841 (0.064300) | 0.027247 / 0.128546 (-0.101300) | 0.007947 / 0.075646 (-0.067699) | 0.259070 / 0.419271 (-0.160201) | 0.043802 / 0.043533 (0.000269) | 0.315453 / 0.255139 (0.060314) | 0.335282 / 0.283200 (0.052082) | 0.021096 / 0.141683 (-0.120587) | 1.443219 / 1.452155 (-0.008936) | 1.523140 / 1.492716 (0.030423) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222957 / 0.018006 (0.204951) | 0.414611 / 0.000490 (0.414122) | 0.008354 / 0.000200 (0.008154) | 0.000249 / 0.000054 (0.000195) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023880 / 0.037411 (-0.013532) | 0.074523 / 0.014526 (0.059997) | 0.084803 / 0.176557 (-0.091754) | 0.146701 / 0.737135 (-0.590435) | 0.084990 / 0.296338 (-0.211348) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397736 / 0.215209 (0.182527) | 3.961740 / 2.077655 (1.884086) | 1.909014 / 1.504120 (0.404894) | 1.823026 / 1.541195 (0.281831) | 1.966235 / 1.468490 (0.497745) | 0.498056 / 4.584777 (-4.086721) | 3.041408 / 3.745712 (-0.704304) | 2.998010 / 5.269862 (-2.271852) | 1.887293 / 4.565676 (-2.678384) | 0.057096 / 0.424275 (-0.367179) | 0.006338 / 0.007607 (-0.001269) | 0.465166 / 0.226044 (0.239122) | 4.667710 / 2.268929 (2.398781) | 2.480798 / 55.444624 (-52.963826) | 2.270701 / 6.876477 (-4.605776) | 2.376470 / 2.142072 (0.234397) | 0.579873 / 4.805227 (-4.225355) | 0.125032 / 6.500664 (-6.375632) | 0.061057 / 0.075469 (-0.014412) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.229916 / 1.841788 (-0.611872) | 17.829628 / 8.074308 (9.755320) | 13.860184 / 10.191392 (3.668792) | 0.143507 / 0.680424 (-0.536917) | 0.016943 / 0.534201 (-0.517258) | 0.350106 / 0.579283 (-0.229178) | 0.364547 / 0.434364 (-0.069817) | 0.398889 / 0.540337 (-0.141448) | 0.557948 / 1.386936 (-0.828988) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006052 / 0.011353 (-0.005301) | 0.003636 / 0.011008 (-0.007372) | 0.062705 / 0.038508 (0.024197) | 0.057753 / 0.023109 (0.034644) | 0.453219 / 0.275898 (0.177321) | 0.485179 / 0.323480 (0.161699) | 0.004886 / 0.007986 (-0.003100) | 0.002838 / 0.004328 (-0.001490) | 0.062593 / 0.004250 (0.058343) | 0.047476 / 0.037052 (0.010423) | 0.454266 / 0.258489 (0.195777) | 0.487939 / 0.293841 (0.194098) | 0.028124 / 0.128546 (-0.100422) | 0.008000 / 0.075646 (-0.067647) | 0.068335 / 0.419271 (-0.350937) | 0.040491 / 0.043533 (-0.003042) | 0.457868 / 0.255139 (0.202729) | 0.476355 / 0.283200 (0.193155) | 0.019557 / 0.141683 (-0.122126) | 1.507111 / 1.452155 (0.054956) | 1.569720 / 1.492716 (0.077003) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209205 / 0.018006 (0.191199) | 0.411782 / 0.000490 (0.411292) | 0.003544 / 0.000200 (0.003344) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026569 / 0.037411 (-0.010842) | 0.081213 / 0.014526 (0.066687) | 0.090971 / 0.176557 (-0.085585) | 0.145287 / 0.737135 (-0.591849) | 0.091792 / 0.296338 (-0.204546) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458329 / 0.215209 (0.243120) | 4.574463 / 2.077655 (2.496808) | 2.516693 / 1.504120 (1.012573) | 2.329463 / 1.541195 (0.788269) | 2.386704 / 1.468490 (0.918214) | 0.503526 / 4.584777 (-4.081251) | 3.113382 / 3.745712 (-0.632331) | 2.872538 / 5.269862 (-2.397323) | 1.865483 / 4.565676 (-2.700194) | 0.058292 / 0.424275 (-0.365983) | 0.006434 / 0.007607 (-0.001173) | 0.530804 / 0.226044 (0.304760) | 5.312666 / 2.268929 (3.043738) | 2.992569 / 55.444624 (-52.452055) | 2.611524 / 6.876477 (-4.264953) | 2.779569 / 2.142072 (0.637497) | 0.595200 / 4.805227 (-4.210028) | 0.123957 / 6.500664 (-6.376707) | 0.060601 / 0.075469 (-0.014868) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345536 / 1.841788 (-0.496252) | 18.183827 / 8.074308 (10.109519) | 14.814084 / 10.191392 (4.622692) | 0.145305 / 0.680424 (-0.535119) | 0.018812 / 0.534201 (-0.515389) | 0.334793 / 0.579283 (-0.244490) | 0.375331 / 0.434364 (-0.059033) | 0.392499 / 0.540337 (-0.147839) | 0.563286 / 1.386936 (-0.823650) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1e186f0b7fe851f1f474020f0d6b1dc35114f994 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008922 / 0.011353 (-0.002431) | 0.005169 / 0.011008 (-0.005840) | 0.106275 / 0.038508 (0.067767) | 0.076446 / 0.023109 (0.053337) | 0.400207 / 0.275898 (0.124309) | 0.476262 / 0.323480 (0.152782) | 0.006032 / 0.007986 (-0.001954) | 0.004266 / 0.004328 (-0.000063) | 0.083518 / 0.004250 (0.079267) | 0.059644 / 0.037052 (0.022592) | 0.409094 / 0.258489 (0.150605) | 0.470400 / 0.293841 (0.176559) | 0.050161 / 0.128546 (-0.078385) | 0.013580 / 0.075646 (-0.062066) | 0.375047 / 0.419271 (-0.044224) | 0.068319 / 0.043533 (0.024786) | 0.433765 / 0.255139 (0.178626) | 0.449221 / 0.283200 (0.166021) | 0.037636 / 0.141683 (-0.104047) | 1.825855 / 1.452155 (0.373700) | 1.889665 / 1.492716 (0.396948) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319622 / 0.018006 (0.301616) | 0.588878 / 0.000490 (0.588388) | 0.017790 / 0.000200 (0.017590) | 0.000532 / 0.000054 (0.000477) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031152 / 0.037411 (-0.006259) | 0.093808 / 0.014526 (0.079282) | 0.119296 / 0.176557 (-0.057261) | 0.181845 / 0.737135 (-0.555291) | 0.108527 / 0.296338 (-0.187811) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.575106 / 0.215209 (0.359896) | 5.776322 / 2.077655 (3.698668) | 2.592913 / 1.504120 (1.088793) | 2.389481 / 1.541195 (0.848286) | 2.390117 / 1.468490 (0.921627) | 0.852420 / 4.584777 (-3.732357) | 5.474171 / 3.745712 (1.728459) | 4.967188 / 5.269862 (-0.302674) | 3.053712 / 4.565676 (-1.511965) | 0.098128 / 0.424275 (-0.326147) | 0.008722 / 0.007607 (0.001115) | 0.699838 / 0.226044 (0.473794) | 7.103622 / 2.268929 (4.834693) | 3.359326 / 55.444624 (-52.085299) | 2.733943 / 6.876477 (-4.142534) | 2.770001 / 2.142072 (0.627929) | 1.058217 / 4.805227 (-3.747011) | 0.215845 / 6.500664 (-6.284820) | 0.078532 / 0.075469 (0.003063) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.633173 / 1.841788 (-0.208614) | 23.795045 / 8.074308 (15.720737) | 21.094433 / 10.191392 (10.903041) | 0.234522 / 0.680424 (-0.445902) | 0.033632 / 0.534201 (-0.500569) | 0.496701 / 0.579283 (-0.082582) | 0.626861 / 0.434364 (0.192497) | 0.558267 / 0.540337 (0.017930) | 0.807461 / 1.386936 (-0.579475) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009136 / 0.011353 (-0.002217) | 0.005425 / 0.011008 (-0.005584) | 0.081478 / 0.038508 (0.042970) | 0.077240 / 0.023109 (0.054130) | 0.512156 / 0.275898 (0.236258) | 0.561593 / 0.323480 (0.238113) | 0.006499 / 0.007986 (-0.001486) | 0.004080 / 0.004328 (-0.000248) | 0.082121 / 0.004250 (0.077870) | 0.063774 / 0.037052 (0.026722) | 0.509801 / 0.258489 (0.251312) | 0.572826 / 0.293841 (0.278985) | 0.050969 / 0.128546 (-0.077578) | 0.014876 / 0.075646 (-0.060771) | 0.094815 / 0.419271 (-0.324456) | 0.063904 / 0.043533 (0.020371) | 0.530572 / 0.255139 (0.275433) | 0.545940 / 0.283200 (0.262741) | 0.036729 / 0.141683 (-0.104954) | 1.799493 / 1.452155 (0.347339) | 1.931955 / 1.492716 (0.439239) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291405 / 0.018006 (0.273398) | 0.590257 / 0.000490 (0.589767) | 0.008394 / 0.000200 (0.008194) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037613 / 0.037411 (0.000201) | 0.103136 / 0.014526 (0.088610) | 0.121744 / 0.176557 (-0.054813) | 0.198503 / 0.737135 (-0.538632) | 0.120183 / 0.296338 (-0.176156) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.659872 / 0.215209 (0.444663) | 6.616775 / 2.077655 (4.539120) | 3.031679 / 1.504120 (1.527559) | 2.743489 / 1.541195 (1.202294) | 2.786786 / 1.468490 (1.318296) | 0.866625 / 4.584777 (-3.718152) | 5.637705 / 3.745712 (1.891993) | 4.702563 / 5.269862 (-0.567298) | 3.017797 / 4.565676 (-1.547879) | 0.100107 / 0.424275 (-0.324169) | 0.008443 / 0.007607 (0.000836) | 0.791385 / 0.226044 (0.565341) | 7.869504 / 2.268929 (5.600576) | 3.856634 / 55.444624 (-51.587991) | 3.140089 / 6.876477 (-3.736388) | 3.489339 / 2.142072 (1.347267) | 1.132170 / 4.805227 (-3.673058) | 0.219630 / 6.500664 (-6.281034) | 0.082289 / 0.075469 (0.006820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.781902 / 1.841788 (-0.059885) | 24.912604 / 8.074308 (16.838296) | 21.626512 / 10.191392 (11.435120) | 0.228194 / 0.680424 (-0.452230) | 0.032799 / 0.534201 (-0.501402) | 0.483683 / 0.579283 (-0.095600) | 0.604966 / 0.434364 (0.170602) | 0.617278 / 0.540337 (0.076940) | 0.887337 / 1.386936 (-0.499599) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#579c31fda7182ca6fc33ab1e95db9e3a21fb5518 \"CML watermark\")\n", "I used [this](https://colab.research.google.com/drive/1q2FYnkJFDMM3OZbhnYeZkfzmBa6ksofQ?usp=sharing) Colab to test the new `push_to_hub` on a large dataset (55 GB). It works great. \r\n\r\nOne thing that could be improved is the performance of `dataset.data.nbytes` - it takes ≈ 3 minutes to compute for the dataset in question (50k array chunks per column). It probably makes sense to store larger chunks locally. But this can be addressed in a subsequent PR.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007190 / 0.011353 (-0.004163) | 0.004394 / 0.011008 (-0.006614) | 0.085506 / 0.038508 (0.046998) | 0.092177 / 0.023109 (0.069068) | 0.351636 / 0.275898 (0.075738) | 0.389716 / 0.323480 (0.066236) | 0.004443 / 0.007986 (-0.003543) | 0.003641 / 0.004328 (-0.000687) | 0.066578 / 0.004250 (0.062328) | 0.061399 / 0.037052 (0.024346) | 0.356008 / 0.258489 (0.097519) | 0.398677 / 0.293841 (0.104836) | 0.031958 / 0.128546 (-0.096588) | 0.008857 / 0.075646 (-0.066789) | 0.289613 / 0.419271 (-0.129659) | 0.053555 / 0.043533 (0.010022) | 0.349268 / 0.255139 (0.094129) | 0.368666 / 0.283200 (0.085466) | 0.028267 / 0.141683 (-0.113416) | 1.502857 / 1.452155 (0.050702) | 1.598422 / 1.492716 (0.105705) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319938 / 0.018006 (0.301931) | 0.566925 / 0.000490 (0.566435) | 0.014625 / 0.000200 (0.014425) | 0.000372 / 0.000054 (0.000318) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030156 / 0.037411 (-0.007255) | 0.083128 / 0.014526 (0.068602) | 0.101435 / 0.176557 (-0.075122) | 0.158971 / 0.737135 (-0.578165) | 0.101488 / 0.296338 (-0.194851) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383904 / 0.215209 (0.168695) | 3.829201 / 2.077655 (1.751546) | 1.815224 / 1.504120 (0.311104) | 1.647865 / 1.541195 (0.106670) | 1.738411 / 1.468490 (0.269921) | 0.484963 / 4.584777 (-4.099814) | 3.494811 / 3.745712 (-0.250901) | 3.505811 / 5.269862 (-1.764051) | 2.115467 / 4.565676 (-2.450210) | 0.057271 / 0.424275 (-0.367004) | 0.007285 / 0.007607 (-0.000322) | 0.467162 / 0.226044 (0.241118) | 4.661572 / 2.268929 (2.392643) | 2.330443 / 55.444624 (-53.114182) | 1.986116 / 6.876477 (-4.890361) | 2.055350 / 2.142072 (-0.086723) | 0.580369 / 4.805227 (-4.224858) | 0.132700 / 6.500664 (-6.367964) | 0.061219 / 0.075469 (-0.014251) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270843 / 1.841788 (-0.570945) | 19.870723 / 8.074308 (11.796415) | 14.368932 / 10.191392 (4.177540) | 0.167345 / 0.680424 (-0.513079) | 0.018358 / 0.534201 (-0.515843) | 0.390833 / 0.579283 (-0.188450) | 0.419884 / 0.434364 (-0.014480) | 0.465683 / 0.540337 (-0.074655) | 0.646101 / 1.386936 (-0.740835) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007027 / 0.011353 (-0.004326) | 0.004578 / 0.011008 (-0.006430) | 0.066468 / 0.038508 (0.027960) | 0.081576 / 0.023109 (0.058466) | 0.414928 / 0.275898 (0.139030) | 0.452130 / 0.323480 (0.128651) | 0.005861 / 0.007986 (-0.002124) | 0.003740 / 0.004328 (-0.000588) | 0.066943 / 0.004250 (0.062692) | 0.060100 / 0.037052 (0.023048) | 0.418697 / 0.258489 (0.160208) | 0.466604 / 0.293841 (0.172764) | 0.031887 / 0.128546 (-0.096660) | 0.009119 / 0.075646 (-0.066527) | 0.072285 / 0.419271 (-0.346986) | 0.047599 / 0.043533 (0.004066) | 0.410791 / 0.255139 (0.155652) | 0.434182 / 0.283200 (0.150982) | 0.024799 / 0.141683 (-0.116884) | 1.500310 / 1.452155 (0.048155) | 1.567151 / 1.492716 (0.074434) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322482 / 0.018006 (0.304476) | 0.550234 / 0.000490 (0.549744) | 0.007796 / 0.000200 (0.007596) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036013 / 0.037411 (-0.001398) | 0.098482 / 0.014526 (0.083956) | 0.111641 / 0.176557 (-0.064916) | 0.166251 / 0.737135 (-0.570884) | 0.112426 / 0.296338 (-0.183912) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429181 / 0.215209 (0.213972) | 4.273126 / 2.077655 (2.195472) | 2.277440 / 1.504120 (0.773321) | 2.112567 / 1.541195 (0.571372) | 2.224118 / 1.468490 (0.755628) | 0.488876 / 4.584777 (-4.095901) | 3.711638 / 3.745712 (-0.034074) | 3.480995 / 5.269862 (-1.788867) | 2.122114 / 4.565676 (-2.443563) | 0.057538 / 0.424275 (-0.366737) | 0.007416 / 0.007607 (-0.000191) | 0.506881 / 0.226044 (0.280836) | 5.067601 / 2.268929 (2.798672) | 2.769216 / 55.444624 (-52.675408) | 2.420448 / 6.876477 (-4.456029) | 2.694225 / 2.142072 (0.552153) | 0.588911 / 4.805227 (-4.216316) | 0.133542 / 6.500664 (-6.367122) | 0.061135 / 0.075469 (-0.014334) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.378029 / 1.841788 (-0.463758) | 20.660942 / 8.074308 (12.586634) | 15.725969 / 10.191392 (5.534577) | 0.169078 / 0.680424 (-0.511346) | 0.020540 / 0.534201 (-0.513661) | 0.399409 / 0.579283 (-0.179874) | 0.432572 / 0.434364 (-0.001792) | 0.477106 / 0.540337 (-0.063231) | 0.675593 / 1.386936 (-0.711343) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9764c49d8bfdad5439e16faa6c52e510feabf6fa \"CML watermark\")\n", "@lhoestq \r\n\r\n> single commit can fail (time out) if there are too many operations so we might have to do multi commits anyway in that case\r\n\r\nMultiple commits complicate the logic significantly. Maybe, let's keep things simple and emit a warning if there are more than 100 additions (we can suggest increasing `max_shard_size` in that case). Additionally, we can set the default `max_shard_size` to a higher value, e.g., 5GB. I think handling up to 500GB of data in the default case seems reasonable. In rare cases where this is a problem, one could increase the default `max_shard_size` even further (if RAM is not a limiting factor) or use `to_parquet` + `huggingface_hub` (we could have a docstring or a doc note that explains this).\r\n\r\nNote that we split the dataset based on the Arrow data size, which means Parquet shards will be considerably smaller unless there are binary fields such as image JPEGs in the dataset, which are hard to compress efficiently.\r\n\r\n> how to let users resume a push_to_hub that failed mid-way because of a connection error for example\r\n\r\nThey can resume by rerunning the failed `push_to_hub`.\r\n\r\n`preupload_lfs_files` will be instant in that scenario, as explained in https://github.com/huggingface/huggingface_hub/pull/1699#discussion_r1342446406", "> Multiple commits complicate the logic significantly. Maybe, let's keep things simple and emit a warning if there are more than 100 additions (we can suggest increasing max_shard_size in that case)\r\n\r\nI don't think we can do that, many people are uploading files with 100+ files and it would break their workflow", "Indeed, we should not break this, considering the number of datasets with more than 100 shards on the Hub (over 1k)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006834 / 0.011353 (-0.004519) | 0.004424 / 0.011008 (-0.006584) | 0.085199 / 0.038508 (0.046691) | 0.080237 / 0.023109 (0.057128) | 0.308800 / 0.275898 (0.032902) | 0.346314 / 0.323480 (0.022835) | 0.004399 / 0.007986 (-0.003586) | 0.003773 / 0.004328 (-0.000556) | 0.065886 / 0.004250 (0.061636) | 0.057830 / 0.037052 (0.020777) | 0.312035 / 0.258489 (0.053546) | 0.362646 / 0.293841 (0.068805) | 0.031223 / 0.128546 (-0.097323) | 0.008851 / 0.075646 (-0.066795) | 0.288264 / 0.419271 (-0.131007) | 0.052600 / 0.043533 (0.009067) | 0.316127 / 0.255139 (0.060988) | 0.328539 / 0.283200 (0.045340) | 0.026068 / 0.141683 (-0.115615) | 1.458928 / 1.452155 (0.006773) | 1.547619 / 1.492716 (0.054902) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274382 / 0.018006 (0.256375) | 0.591192 / 0.000490 (0.590703) | 0.009290 / 0.000200 (0.009090) | 0.000327 / 0.000054 (0.000273) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031428 / 0.037411 (-0.005983) | 0.087523 / 0.014526 (0.072997) | 0.101427 / 0.176557 (-0.075130) | 0.159228 / 0.737135 (-0.577907) | 0.101430 / 0.296338 (-0.194909) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393914 / 0.215209 (0.178705) | 3.917323 / 2.077655 (1.839668) | 1.940577 / 1.504120 (0.436457) | 1.760996 / 1.541195 (0.219801) | 1.865858 / 1.468490 (0.397368) | 0.488920 / 4.584777 (-4.095857) | 3.513465 / 3.745712 (-0.232248) | 3.506600 / 5.269862 (-1.763261) | 2.072583 / 4.565676 (-2.493093) | 0.058256 / 0.424275 (-0.366019) | 0.007420 / 0.007607 (-0.000187) | 0.467241 / 0.226044 (0.241197) | 4.671470 / 2.268929 (2.402542) | 2.422717 / 55.444624 (-53.021908) | 2.069501 / 6.876477 (-4.806975) | 2.159257 / 2.142072 (0.017184) | 0.583808 / 4.805227 (-4.221419) | 0.134160 / 6.500664 (-6.366504) | 0.068855 / 0.075469 (-0.006614) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.305299 / 1.841788 (-0.536488) | 19.913902 / 8.074308 (11.839593) | 14.708057 / 10.191392 (4.516665) | 0.160113 / 0.680424 (-0.520311) | 0.018431 / 0.534201 (-0.515770) | 0.396147 / 0.579283 (-0.183136) | 0.411738 / 0.434364 (-0.022626) | 0.459297 / 0.540337 (-0.081041) | 0.636599 / 1.386936 (-0.750337) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006936 / 0.011353 (-0.004417) | 0.004290 / 0.011008 (-0.006718) | 0.065754 / 0.038508 (0.027246) | 0.080655 / 0.023109 (0.057546) | 0.399701 / 0.275898 (0.123803) | 0.435999 / 0.323480 (0.112519) | 0.005690 / 0.007986 (-0.002295) | 0.003580 / 0.004328 (-0.000748) | 0.065685 / 0.004250 (0.061434) | 0.059299 / 0.037052 (0.022246) | 0.404295 / 0.258489 (0.145806) | 0.438745 / 0.293841 (0.144904) | 0.032241 / 0.128546 (-0.096305) | 0.008699 / 0.075646 (-0.066947) | 0.072053 / 0.419271 (-0.347218) | 0.047489 / 0.043533 (0.003956) | 0.395638 / 0.255139 (0.140499) | 0.417224 / 0.283200 (0.134025) | 0.022734 / 0.141683 (-0.118949) | 1.507519 / 1.452155 (0.055364) | 1.570459 / 1.492716 (0.077743) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260442 / 0.018006 (0.242435) | 0.551933 / 0.000490 (0.551444) | 0.005240 / 0.000200 (0.005040) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033718 / 0.037411 (-0.003694) | 0.095710 / 0.014526 (0.081184) | 0.109970 / 0.176557 (-0.066586) | 0.167930 / 0.737135 (-0.569205) | 0.109977 / 0.296338 (-0.186362) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430067 / 0.215209 (0.214857) | 4.292564 / 2.077655 (2.214910) | 2.313511 / 1.504120 (0.809391) | 2.158153 / 1.541195 (0.616959) | 2.262486 / 1.468490 (0.793996) | 0.492376 / 4.584777 (-4.092401) | 3.622287 / 3.745712 (-0.123425) | 3.380162 / 5.269862 (-1.889699) | 2.111874 / 4.565676 (-2.453803) | 0.057882 / 0.424275 (-0.366393) | 0.007317 / 0.007607 (-0.000290) | 0.504722 / 0.226044 (0.278678) | 5.039009 / 2.268929 (2.770080) | 2.772162 / 55.444624 (-52.672463) | 2.430928 / 6.876477 (-4.445549) | 2.666556 / 2.142072 (0.524484) | 0.586722 / 4.805227 (-4.218505) | 0.133780 / 6.500664 (-6.366884) | 0.060269 / 0.075469 (-0.015200) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.339064 / 1.841788 (-0.502724) | 20.743931 / 8.074308 (12.669623) | 15.491066 / 10.191392 (5.299674) | 0.159236 / 0.680424 (-0.521188) | 0.020722 / 0.534201 (-0.513479) | 0.399440 / 0.579283 (-0.179843) | 0.424501 / 0.434364 (-0.009863) | 0.474026 / 0.540337 (-0.066311) | 0.685239 / 1.386936 (-0.701697) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#58406f61c52e7ff064ac6c19ebdb3e5247c70862 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005930 / 0.011353 (-0.005422) | 0.003496 / 0.011008 (-0.007512) | 0.079631 / 0.038508 (0.041123) | 0.058250 / 0.023109 (0.035141) | 0.310108 / 0.275898 (0.034210) | 0.352747 / 0.323480 (0.029267) | 0.005367 / 0.007986 (-0.002619) | 0.002943 / 0.004328 (-0.001386) | 0.062449 / 0.004250 (0.058199) | 0.046433 / 0.037052 (0.009381) | 0.311020 / 0.258489 (0.052531) | 0.361033 / 0.293841 (0.067192) | 0.027419 / 0.128546 (-0.101128) | 0.008073 / 0.075646 (-0.067574) | 0.261403 / 0.419271 (-0.157869) | 0.045059 / 0.043533 (0.001527) | 0.310622 / 0.255139 (0.055483) | 0.344361 / 0.283200 (0.061161) | 0.020561 / 0.141683 (-0.121122) | 1.427409 / 1.452155 (-0.024746) | 1.506612 / 1.492716 (0.013896) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234095 / 0.018006 (0.216089) | 0.432603 / 0.000490 (0.432113) | 0.010283 / 0.000200 (0.010083) | 0.000289 / 0.000054 (0.000235) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024263 / 0.037411 (-0.013148) | 0.073672 / 0.014526 (0.059146) | 0.084080 / 0.176557 (-0.092476) | 0.146679 / 0.737135 (-0.590457) | 0.084337 / 0.296338 (-0.212001) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434297 / 0.215209 (0.219088) | 4.358287 / 2.077655 (2.280633) | 2.268461 / 1.504120 (0.764341) | 2.107924 / 1.541195 (0.566729) | 2.165136 / 1.468490 (0.696646) | 0.498421 / 4.584777 (-4.086356) | 3.094414 / 3.745712 (-0.651298) | 2.991511 / 5.269862 (-2.278351) | 1.998052 / 4.565676 (-2.567624) | 0.057363 / 0.424275 (-0.366912) | 0.006405 / 0.007607 (-0.001203) | 0.508396 / 0.226044 (0.282351) | 5.104756 / 2.268929 (2.835828) | 2.720462 / 55.444624 (-52.724163) | 2.391840 / 6.876477 (-4.484637) | 2.443063 / 2.142072 (0.300991) | 0.590015 / 4.805227 (-4.215212) | 0.125414 / 6.500664 (-6.375250) | 0.061122 / 0.075469 (-0.014347) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221883 / 1.841788 (-0.619904) | 17.788248 / 8.074308 (9.713940) | 13.753315 / 10.191392 (3.561923) | 0.146388 / 0.680424 (-0.534036) | 0.017038 / 0.534201 (-0.517163) | 0.339162 / 0.579283 (-0.240121) | 0.372054 / 0.434364 (-0.062309) | 0.381507 / 0.540337 (-0.158830) | 0.538603 / 1.386936 (-0.848333) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006044 / 0.011353 (-0.005309) | 0.003654 / 0.011008 (-0.007354) | 0.062956 / 0.038508 (0.024448) | 0.061325 / 0.023109 (0.038216) | 0.450006 / 0.275898 (0.174108) | 0.474560 / 0.323480 (0.151080) | 0.004846 / 0.007986 (-0.003140) | 0.002904 / 0.004328 (-0.001425) | 0.064206 / 0.004250 (0.059956) | 0.047850 / 0.037052 (0.010798) | 0.448431 / 0.258489 (0.189942) | 0.481363 / 0.293841 (0.187523) | 0.028622 / 0.128546 (-0.099925) | 0.008255 / 0.075646 (-0.067391) | 0.068461 / 0.419271 (-0.350810) | 0.040234 / 0.043533 (-0.003299) | 0.447396 / 0.255139 (0.192257) | 0.465383 / 0.283200 (0.182184) | 0.021864 / 0.141683 (-0.119819) | 1.402197 / 1.452155 (-0.049957) | 1.475337 / 1.492716 (-0.017379) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227093 / 0.018006 (0.209087) | 0.407908 / 0.000490 (0.407419) | 0.006709 / 0.000200 (0.006509) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026560 / 0.037411 (-0.010851) | 0.080926 / 0.014526 (0.066400) | 0.091531 / 0.176557 (-0.085026) | 0.145742 / 0.737135 (-0.591393) | 0.092203 / 0.296338 (-0.204135) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473029 / 0.215209 (0.257820) | 4.703613 / 2.077655 (2.625958) | 2.642622 / 1.504120 (1.138502) | 2.465376 / 1.541195 (0.924181) | 2.510125 / 1.468490 (1.041635) | 0.512606 / 4.584777 (-4.072171) | 3.132127 / 3.745712 (-0.613585) | 2.890098 / 5.269862 (-2.379763) | 1.908140 / 4.565676 (-2.657537) | 0.058938 / 0.424275 (-0.365337) | 0.006486 / 0.007607 (-0.001121) | 0.542279 / 0.226044 (0.316235) | 5.435621 / 2.268929 (3.166693) | 3.083943 / 55.444624 (-52.360681) | 2.761575 / 6.876477 (-4.114901) | 2.919672 / 2.142072 (0.777599) | 0.608022 / 4.805227 (-4.197205) | 0.126821 / 6.500664 (-6.373843) | 0.061374 / 0.075469 (-0.014095) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.348848 / 1.841788 (-0.492940) | 18.323507 / 8.074308 (10.249199) | 14.713411 / 10.191392 (4.522019) | 0.155277 / 0.680424 (-0.525146) | 0.017739 / 0.534201 (-0.516462) | 0.337357 / 0.579283 (-0.241926) | 0.376519 / 0.434364 (-0.057844) | 0.398011 / 0.540337 (-0.142327) | 0.589797 / 1.386936 (-0.797139) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#26d8bfca337e01bd78d5590d5e49c6d8d022a3ff \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007823 / 0.011353 (-0.003530) | 0.004136 / 0.011008 (-0.006872) | 0.087282 / 0.038508 (0.048774) | 0.086352 / 0.023109 (0.063243) | 0.328107 / 0.275898 (0.052209) | 0.368717 / 0.323480 (0.045237) | 0.005452 / 0.007986 (-0.002533) | 0.003460 / 0.004328 (-0.000868) | 0.064360 / 0.004250 (0.060110) | 0.062215 / 0.037052 (0.025162) | 0.334666 / 0.258489 (0.076177) | 0.388688 / 0.293841 (0.094847) | 0.031093 / 0.128546 (-0.097454) | 0.008510 / 0.075646 (-0.067137) | 0.295965 / 0.419271 (-0.123306) | 0.052858 / 0.043533 (0.009325) | 0.320104 / 0.255139 (0.064965) | 0.346761 / 0.283200 (0.063562) | 0.024864 / 0.141683 (-0.116819) | 1.483164 / 1.452155 (0.031010) | 1.580363 / 1.492716 (0.087647) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243523 / 0.018006 (0.225516) | 0.459741 / 0.000490 (0.459251) | 0.010508 / 0.000200 (0.010308) | 0.000384 / 0.000054 (0.000330) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029896 / 0.037411 (-0.007515) | 0.089150 / 0.014526 (0.074624) | 0.098855 / 0.176557 (-0.077702) | 0.154469 / 0.737135 (-0.582667) | 0.099546 / 0.296338 (-0.196792) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403547 / 0.215209 (0.188338) | 4.036711 / 2.077655 (1.959056) | 2.030882 / 1.504120 (0.526762) | 1.850432 / 1.541195 (0.309238) | 1.924248 / 1.468490 (0.455758) | 0.493153 / 4.584777 (-4.091624) | 3.634074 / 3.745712 (-0.111638) | 3.546145 / 5.269862 (-1.723717) | 2.120819 / 4.565676 (-2.444858) | 0.057137 / 0.424275 (-0.367138) | 0.007454 / 0.007607 (-0.000153) | 0.481687 / 0.226044 (0.255642) | 4.813203 / 2.268929 (2.544275) | 2.481260 / 55.444624 (-52.963364) | 2.194185 / 6.876477 (-4.682292) | 2.255381 / 2.142072 (0.113308) | 0.575160 / 4.805227 (-4.230068) | 0.132310 / 6.500664 (-6.368355) | 0.061917 / 0.075469 (-0.013553) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.265722 / 1.841788 (-0.576066) | 19.949624 / 8.074308 (11.875315) | 14.804356 / 10.191392 (4.612964) | 0.170485 / 0.680424 (-0.509939) | 0.018831 / 0.534201 (-0.515370) | 0.407051 / 0.579283 (-0.172233) | 0.420560 / 0.434364 (-0.013804) | 0.470721 / 0.540337 (-0.069616) | 0.651665 / 1.386936 (-0.735271) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007113 / 0.011353 (-0.004240) | 0.004186 / 0.011008 (-0.006822) | 0.065082 / 0.038508 (0.026574) | 0.080275 / 0.023109 (0.057166) | 0.393460 / 0.275898 (0.117562) | 0.426702 / 0.323480 (0.103223) | 0.005639 / 0.007986 (-0.002347) | 0.003492 / 0.004328 (-0.000836) | 0.065774 / 0.004250 (0.061523) | 0.059708 / 0.037052 (0.022656) | 0.395598 / 0.258489 (0.137109) | 0.437088 / 0.293841 (0.143247) | 0.033165 / 0.128546 (-0.095381) | 0.008559 / 0.075646 (-0.067087) | 0.071782 / 0.419271 (-0.347490) | 0.048672 / 0.043533 (0.005139) | 0.393883 / 0.255139 (0.138744) | 0.412817 / 0.283200 (0.129617) | 0.024115 / 0.141683 (-0.117568) | 1.522752 / 1.452155 (0.070597) | 1.577311 / 1.492716 (0.084595) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225569 / 0.018006 (0.207563) | 0.460310 / 0.000490 (0.459820) | 0.004733 / 0.000200 (0.004533) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035241 / 0.037411 (-0.002170) | 0.098092 / 0.014526 (0.083566) | 0.108025 / 0.176557 (-0.068531) | 0.162910 / 0.737135 (-0.574225) | 0.108649 / 0.296338 (-0.187689) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441723 / 0.215209 (0.226514) | 4.400656 / 2.077655 (2.323001) | 2.413588 / 1.504120 (0.909468) | 2.261890 / 1.541195 (0.720696) | 2.420878 / 1.468490 (0.952388) | 0.496456 / 4.584777 (-4.088321) | 3.679930 / 3.745712 (-0.065782) | 3.390539 / 5.269862 (-1.879322) | 2.109599 / 4.565676 (-2.456078) | 0.058896 / 0.424275 (-0.365379) | 0.007483 / 0.007607 (-0.000125) | 0.521108 / 0.226044 (0.295064) | 5.209468 / 2.268929 (2.940540) | 2.948595 / 55.444624 (-52.496029) | 2.658864 / 6.876477 (-4.217613) | 2.913653 / 2.142072 (0.771580) | 0.602776 / 4.805227 (-4.202451) | 0.136166 / 6.500664 (-6.364498) | 0.063812 / 0.075469 (-0.011657) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350306 / 1.841788 (-0.491482) | 20.453980 / 8.074308 (12.379672) | 15.758719 / 10.191392 (5.567327) | 0.165847 / 0.680424 (-0.514577) | 0.020254 / 0.534201 (-0.513947) | 0.400006 / 0.579283 (-0.179277) | 0.440336 / 0.434364 (0.005972) | 0.480122 / 0.540337 (-0.060215) | 0.688994 / 1.386936 (-0.697942) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#997082a2a3c599ea1b23a70759d3af98a78f7f33 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008633 / 0.011353 (-0.002720) | 0.004851 / 0.011008 (-0.006157) | 0.100647 / 0.038508 (0.062139) | 0.084701 / 0.023109 (0.061592) | 0.410489 / 0.275898 (0.134590) | 0.440231 / 0.323480 (0.116751) | 0.004679 / 0.007986 (-0.003307) | 0.004172 / 0.004328 (-0.000157) | 0.079911 / 0.004250 (0.075661) | 0.069537 / 0.037052 (0.032485) | 0.423506 / 0.258489 (0.165017) | 0.466098 / 0.293841 (0.172257) | 0.048773 / 0.128546 (-0.079773) | 0.014446 / 0.075646 (-0.061200) | 0.342776 / 0.419271 (-0.076495) | 0.065672 / 0.043533 (0.022139) | 0.411845 / 0.255139 (0.156706) | 0.466662 / 0.283200 (0.183462) | 0.035752 / 0.141683 (-0.105931) | 1.684956 / 1.452155 (0.232801) | 1.832173 / 1.492716 (0.339456) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250744 / 0.018006 (0.232738) | 0.528860 / 0.000490 (0.528371) | 0.013301 / 0.000200 (0.013101) | 0.000413 / 0.000054 (0.000359) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032376 / 0.037411 (-0.005035) | 0.094630 / 0.014526 (0.080104) | 0.107163 / 0.176557 (-0.069394) | 0.172503 / 0.737135 (-0.564633) | 0.108407 / 0.296338 (-0.187932) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671251 / 0.215209 (0.456042) | 6.235361 / 2.077655 (4.157706) | 2.650328 / 1.504120 (1.146208) | 2.341199 / 1.541195 (0.800004) | 2.368803 / 1.468490 (0.900313) | 0.841347 / 4.584777 (-3.743430) | 5.042508 / 3.745712 (1.296796) | 4.807565 / 5.269862 (-0.462296) | 3.007420 / 4.565676 (-1.558257) | 0.099953 / 0.424275 (-0.324322) | 0.008412 / 0.007607 (0.000805) | 0.747803 / 0.226044 (0.521759) | 7.481245 / 2.268929 (5.212316) | 3.416157 / 55.444624 (-52.028467) | 2.724608 / 6.876477 (-4.151869) | 2.832982 / 2.142072 (0.690910) | 1.072423 / 4.805227 (-3.732804) | 0.211314 / 6.500664 (-6.289351) | 0.074098 / 0.075469 (-0.001371) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.566010 / 1.841788 (-0.275778) | 23.137708 / 8.074308 (15.063400) | 21.440132 / 10.191392 (11.248740) | 0.230713 / 0.680424 (-0.449711) | 0.028271 / 0.534201 (-0.505930) | 0.450821 / 0.579283 (-0.128463) | 0.548399 / 0.434364 (0.114035) | 0.543588 / 0.540337 (0.003250) | 0.805522 / 1.386936 (-0.581414) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008969 / 0.011353 (-0.002384) | 0.004793 / 0.011008 (-0.006216) | 0.075804 / 0.038508 (0.037296) | 0.079893 / 0.023109 (0.056783) | 0.464358 / 0.275898 (0.188460) | 0.507243 / 0.323480 (0.183763) | 0.005945 / 0.007986 (-0.002040) | 0.005341 / 0.004328 (0.001012) | 0.077952 / 0.004250 (0.073701) | 0.059965 / 0.037052 (0.022913) | 0.478947 / 0.258489 (0.220458) | 0.528444 / 0.293841 (0.234603) | 0.052878 / 0.128546 (-0.075668) | 0.013939 / 0.075646 (-0.061707) | 0.087351 / 0.419271 (-0.331920) | 0.058448 / 0.043533 (0.014916) | 0.478664 / 0.255139 (0.223525) | 0.491239 / 0.283200 (0.208039) | 0.032674 / 0.141683 (-0.109008) | 1.753911 / 1.452155 (0.301756) | 1.858923 / 1.492716 (0.366206) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239278 / 0.018006 (0.221271) | 0.507372 / 0.000490 (0.506882) | 0.005489 / 0.000200 (0.005289) | 0.000142 / 0.000054 (0.000087) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032919 / 0.037411 (-0.004493) | 0.097726 / 0.014526 (0.083200) | 0.119159 / 0.176557 (-0.057398) | 0.174545 / 0.737135 (-0.562590) | 0.115319 / 0.296338 (-0.181020) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627107 / 0.215209 (0.411898) | 6.211925 / 2.077655 (4.134270) | 2.731484 / 1.504120 (1.227365) | 2.488847 / 1.541195 (0.947652) | 2.372445 / 1.468490 (0.903955) | 0.822663 / 4.584777 (-3.762114) | 4.924001 / 3.745712 (1.178289) | 4.371161 / 5.269862 (-0.898700) | 2.850314 / 4.565676 (-1.715363) | 0.099156 / 0.424275 (-0.325119) | 0.007941 / 0.007607 (0.000334) | 0.721539 / 0.226044 (0.495495) | 7.260874 / 2.268929 (4.991946) | 3.351072 / 55.444624 (-52.093552) | 2.757115 / 6.876477 (-4.119362) | 2.858899 / 2.142072 (0.716827) | 0.994054 / 4.805227 (-3.811173) | 0.209186 / 6.500664 (-6.291478) | 0.072070 / 0.075469 (-0.003399) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748073 / 1.841788 (-0.093714) | 23.514638 / 8.074308 (15.440330) | 20.372037 / 10.191392 (10.180645) | 0.220020 / 0.680424 (-0.460404) | 0.057130 / 0.534201 (-0.477071) | 0.458204 / 0.579283 (-0.121079) | 0.600509 / 0.434364 (0.166145) | 0.557100 / 0.540337 (0.016762) | 0.814360 / 1.386936 (-0.572576) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#072f0ceafde60c16516fe1297e4aba981fc56052 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007341 / 0.011353 (-0.004012) | 0.004606 / 0.011008 (-0.006402) | 0.087903 / 0.038508 (0.049395) | 0.094090 / 0.023109 (0.070981) | 0.322278 / 0.275898 (0.046380) | 0.356770 / 0.323480 (0.033290) | 0.005988 / 0.007986 (-0.001997) | 0.003667 / 0.004328 (-0.000662) | 0.066105 / 0.004250 (0.061854) | 0.061220 / 0.037052 (0.024167) | 0.331190 / 0.258489 (0.072701) | 0.381402 / 0.293841 (0.087561) | 0.032261 / 0.128546 (-0.096285) | 0.009281 / 0.075646 (-0.066366) | 0.293694 / 0.419271 (-0.125577) | 0.055041 / 0.043533 (0.011508) | 0.318080 / 0.255139 (0.062941) | 0.348763 / 0.283200 (0.065563) | 0.027379 / 0.141683 (-0.114304) | 1.496294 / 1.452155 (0.044139) | 1.581942 / 1.492716 (0.089226) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.307592 / 0.018006 (0.289586) | 0.591805 / 0.000490 (0.591316) | 0.017082 / 0.000200 (0.016882) | 0.000721 / 0.000054 (0.000666) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032157 / 0.037411 (-0.005254) | 0.096249 / 0.014526 (0.081724) | 0.106656 / 0.176557 (-0.069901) | 0.162966 / 0.737135 (-0.574169) | 0.107068 / 0.296338 (-0.189271) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409083 / 0.215209 (0.193874) | 4.044307 / 2.077655 (1.966652) | 2.062887 / 1.504120 (0.558767) | 1.900568 / 1.541195 (0.359373) | 2.011862 / 1.468490 (0.543372) | 0.489250 / 4.584777 (-4.095527) | 3.519531 / 3.745712 (-0.226182) | 3.631713 / 5.269862 (-1.638149) | 2.163967 / 4.565676 (-2.401709) | 0.057723 / 0.424275 (-0.366552) | 0.007474 / 0.007607 (-0.000133) | 0.479562 / 0.226044 (0.253517) | 4.799825 / 2.268929 (2.530897) | 2.530036 / 55.444624 (-52.914588) | 2.195344 / 6.876477 (-4.681133) | 2.341046 / 2.142072 (0.198974) | 0.625105 / 4.805227 (-4.180122) | 0.132823 / 6.500664 (-6.367841) | 0.061721 / 0.075469 (-0.013748) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.301313 / 1.841788 (-0.540475) | 21.218468 / 8.074308 (13.144159) | 15.466347 / 10.191392 (5.274955) | 0.166115 / 0.680424 (-0.514309) | 0.018866 / 0.534201 (-0.515335) | 0.399307 / 0.579283 (-0.179976) | 0.430537 / 0.434364 (-0.003827) | 0.467110 / 0.540337 (-0.073228) | 0.645686 / 1.386936 (-0.741250) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007288 / 0.011353 (-0.004065) | 0.004298 / 0.011008 (-0.006710) | 0.065515 / 0.038508 (0.027007) | 0.089948 / 0.023109 (0.066839) | 0.410121 / 0.275898 (0.134223) | 0.449312 / 0.323480 (0.125832) | 0.006749 / 0.007986 (-0.001237) | 0.003927 / 0.004328 (-0.000401) | 0.065321 / 0.004250 (0.061071) | 0.062480 / 0.037052 (0.025428) | 0.410796 / 0.258489 (0.152307) | 0.457356 / 0.293841 (0.163515) | 0.032632 / 0.128546 (-0.095914) | 0.008798 / 0.075646 (-0.066849) | 0.075936 / 0.419271 (-0.343335) | 0.048402 / 0.043533 (0.004869) | 0.403385 / 0.255139 (0.148246) | 0.426094 / 0.283200 (0.142895) | 0.025326 / 0.141683 (-0.116357) | 1.551550 / 1.452155 (0.099395) | 1.628622 / 1.492716 (0.135905) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.279689 / 0.018006 (0.261682) | 0.583754 / 0.000490 (0.583265) | 0.006579 / 0.000200 (0.006379) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034906 / 0.037411 (-0.002505) | 0.099232 / 0.014526 (0.084706) | 0.113093 / 0.176557 (-0.063464) | 0.165499 / 0.737135 (-0.571636) | 0.113398 / 0.296338 (-0.182941) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439154 / 0.215209 (0.223945) | 4.377041 / 2.077655 (2.299387) | 2.395058 / 1.504120 (0.890938) | 2.233359 / 1.541195 (0.692164) | 2.357281 / 1.468490 (0.888791) | 0.486036 / 4.584777 (-4.098741) | 3.568794 / 3.745712 (-0.176918) | 3.485421 / 5.269862 (-1.784440) | 2.174325 / 4.565676 (-2.391351) | 0.057855 / 0.424275 (-0.366420) | 0.007545 / 0.007607 (-0.000062) | 0.516853 / 0.226044 (0.290808) | 5.173340 / 2.268929 (2.904412) | 2.931475 / 55.444624 (-52.513149) | 2.566814 / 6.876477 (-4.309663) | 2.873304 / 2.142072 (0.731232) | 0.597072 / 4.805227 (-4.208155) | 0.133589 / 6.500664 (-6.367075) | 0.061882 / 0.075469 (-0.013587) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.382845 / 1.841788 (-0.458943) | 21.608316 / 8.074308 (13.534008) | 15.702152 / 10.191392 (5.510759) | 0.190629 / 0.680424 (-0.489795) | 0.020572 / 0.534201 (-0.513629) | 0.396207 / 0.579283 (-0.183076) | 0.421184 / 0.434364 (-0.013180) | 0.477700 / 0.540337 (-0.062638) | 0.690828 / 1.386936 (-0.696108) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5e7374b453911cda5e0f866ad45b51c3fbe267c9 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008450 / 0.011353 (-0.002903) | 0.004958 / 0.011008 (-0.006051) | 0.105397 / 0.038508 (0.066889) | 0.079508 / 0.023109 (0.056399) | 0.403050 / 0.275898 (0.127152) | 0.443679 / 0.323480 (0.120199) | 0.004654 / 0.007986 (-0.003332) | 0.005629 / 0.004328 (0.001301) | 0.078755 / 0.004250 (0.074505) | 0.055694 / 0.037052 (0.018642) | 0.409952 / 0.258489 (0.151463) | 0.454931 / 0.293841 (0.161090) | 0.045124 / 0.128546 (-0.083422) | 0.014031 / 0.075646 (-0.061616) | 0.347340 / 0.419271 (-0.071931) | 0.064359 / 0.043533 (0.020826) | 0.414158 / 0.255139 (0.159019) | 0.428442 / 0.283200 (0.145243) | 0.033726 / 0.141683 (-0.107957) | 1.770483 / 1.452155 (0.318328) | 1.795267 / 1.492716 (0.302551) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251020 / 0.018006 (0.233014) | 0.507066 / 0.000490 (0.506576) | 0.015751 / 0.000200 (0.015551) | 0.000531 / 0.000054 (0.000477) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028897 / 0.037411 (-0.008515) | 0.087393 / 0.014526 (0.072867) | 0.097365 / 0.176557 (-0.079192) | 0.164833 / 0.737135 (-0.572303) | 0.101281 / 0.296338 (-0.195058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.610806 / 0.215209 (0.395597) | 6.011697 / 2.077655 (3.934042) | 2.544268 / 1.504120 (1.040148) | 2.127103 / 1.541195 (0.585908) | 2.133330 / 1.468490 (0.664839) | 0.860964 / 4.584777 (-3.723813) | 4.982374 / 3.745712 (1.236662) | 5.073026 / 5.269862 (-0.196836) | 3.033056 / 4.565676 (-1.532621) | 0.118835 / 0.424275 (-0.305440) | 0.010122 / 0.007607 (0.002515) | 0.805807 / 0.226044 (0.579763) | 7.839166 / 2.268929 (5.570238) | 3.512405 / 55.444624 (-51.932219) | 2.767578 / 6.876477 (-4.108898) | 2.936885 / 2.142072 (0.794813) | 1.058533 / 4.805227 (-3.746695) | 0.222260 / 6.500664 (-6.278404) | 0.073890 / 0.075469 (-0.001580) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.628307 / 1.841788 (-0.213480) | 22.827116 / 8.074308 (14.752808) | 21.809759 / 10.191392 (11.618367) | 0.220637 / 0.680424 (-0.459786) | 0.028030 / 0.534201 (-0.506171) | 0.448620 / 0.579283 (-0.130663) | 0.540442 / 0.434364 (0.106078) | 0.548601 / 0.540337 (0.008264) | 0.770387 / 1.386936 (-0.616549) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009198 / 0.011353 (-0.002155) | 0.004935 / 0.011008 (-0.006073) | 0.079095 / 0.038508 (0.040587) | 0.090490 / 0.023109 (0.067381) | 0.453374 / 0.275898 (0.177476) | 0.519483 / 0.323480 (0.196003) | 0.006539 / 0.007986 (-0.001447) | 0.004160 / 0.004328 (-0.000169) | 0.078433 / 0.004250 (0.074182) | 0.068022 / 0.037052 (0.030969) | 0.467686 / 0.258489 (0.209197) | 0.523863 / 0.293841 (0.230022) | 0.050926 / 0.128546 (-0.077620) | 0.013664 / 0.075646 (-0.061982) | 0.088787 / 0.419271 (-0.330485) | 0.060503 / 0.043533 (0.016971) | 0.474692 / 0.255139 (0.219553) | 0.516461 / 0.283200 (0.233261) | 0.034482 / 0.141683 (-0.107200) | 1.747939 / 1.452155 (0.295784) | 1.915212 / 1.492716 (0.422496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247400 / 0.018006 (0.229394) | 0.516829 / 0.000490 (0.516339) | 0.005770 / 0.000200 (0.005570) | 0.000121 / 0.000054 (0.000067) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034334 / 0.037411 (-0.003077) | 0.102397 / 0.014526 (0.087871) | 0.114187 / 0.176557 (-0.062370) | 0.171093 / 0.737135 (-0.566043) | 0.117281 / 0.296338 (-0.179058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.635710 / 0.215209 (0.420501) | 6.400656 / 2.077655 (4.323002) | 2.896896 / 1.504120 (1.392776) | 2.682890 / 1.541195 (1.141696) | 2.656445 / 1.468490 (1.187955) | 1.044244 / 4.584777 (-3.540533) | 5.393212 / 3.745712 (1.647500) | 4.592928 / 5.269862 (-0.676934) | 2.798525 / 4.565676 (-1.767151) | 0.103720 / 0.424275 (-0.320555) | 0.010196 / 0.007607 (0.002589) | 0.762756 / 0.226044 (0.536711) | 7.232939 / 2.268929 (4.964011) | 3.714015 / 55.444624 (-51.730609) | 3.050766 / 6.876477 (-3.825711) | 3.149715 / 2.142072 (1.007643) | 1.058827 / 4.805227 (-3.746400) | 0.214079 / 6.500664 (-6.286585) | 0.076712 / 0.075469 (0.001243) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.701032 / 1.841788 (-0.140755) | 23.742023 / 8.074308 (15.667715) | 22.486043 / 10.191392 (12.294651) | 0.249757 / 0.680424 (-0.430667) | 0.031714 / 0.534201 (-0.502486) | 0.479914 / 0.579283 (-0.099369) | 0.593315 / 0.434364 (0.158951) | 0.562897 / 0.540337 (0.022560) | 0.826636 / 1.386936 (-0.560300) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#429f9c69d1813ec643c316313b69ff23aaf208f6 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007816 / 0.011353 (-0.003537) | 0.004541 / 0.011008 (-0.006467) | 0.097256 / 0.038508 (0.058748) | 0.081376 / 0.023109 (0.058267) | 0.356635 / 0.275898 (0.080737) | 0.394969 / 0.323480 (0.071489) | 0.004670 / 0.007986 (-0.003316) | 0.003537 / 0.004328 (-0.000791) | 0.075564 / 0.004250 (0.071314) | 0.063459 / 0.037052 (0.026407) | 0.363846 / 0.258489 (0.105357) | 0.416337 / 0.293841 (0.122496) | 0.036690 / 0.128546 (-0.091857) | 0.009653 / 0.075646 (-0.065993) | 0.337265 / 0.419271 (-0.082007) | 0.061446 / 0.043533 (0.017913) | 0.359190 / 0.255139 (0.104051) | 0.385866 / 0.283200 (0.102666) | 0.030474 / 0.141683 (-0.111209) | 1.796903 / 1.452155 (0.344748) | 1.852332 / 1.492716 (0.359616) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264008 / 0.018006 (0.246002) | 0.507387 / 0.000490 (0.506897) | 0.012309 / 0.000200 (0.012109) | 0.000377 / 0.000054 (0.000323) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033224 / 0.037411 (-0.004188) | 0.097136 / 0.014526 (0.082610) | 0.113035 / 0.176557 (-0.063522) | 0.181778 / 0.737135 (-0.555357) | 0.130511 / 0.296338 (-0.165827) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444512 / 0.215209 (0.229303) | 4.453285 / 2.077655 (2.375631) | 2.154123 / 1.504120 (0.650003) | 1.955451 / 1.541195 (0.414256) | 2.015089 / 1.468490 (0.546599) | 0.567824 / 4.584777 (-4.016953) | 4.083084 / 3.745712 (0.337371) | 3.912417 / 5.269862 (-1.357445) | 2.366197 / 4.565676 (-2.199480) | 0.066468 / 0.424275 (-0.357807) | 0.008478 / 0.007607 (0.000870) | 0.531196 / 0.226044 (0.305152) | 5.311285 / 2.268929 (3.042356) | 2.743252 / 55.444624 (-52.701372) | 2.322353 / 6.876477 (-4.554124) | 2.368168 / 2.142072 (0.226095) | 0.679223 / 4.805227 (-4.126004) | 0.152401 / 6.500664 (-6.348263) | 0.071954 / 0.075469 (-0.003515) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.489114 / 1.841788 (-0.352674) | 22.114956 / 8.074308 (14.040648) | 16.072564 / 10.191392 (5.881172) | 0.164303 / 0.680424 (-0.516121) | 0.021317 / 0.534201 (-0.512884) | 0.460250 / 0.579283 (-0.119033) | 0.467554 / 0.434364 (0.033190) | 0.539773 / 0.540337 (-0.000564) | 0.751904 / 1.386936 (-0.635032) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007520 / 0.011353 (-0.003833) | 0.004487 / 0.011008 (-0.006521) | 0.075074 / 0.038508 (0.036566) | 0.083135 / 0.023109 (0.060026) | 0.474052 / 0.275898 (0.198154) | 0.524051 / 0.323480 (0.200571) | 0.006192 / 0.007986 (-0.001793) | 0.003835 / 0.004328 (-0.000494) | 0.074643 / 0.004250 (0.070392) | 0.065334 / 0.037052 (0.028282) | 0.507033 / 0.258489 (0.248544) | 0.519846 / 0.293841 (0.226005) | 0.036985 / 0.128546 (-0.091561) | 0.009828 / 0.075646 (-0.065818) | 0.082992 / 0.419271 (-0.336279) | 0.055942 / 0.043533 (0.012409) | 0.480652 / 0.255139 (0.225513) | 0.503683 / 0.283200 (0.220483) | 0.025560 / 0.141683 (-0.116123) | 1.801390 / 1.452155 (0.349235) | 1.892929 / 1.492716 (0.400213) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246771 / 0.018006 (0.228765) | 0.498901 / 0.000490 (0.498411) | 0.008186 / 0.000200 (0.007986) | 0.000166 / 0.000054 (0.000112) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038666 / 0.037411 (0.001254) | 0.110317 / 0.014526 (0.095791) | 0.122995 / 0.176557 (-0.053562) | 0.185355 / 0.737135 (-0.551781) | 0.123720 / 0.296338 (-0.172619) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.508421 / 0.215209 (0.293212) | 5.046464 / 2.077655 (2.968809) | 2.660004 / 1.504120 (1.155884) | 2.482841 / 1.541195 (0.941646) | 2.573941 / 1.468490 (1.105451) | 0.565702 / 4.584777 (-4.019075) | 4.197895 / 3.745712 (0.452183) | 3.755480 / 5.269862 (-1.514381) | 2.308066 / 4.565676 (-2.257610) | 0.066559 / 0.424275 (-0.357716) | 0.008436 / 0.007607 (0.000829) | 0.589858 / 0.226044 (0.363814) | 5.873488 / 2.268929 (3.604559) | 3.241810 / 55.444624 (-52.202814) | 2.789831 / 6.876477 (-4.086645) | 3.008989 / 2.142072 (0.866917) | 0.679624 / 4.805227 (-4.125603) | 0.150868 / 6.500664 (-6.349796) | 0.068581 / 0.075469 (-0.006889) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.582955 / 1.841788 (-0.258833) | 22.684969 / 8.074308 (14.610661) | 16.829855 / 10.191392 (6.638463) | 0.201599 / 0.680424 (-0.478825) | 0.023261 / 0.534201 (-0.510940) | 0.465009 / 0.579283 (-0.114274) | 0.497701 / 0.434364 (0.063337) | 0.557822 / 0.540337 (0.017485) | 0.803234 / 1.386936 (-0.583702) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9241c1070b5c9021705c17b12548b6fea75782d8 \"CML watermark\")\n", "Well done! :clap: :fire: ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008866 / 0.011353 (-0.002487) | 0.005910 / 0.011008 (-0.005098) | 0.099916 / 0.038508 (0.061408) | 0.085787 / 0.023109 (0.062678) | 0.391028 / 0.275898 (0.115130) | 0.412689 / 0.323480 (0.089209) | 0.006527 / 0.007986 (-0.001459) | 0.004629 / 0.004328 (0.000301) | 0.084627 / 0.004250 (0.080377) | 0.063404 / 0.037052 (0.026352) | 0.408923 / 0.258489 (0.150434) | 0.437130 / 0.293841 (0.143289) | 0.050256 / 0.128546 (-0.078290) | 0.013914 / 0.075646 (-0.061732) | 0.350893 / 0.419271 (-0.068379) | 0.067931 / 0.043533 (0.024398) | 0.383807 / 0.255139 (0.128668) | 0.424150 / 0.283200 (0.140950) | 0.039978 / 0.141683 (-0.101705) | 1.697631 / 1.452155 (0.245476) | 1.925568 / 1.492716 (0.432851) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.315417 / 0.018006 (0.297410) | 0.607050 / 0.000490 (0.606560) | 0.017314 / 0.000200 (0.017114) | 0.000514 / 0.000054 (0.000459) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032994 / 0.037411 (-0.004417) | 0.103993 / 0.014526 (0.089467) | 0.125369 / 0.176557 (-0.051187) | 0.185984 / 0.737135 (-0.551151) | 0.139192 / 0.296338 (-0.157146) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639769 / 0.215209 (0.424560) | 6.236187 / 2.077655 (4.158532) | 2.775777 / 1.504120 (1.271657) | 2.599683 / 1.541195 (1.058488) | 2.780064 / 1.468490 (1.311574) | 1.107247 / 4.584777 (-3.477530) | 5.724223 / 3.745712 (1.978511) | 5.284786 / 5.269862 (0.014925) | 3.342465 / 4.565676 (-1.223211) | 0.107685 / 0.424275 (-0.316590) | 0.009237 / 0.007607 (0.001630) | 0.760282 / 0.226044 (0.534238) | 7.570859 / 2.268929 (5.301930) | 3.572498 / 55.444624 (-51.872126) | 2.997482 / 6.876477 (-3.878995) | 2.910001 / 2.142072 (0.767929) | 1.249272 / 4.805227 (-3.555955) | 0.229425 / 6.500664 (-6.271239) | 0.091974 / 0.075469 (0.016505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.663859 / 1.841788 (-0.177929) | 25.283961 / 8.074308 (17.209653) | 20.793389 / 10.191392 (10.601997) | 0.239263 / 0.680424 (-0.441161) | 0.028808 / 0.534201 (-0.505393) | 0.521045 / 0.579283 (-0.058238) | 0.602451 / 0.434364 (0.168087) | 0.544536 / 0.540337 (0.004198) | 0.819732 / 1.386936 (-0.567204) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008970 / 0.011353 (-0.002383) | 0.009663 / 0.011008 (-0.001345) | 0.083471 / 0.038508 (0.044963) | 0.090695 / 0.023109 (0.067585) | 0.562539 / 0.275898 (0.286641) | 0.572092 / 0.323480 (0.248612) | 0.007269 / 0.007986 (-0.000717) | 0.004664 / 0.004328 (0.000335) | 0.084212 / 0.004250 (0.079961) | 0.072716 / 0.037052 (0.035664) | 0.559810 / 0.258489 (0.301320) | 0.574296 / 0.293841 (0.280455) | 0.048555 / 0.128546 (-0.079991) | 0.015901 / 0.075646 (-0.059746) | 0.107815 / 0.419271 (-0.311456) | 0.065404 / 0.043533 (0.021871) | 0.544787 / 0.255139 (0.289648) | 0.586993 / 0.283200 (0.303794) | 0.042613 / 0.141683 (-0.099069) | 1.919266 / 1.452155 (0.467111) | 2.095189 / 1.492716 (0.602473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298512 / 0.018006 (0.280506) | 0.597745 / 0.000490 (0.597256) | 0.008806 / 0.000200 (0.008606) | 0.000119 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039420 / 0.037411 (0.002009) | 0.111378 / 0.014526 (0.096852) | 0.136421 / 0.176557 (-0.040135) | 0.192006 / 0.737135 (-0.545129) | 0.130037 / 0.296338 (-0.166301) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.679169 / 0.215209 (0.463960) | 6.750881 / 2.077655 (4.673226) | 3.220411 / 1.504120 (1.716291) | 2.851988 / 1.541195 (1.310794) | 2.974247 / 1.468490 (1.505757) | 0.892593 / 4.584777 (-3.692184) | 5.659975 / 3.745712 (1.914263) | 5.172641 / 5.269862 (-0.097220) | 3.308429 / 4.565676 (-1.257248) | 0.100580 / 0.424275 (-0.323695) | 0.009320 / 0.007607 (0.001713) | 0.833290 / 0.226044 (0.607245) | 8.091847 / 2.268929 (5.822918) | 4.023734 / 55.444624 (-51.420890) | 3.441583 / 6.876477 (-3.434894) | 3.763562 / 2.142072 (1.621489) | 1.055105 / 4.805227 (-3.750122) | 0.239218 / 6.500664 (-6.261446) | 0.081922 / 0.075469 (0.006453) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.796495 / 1.841788 (-0.045293) | 25.942492 / 8.074308 (17.868184) | 23.211617 / 10.191392 (13.020225) | 0.256054 / 0.680424 (-0.424370) | 0.030491 / 0.534201 (-0.503710) | 0.520474 / 0.579283 (-0.058809) | 0.626331 / 0.434364 (0.191967) | 0.619897 / 0.540337 (0.079560) | 0.900833 / 1.386936 (-0.486103) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e74f80255700c4b8cde383a426c4b2def6db1253 \"CML watermark\")\n", "Congrats on merging this! 👏 " ]
2023-09-29T16:22:31
2023-10-16T16:03:18
2023-10-16T13:30:46
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6269", "html_url": "https://github.com/huggingface/datasets/pull/6269", "diff_url": "https://github.com/huggingface/datasets/pull/6269.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6269.patch", "merged_at": "2023-10-16T13:30:46" }
Reduces the number of commits in `push_to_hub` by using the `preupload` API from https://github.com/huggingface/huggingface_hub/pull/1699. Each commit contains a maximum of 50 uploaded files. A shard's fingerprint no longer needs to be added as a suffix to support resuming an upload, meaning the shards' naming scheme is the same as the initial one. Also, it adds support for the following params: `create_pr`, `commit_message` and `revision` (`branch` deprecated; unlike the previous implementation, this one creates a branch if the branch does not exist to be consistent with `transformers`). (Nit) This implementation keeps the markdown section of the generated README.md empty to enable importing the card template (when the card is accessed on the Hub). Fixes https://github.com/huggingface/datasets/issues/5492, fixes https://github.com/huggingface/datasets/issues/6257, fixes https://github.com/huggingface/datasets/issues/5045, fixes https://github.com/huggingface/datasets/issues/6271 TODO: - [x] set the minimal version to the next `hfh` release (once it's published)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6269/reactions", "total_count": 4, "+1": 0, "-1": 0, "laugh": 0, "hooray": 3, "confused": 0, "heart": 0, "rocket": 1, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6269/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6268
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6268/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6268/comments
https://api.github.com/repos/huggingface/datasets/issues/6268/events
https://github.com/huggingface/datasets/pull/6268
1,919,010,645
PR_kwDODunzps5bhgs7
6,268
Add repo_id to DatasetInfo
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6268). All of your documentation changes will be reflected on that endpoint.", "In https://github.com/huggingface/datasets/issues/4129 we want to track the origin of a dataset, e.g. if it comes from multiple datasets.\r\n\r\nI think it's out of scope of DatasetInfo alone, which has info for one dataset only.\r\nTherefore it makes sense to add repo_id, which is for one dataset only.\r\n\r\nIMO if we want to track multiple origins we will need a new DatasetInfo that would have fields relevant to a mix of datasets (out of scope of this PR)\r\n\r\ncc @mariosasko I'd like your opinion on this", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009009 / 0.011353 (-0.002344) | 0.004169 / 0.011008 (-0.006840) | 0.098634 / 0.038508 (0.060126) | 0.069526 / 0.023109 (0.046417) | 0.337963 / 0.275898 (0.062065) | 0.379737 / 0.323480 (0.056257) | 0.004318 / 0.007986 (-0.003668) | 0.005347 / 0.004328 (0.001019) | 0.069875 / 0.004250 (0.065624) | 0.055964 / 0.037052 (0.018912) | 0.340305 / 0.258489 (0.081816) | 0.429718 / 0.293841 (0.135877) | 0.045101 / 0.128546 (-0.083445) | 0.012610 / 0.075646 (-0.063036) | 0.312366 / 0.419271 (-0.106905) | 0.064711 / 0.043533 (0.021178) | 0.345216 / 0.255139 (0.090077) | 0.367245 / 0.283200 (0.084046) | 0.034638 / 0.141683 (-0.107045) | 1.541947 / 1.452155 (0.089793) | 1.645268 / 1.492716 (0.152551) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233501 / 0.018006 (0.215495) | 0.514207 / 0.000490 (0.513717) | 0.014271 / 0.000200 (0.014072) | 0.000366 / 0.000054 (0.000311) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026288 / 0.037411 (-0.011124) | 0.083206 / 0.014526 (0.068680) | 0.098172 / 0.176557 (-0.078385) | 0.158529 / 0.737135 (-0.578606) | 0.095183 / 0.296338 (-0.201155) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.538300 / 0.215209 (0.323091) | 5.486939 / 2.077655 (3.409285) | 2.321812 / 1.504120 (0.817692) | 2.002124 / 1.541195 (0.460929) | 2.045043 / 1.468490 (0.576553) | 0.852772 / 4.584777 (-3.732005) | 5.014897 / 3.745712 (1.269185) | 4.428115 / 5.269862 (-0.841746) | 2.750126 / 4.565676 (-1.815550) | 0.099028 / 0.424275 (-0.325247) | 0.007678 / 0.007607 (0.000070) | 0.664463 / 0.226044 (0.438418) | 6.617811 / 2.268929 (4.348883) | 2.888382 / 55.444624 (-52.556242) | 2.190753 / 6.876477 (-4.685724) | 2.414586 / 2.142072 (0.272513) | 1.010302 / 4.805227 (-3.794925) | 0.194925 / 6.500664 (-6.305739) | 0.063490 / 0.075469 (-0.011979) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.543464 / 1.841788 (-0.298323) | 20.566666 / 8.074308 (12.492358) | 19.410745 / 10.191392 (9.219353) | 0.207077 / 0.680424 (-0.473347) | 0.028895 / 0.534201 (-0.505306) | 0.427525 / 0.579283 (-0.151758) | 0.535450 / 0.434364 (0.101086) | 0.494632 / 0.540337 (-0.045705) | 0.723705 / 1.386936 (-0.663231) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008209 / 0.011353 (-0.003144) | 0.004184 / 0.011008 (-0.006824) | 0.072420 / 0.038508 (0.033912) | 0.066851 / 0.023109 (0.043742) | 0.424137 / 0.275898 (0.148239) | 0.473156 / 0.323480 (0.149676) | 0.005394 / 0.007986 (-0.002591) | 0.003898 / 0.004328 (-0.000430) | 0.069996 / 0.004250 (0.065746) | 0.053113 / 0.037052 (0.016061) | 0.453214 / 0.258489 (0.194725) | 0.495921 / 0.293841 (0.202080) | 0.043028 / 0.128546 (-0.085519) | 0.012320 / 0.075646 (-0.063326) | 0.080270 / 0.419271 (-0.339002) | 0.053337 / 0.043533 (0.009804) | 0.436604 / 0.255139 (0.181465) | 0.463422 / 0.283200 (0.180223) | 0.030277 / 0.141683 (-0.111406) | 1.560261 / 1.452155 (0.108106) | 1.647209 / 1.492716 (0.154493) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232556 / 0.018006 (0.214550) | 0.502387 / 0.000490 (0.501897) | 0.006688 / 0.000200 (0.006488) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030204 / 0.037411 (-0.007207) | 0.089438 / 0.014526 (0.074912) | 0.118939 / 0.176557 (-0.057617) | 0.160537 / 0.737135 (-0.576598) | 0.113432 / 0.296338 (-0.182906) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.586469 / 0.215209 (0.371260) | 5.916156 / 2.077655 (3.838502) | 2.904960 / 1.504120 (1.400840) | 2.346838 / 1.541195 (0.805644) | 2.373688 / 1.468490 (0.905198) | 0.829917 / 4.584777 (-3.754860) | 4.851283 / 3.745712 (1.105571) | 4.220103 / 5.269862 (-1.049758) | 2.706139 / 4.565676 (-1.859538) | 0.094095 / 0.424275 (-0.330180) | 0.008201 / 0.007607 (0.000594) | 0.699099 / 0.226044 (0.473054) | 7.046940 / 2.268929 (4.778011) | 3.374837 / 55.444624 (-52.069788) | 2.690839 / 6.876477 (-4.185638) | 2.845717 / 2.142072 (0.703645) | 0.989698 / 4.805227 (-3.815529) | 0.190413 / 6.500664 (-6.310251) | 0.066233 / 0.075469 (-0.009236) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.513607 / 1.841788 (-0.328180) | 21.544200 / 8.074308 (13.469892) | 20.297337 / 10.191392 (10.105945) | 0.216390 / 0.680424 (-0.464034) | 0.029962 / 0.534201 (-0.504239) | 0.451531 / 0.579283 (-0.127752) | 0.530147 / 0.434364 (0.095783) | 0.520739 / 0.540337 (-0.019598) | 0.716431 / 1.386936 (-0.670505) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fcaa9f218ad1505bb5474060889b4b9578e24423 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006509 / 0.011353 (-0.004844) | 0.003987 / 0.011008 (-0.007022) | 0.085233 / 0.038508 (0.046725) | 0.077765 / 0.023109 (0.054656) | 0.310467 / 0.275898 (0.034569) | 0.343363 / 0.323480 (0.019883) | 0.005557 / 0.007986 (-0.002429) | 0.003430 / 0.004328 (-0.000898) | 0.064948 / 0.004250 (0.060697) | 0.056864 / 0.037052 (0.019812) | 0.314005 / 0.258489 (0.055516) | 0.360638 / 0.293841 (0.066798) | 0.031134 / 0.128546 (-0.097412) | 0.008869 / 0.075646 (-0.066777) | 0.286409 / 0.419271 (-0.132862) | 0.051338 / 0.043533 (0.007805) | 0.311329 / 0.255139 (0.056190) | 0.334373 / 0.283200 (0.051174) | 0.024816 / 0.141683 (-0.116867) | 1.502872 / 1.452155 (0.050718) | 1.569941 / 1.492716 (0.077224) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269639 / 0.018006 (0.251633) | 0.558510 / 0.000490 (0.558020) | 0.011748 / 0.000200 (0.011548) | 0.000234 / 0.000054 (0.000180) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029139 / 0.037411 (-0.008272) | 0.083586 / 0.014526 (0.069060) | 0.102426 / 0.176557 (-0.074131) | 0.162398 / 0.737135 (-0.574737) | 0.101364 / 0.296338 (-0.194975) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382281 / 0.215209 (0.167072) | 3.826412 / 2.077655 (1.748758) | 1.815911 / 1.504120 (0.311791) | 1.644539 / 1.541195 (0.103344) | 1.688487 / 1.468490 (0.219996) | 0.482115 / 4.584777 (-4.102662) | 3.574773 / 3.745712 (-0.170939) | 3.262733 / 5.269862 (-2.007129) | 2.058115 / 4.565676 (-2.507562) | 0.056367 / 0.424275 (-0.367908) | 0.007233 / 0.007607 (-0.000374) | 0.456859 / 0.226044 (0.230815) | 4.565935 / 2.268929 (2.297006) | 2.311802 / 55.444624 (-53.132823) | 1.943936 / 6.876477 (-4.932541) | 2.129811 / 2.142072 (-0.012261) | 0.575098 / 4.805227 (-4.230129) | 0.130495 / 6.500664 (-6.370169) | 0.059757 / 0.075469 (-0.015712) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.238495 / 1.841788 (-0.603293) | 18.940000 / 8.074308 (10.865692) | 14.034240 / 10.191392 (3.842848) | 0.166418 / 0.680424 (-0.514006) | 0.018420 / 0.534201 (-0.515781) | 0.395330 / 0.579283 (-0.183953) | 0.413518 / 0.434364 (-0.020846) | 0.461499 / 0.540337 (-0.078838) | 0.661371 / 1.386936 (-0.725565) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006673 / 0.011353 (-0.004680) | 0.004335 / 0.011008 (-0.006673) | 0.064568 / 0.038508 (0.026060) | 0.072763 / 0.023109 (0.049653) | 0.429488 / 0.275898 (0.153590) | 0.456900 / 0.323480 (0.133420) | 0.005481 / 0.007986 (-0.002505) | 0.003649 / 0.004328 (-0.000680) | 0.064975 / 0.004250 (0.060724) | 0.056839 / 0.037052 (0.019786) | 0.439451 / 0.258489 (0.180962) | 0.461691 / 0.293841 (0.167850) | 0.031455 / 0.128546 (-0.097092) | 0.008848 / 0.075646 (-0.066798) | 0.071719 / 0.419271 (-0.347553) | 0.047116 / 0.043533 (0.003583) | 0.429055 / 0.255139 (0.173916) | 0.434204 / 0.283200 (0.151004) | 0.022594 / 0.141683 (-0.119089) | 1.539231 / 1.452155 (0.087077) | 1.568111 / 1.492716 (0.075394) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267374 / 0.018006 (0.249368) | 0.553202 / 0.000490 (0.552712) | 0.005410 / 0.000200 (0.005210) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031478 / 0.037411 (-0.005933) | 0.092438 / 0.014526 (0.077912) | 0.103874 / 0.176557 (-0.072682) | 0.158428 / 0.737135 (-0.578708) | 0.111617 / 0.296338 (-0.184721) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434783 / 0.215209 (0.219574) | 4.332536 / 2.077655 (2.254881) | 2.354522 / 1.504120 (0.850402) | 2.220271 / 1.541195 (0.679076) | 2.338524 / 1.468490 (0.870034) | 0.494508 / 4.584777 (-4.090269) | 3.619592 / 3.745712 (-0.126120) | 3.320897 / 5.269862 (-1.948964) | 2.107475 / 4.565676 (-2.458202) | 0.058479 / 0.424275 (-0.365796) | 0.007427 / 0.007607 (-0.000180) | 0.509298 / 0.226044 (0.283254) | 5.067940 / 2.268929 (2.799012) | 2.815336 / 55.444624 (-52.629288) | 2.470958 / 6.876477 (-4.405519) | 2.672801 / 2.142072 (0.530728) | 0.588199 / 4.805227 (-4.217028) | 0.134062 / 6.500664 (-6.366602) | 0.060951 / 0.075469 (-0.014518) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353955 / 1.841788 (-0.487832) | 20.386012 / 8.074308 (12.311704) | 15.032463 / 10.191392 (4.841071) | 0.167243 / 0.680424 (-0.513181) | 0.020426 / 0.534201 (-0.513775) | 0.396815 / 0.579283 (-0.182469) | 0.421806 / 0.434364 (-0.012558) | 0.471866 / 0.540337 (-0.068471) | 0.667206 / 1.386936 (-0.719730) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aade5a0c79398c84632a3ff253111e694c7b598b \"CML watermark\")\n", "Really happy to see this! It could also be helpful to track some other metadata about how the dataset was built in the future. i.e. for the Stack loaded like this:\r\n\r\n```\r\nds = load_dataset(\"bigcode/the-stack\", data_dir=\"data/dockerfile\", split=\"train\")\r\n```\r\nIt could be helpful to have easy access to the `data_dir` argument used during loading since that changes the training data quite a bit vs. loading the full dataset. You can also recover this from `download_checksums`, which seems a bit hacky. That is not necessary for this PR, though.\r\n", "Perhaps it is also interesting to track the revision? I suppose the version also kind of covers that.\r\n\r\nThat said, this is looking great already! I'm quite excited about this. Losing the `repo_id` after merging (different) datasets also makes sense to me, well done.", "One other thought. Is it worth tracking if a `token` was passed during loading? \r\n\r\nThe Hub ID for private datasets could in some cases contain information someone wouldn't want to make public i.e. `davanstrien/super_secret_dataset_using_GPT_created_data`. \r\n\r\nAdding a bool like `is_private` could then be used by another library to determine if the dataset ID should be shared or not (or default to not sharing the ID for private datasets). i.e. in SpanMarker @tomaarsen might do a check like \r\n\r\n```python\r\nif ds.is_private and not push_hub_id_for_private_ds:\r\n\tds_name = None\r\n```\r\nPotentially this is overkill but could be useful for downstream libraries who might use this information for creating automatic model cards. \r\n\r\n\r\n", "We should probably find a way to remove `DatasetInfo`, as (most of) its attributes are outdated (homepage, description, etc.), not introduce new ones :). But I guess storing `repo_id` there is the simplest solution for now, so I'm OK with it.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007757 / 0.011353 (-0.003595) | 0.004543 / 0.011008 (-0.006465) | 0.100193 / 0.038508 (0.061685) | 0.082333 / 0.023109 (0.059224) | 0.374586 / 0.275898 (0.098688) | 0.412617 / 0.323480 (0.089137) | 0.006148 / 0.007986 (-0.001838) | 0.003826 / 0.004328 (-0.000503) | 0.077077 / 0.004250 (0.072827) | 0.064057 / 0.037052 (0.027005) | 0.391435 / 0.258489 (0.132946) | 0.436439 / 0.293841 (0.142599) | 0.036534 / 0.128546 (-0.092012) | 0.009986 / 0.075646 (-0.065660) | 0.344243 / 0.419271 (-0.075028) | 0.062013 / 0.043533 (0.018480) | 0.378113 / 0.255139 (0.122974) | 0.398476 / 0.283200 (0.115276) | 0.026552 / 0.141683 (-0.115131) | 1.740505 / 1.452155 (0.288350) | 1.835684 / 1.492716 (0.342968) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267917 / 0.018006 (0.249911) | 0.510676 / 0.000490 (0.510186) | 0.010810 / 0.000200 (0.010610) | 0.000383 / 0.000054 (0.000328) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032113 / 0.037411 (-0.005299) | 0.097679 / 0.014526 (0.083153) | 0.113213 / 0.176557 (-0.063344) | 0.177897 / 0.737135 (-0.559238) | 0.111761 / 0.296338 (-0.184577) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450544 / 0.215209 (0.235335) | 4.476746 / 2.077655 (2.399091) | 2.205391 / 1.504120 (0.701271) | 2.006457 / 1.541195 (0.465262) | 2.058859 / 1.468490 (0.590369) | 0.571549 / 4.584777 (-4.013228) | 4.175039 / 3.745712 (0.429327) | 3.815445 / 5.269862 (-1.454416) | 2.376673 / 4.565676 (-2.189004) | 0.067048 / 0.424275 (-0.357227) | 0.008544 / 0.007607 (0.000937) | 0.536384 / 0.226044 (0.310340) | 5.386232 / 2.268929 (3.117304) | 2.825620 / 55.444624 (-52.619004) | 2.339821 / 6.876477 (-4.536656) | 2.535736 / 2.142072 (0.393663) | 0.679572 / 4.805227 (-4.125655) | 0.156799 / 6.500664 (-6.343865) | 0.071667 / 0.075469 (-0.003802) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.512198 / 1.841788 (-0.329590) | 21.786760 / 8.074308 (13.712452) | 16.386274 / 10.191392 (6.194882) | 0.169108 / 0.680424 (-0.511316) | 0.021312 / 0.534201 (-0.512889) | 0.466153 / 0.579283 (-0.113130) | 0.496192 / 0.434364 (0.061829) | 0.549420 / 0.540337 (0.009082) | 0.780974 / 1.386936 (-0.605962) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007644 / 0.011353 (-0.003709) | 0.004654 / 0.011008 (-0.006354) | 0.075280 / 0.038508 (0.036772) | 0.083044 / 0.023109 (0.059935) | 0.481704 / 0.275898 (0.205805) | 0.514828 / 0.323480 (0.191348) | 0.006245 / 0.007986 (-0.001740) | 0.003715 / 0.004328 (-0.000614) | 0.074498 / 0.004250 (0.070248) | 0.064406 / 0.037052 (0.027353) | 0.481874 / 0.258489 (0.223385) | 0.518527 / 0.293841 (0.224686) | 0.037549 / 0.128546 (-0.090997) | 0.010106 / 0.075646 (-0.065541) | 0.084266 / 0.419271 (-0.335006) | 0.056659 / 0.043533 (0.013126) | 0.497707 / 0.255139 (0.242568) | 0.503201 / 0.283200 (0.220001) | 0.027086 / 0.141683 (-0.114597) | 1.834715 / 1.452155 (0.382560) | 1.919927 / 1.492716 (0.427210) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249288 / 0.018006 (0.231282) | 0.500950 / 0.000490 (0.500460) | 0.005856 / 0.000200 (0.005656) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037674 / 0.037411 (0.000263) | 0.111141 / 0.014526 (0.096615) | 0.123408 / 0.176557 (-0.053149) | 0.186604 / 0.737135 (-0.550531) | 0.125360 / 0.296338 (-0.170979) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.520480 / 0.215209 (0.305271) | 5.171108 / 2.077655 (3.093453) | 2.812746 / 1.504120 (1.308626) | 2.602941 / 1.541195 (1.061746) | 2.666196 / 1.468490 (1.197706) | 0.578684 / 4.584777 (-4.006092) | 4.238722 / 3.745712 (0.493010) | 3.844361 / 5.269862 (-1.425501) | 2.369214 / 4.565676 (-2.196462) | 0.068543 / 0.424275 (-0.355732) | 0.008695 / 0.007607 (0.001088) | 0.621869 / 0.226044 (0.395825) | 6.200566 / 2.268929 (3.931637) | 3.340846 / 55.444624 (-52.103779) | 2.920691 / 6.876477 (-3.955786) | 3.132438 / 2.142072 (0.990366) | 0.697394 / 4.805227 (-4.107834) | 0.158385 / 6.500664 (-6.342280) | 0.072566 / 0.075469 (-0.002903) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.599070 / 1.841788 (-0.242717) | 22.767139 / 8.074308 (14.692831) | 17.053988 / 10.191392 (6.862596) | 0.188414 / 0.680424 (-0.492009) | 0.023409 / 0.534201 (-0.510792) | 0.472092 / 0.579283 (-0.107191) | 0.486107 / 0.434364 (0.051743) | 0.562190 / 0.540337 (0.021852) | 0.791606 / 1.386936 (-0.595330) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aacbaf45c93f88e8c95924f6224153fb37c3064a \"CML watermark\")\n" ]
2023-09-29T10:24:55
2023-10-01T15:29:45
null
MEMBER
true
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6268", "html_url": "https://github.com/huggingface/datasets/pull/6268", "diff_url": "https://github.com/huggingface/datasets/pull/6268.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6268.patch", "merged_at": null }
```python from datasets import load_dataset ds = load_dataset("lhoestq/demo1", split="train") ds = ds.map(lambda x: {}, num_proc=2).filter(lambda x: True).remove_columns(["id"]) print(ds.repo_id) # lhoestq/demo1 ``` - repo_id is None when the dataset doesn't come from the Hub, e.g. from Dataset.from_dict - repo_id is set to None when concatenating datasets with different repo ids related to https://github.com/huggingface/datasets/issues/4129 TODO: - [ ] discuss if it's ok for now - [ ] tests
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6268/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6268/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6267
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6267/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6267/comments
https://api.github.com/repos/huggingface/datasets/issues/6267/events
https://github.com/huggingface/datasets/issues/6267
1,916,443,262
I_kwDODunzps5yOpp-
6,267
Multi label class encoding
{ "login": "jmif", "id": 1000442, "node_id": "MDQ6VXNlcjEwMDA0NDI=", "avatar_url": "https://avatars.githubusercontent.com/u/1000442?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jmif", "html_url": "https://github.com/jmif", "followers_url": "https://api.github.com/users/jmif/followers", "following_url": "https://api.github.com/users/jmif/following{/other_user}", "gists_url": "https://api.github.com/users/jmif/gists{/gist_id}", "starred_url": "https://api.github.com/users/jmif/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jmif/subscriptions", "organizations_url": "https://api.github.com/users/jmif/orgs", "repos_url": "https://api.github.com/users/jmif/repos", "events_url": "https://api.github.com/users/jmif/events{/privacy}", "received_events_url": "https://api.github.com/users/jmif/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[ "You can use a `Sequence(ClassLabel(...))` feature type to represent a list of labels, and `cast_column`/`cast` to perform the \"string to label\" conversion (`class_encode_column` does support nested fields), e.g., in your case:\r\n```python\r\nfrom datasets import Dataset, Sequence, ClassLabel\r\ndata = {\r\n 'text': ['one', 'two', 'three', 'four'],\r\n 'labels': [['a', 'b'], ['b'], ['b', 'c'], ['a', 'd']]\r\n}\r\n\r\ndataset = Dataset.from_dict(data)\r\ndataset = dataset.cast_column('labels', Sequence(ClassLabel(names=[\"a\", \"b\", \"c\", \"d\"])))\r\n```", "Great! Can you elaborate on \"class_encode_column does support nested fields\"? Do you mean that there is a way to `class_encode_column` on a Sequence?", "Yes, exactly! This would be a nice contribution, though.", "Sorry, I'm still not following. Are you saying that there currently exists a way to call `class_encode_column` on a `Sequence(ClassLabel)` type? Or that the underlying data structures support it and a contribution of a method to do that would be welcome?", "`class_encode_column ` currently does not support `Sequence(ClassLabel)`. Implementing support for this would be a nice contribution.\r\n\r\nIn the meantime, this limitation can be circumvented by fetching (unique) labels and calling `.cast_column(col, Sequence(ClassLabel(names=labels)))`.", "Ok makes sense, can you take a look at the POC implementation I did [here](https://github.com/huggingface/datasets/commit/15443098e9ce053943172f7ec6fce3769d7dff6e)? Happy to take another pass / submit as a PR but would be helpful if I got a thumbs up that this was directionally correct with respect to implementation / architecture. ", "There is no need to introduce a new type (`MultiLabel`) for this feature. Also, I think we can keep the logic inside a single method instead of separating the two cases.\r\n\r\nMaybe https://github.com/huggingface/datasets/pull/4277 can help with the implementation. We extended `align_labels_with_mapping` to support `Sequence(ClassLabel(...))` in that PR (initially, it only worked with `ClassLabel(...)`)" ]
2023-09-27T22:48:08
2023-10-26T18:46:08
null
NONE
null
null
### Feature request I have a multi label dataset and I'd like to be able to class encode the column and store the mapping directly in the features just as I can with a single label column. `class_encode_column` currently does not support multi labels. Here's an example of what I'd like to encode: ``` data = { 'text': ['one', 'two', 'three', 'four'], 'labels': [['a', 'b'], ['b'], ['b', 'c'], ['a', 'd']] } dataset = Dataset.from_dict(data) dataset = dataset.class_encode_column('labels') ``` I did some digging into the code base to evaluate the feasibility of this (note I'm very new to this code base) and from what I noticed the `ClassLabel` feature is still stored as an underlying raw data type of int so I thought a `MultiLabel` feature could similarly be stored as a Sequence of ints, thus not requiring significant serialization / conversion work to / from arrow. I did a POC of this [here](https://github.com/huggingface/datasets/commit/15443098e9ce053943172f7ec6fce3769d7dff6e) and included a simple test case (please excuse all the commented out tests, going for speed of POC here and didn't want to fight IDE to debug a single test). In the test I just assert that `num_classes` is the same to show that things are properly serializing, but if you break after loading from disk you'll see the dataset correct and the dataset feature is as expected. After digging more I did notice a few issues - After loading from disk I noticed type of the `labels` class is `Sequence` not `MultiLabel` (though the added `feature` attribute came through). This doesn't happen for `ClassLabel` but I couldn't find the encode / decode code paths that handle this. - I subclass `Sequence` in `MultiLabel` to leverage existing serialization, but this does miss the custom encode logic that `ClassLabel` has. I'm not sure of the best way to approach this as I haven't fully understood the encode / decode flow for datasets. I suspect my simple implementation will need some improvement as it'll require a significant amount of repeated logic to mimic `ClassLabel` behavior. ### Motivation See above - would like to support multi label class encodings. ### Your contribution This would be a big help for us and we're open to contributing but I'll likely need some guidance on how to implement to fit the encode / decode flow. Some suggestions on tests / would be great too, I'm guessing in addition to the class encode tests (that I'll need to expand) we'll need encode / decode tests.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6267/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6267/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6266
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6266/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6266/comments
https://api.github.com/repos/huggingface/datasets/issues/6266/events
https://github.com/huggingface/datasets/pull/6266
1,916,334,394
PR_kwDODunzps5bYYb8
6,266
Use LibYAML with PyYAML if available
{ "login": "bryant1410", "id": 3905501, "node_id": "MDQ6VXNlcjM5MDU1MDE=", "avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bryant1410", "html_url": "https://github.com/bryant1410", "followers_url": "https://api.github.com/users/bryant1410/followers", "following_url": "https://api.github.com/users/bryant1410/following{/other_user}", "gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}", "starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions", "organizations_url": "https://api.github.com/users/bryant1410/orgs", "repos_url": "https://api.github.com/users/bryant1410/repos", "events_url": "https://api.github.com/users/bryant1410/events{/privacy}", "received_events_url": "https://api.github.com/users/bryant1410/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6266). All of your documentation changes will be reflected on that endpoint.", "On Ubuntu, if `libyaml-dev` is installed, you can install PyYAML 6.0.1 with LibYAML with the following command (as it's automatically detected):\r\n\r\n```bash\r\npip install git+https://github.com/yaml/pyyaml.git@6.0.1\r\n```", "Are the failing tests flaky?", "We use `huggingface_hub`'s RepoCard API instead of these modules to parse the YAML block (notice the deprecations), so the `huggingface_hub` repo is the right place to suggest these changes.\r\n\r\nPersonally, I'm not a fan of these changes, as a single non-standard usage of the `ClassLabel` type is not a sufficient reason to merge them. Also, the dataset in question stores data in a single Parquet file, with the features info embedded in its (schema) metadata, which means the YAML parsing can be skipped while preserving the features by directly loading the Parquet file:\r\n```python\r\nfrom datasets import load_dataset\r\nds = load_dataset(\"parquet\", data_files=\"https://huggingface.co/datasets/HuggingFaceM4/SugarCrepe_swap_obj/resolve/main/data/test-00000-of-00001-ca2ae6017a2336d7.parquet\")\r\n```\r\n\r\nPS: Yes, these tests are flaky. We are working on fixing them.", "Oh, I didn't realize they were deprecated. Thanks for the tip on how to work around this issue!\r\n\r\nFor future reference, the places to change the code in `huggingface_hub` would be:\r\n\r\nhttps://github.com/huggingface/huggingface_hub/blob/89cc69105074f1d071e0471144605f3cdfe1dab3/src/huggingface_hub/repocard.py#L506\r\n\r\nhttps://github.com/huggingface/huggingface_hub/blob/89cc69105074f1d071e0471144605f3cdfe1dab3/src/huggingface_hub/utils/_fixes.py#L34" ]
2023-09-27T21:13:36
2023-09-28T14:29:24
null
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6266", "html_url": "https://github.com/huggingface/datasets/pull/6266", "diff_url": "https://github.com/huggingface/datasets/pull/6266.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6266.patch", "merged_at": null }
PyYAML, the YAML framework used in this library, allows the use of LibYAML to accelerate the methods `load` and `dump`. To use it, a user would need to first install a PyYAML version that uses LibYAML (not available in PyPI; needs to be manually installed). Then, to actually use them, PyYAML suggests importing the LibYAML version of the `Loader` and `Dumper` and falling back to the default ones. This PR implements this change. See [PyYAML docs](https://pyyaml.org/wiki/PyYAMLDocumentation) for more info. This change was motivated after trying to use any of [the SugarCREPE datasets in the Hub](https://huggingface.co/datasets?search=sugarcrepe) provided by [the org HuggingFaceM4](https://huggingface.co/datasets/HuggingFaceM4). Such datasets save a lot of information (~1MB) in the YAML metadata from the `README.md` file and I noticed this slowed down the data loading process. BTW, I also noticed cache files for it is also slow because it tries to hash an instance of `DatasetInfo`, which in turn has all this metadata. Also, I changed two list comprehensions into generator expressions to avoid allocating extra memory unnecessarily. And BTW, there's [an issue in PyYAML suggesting to make this automatic](https://github.com/yaml/pyyaml/issues/437).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6266/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6266/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6265
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6265/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6265/comments
https://api.github.com/repos/huggingface/datasets/issues/6265/events
https://github.com/huggingface/datasets/pull/6265
1,915,651,566
PR_kwDODunzps5bWDfc
6,265
Remove `apache_beam` import in `BeamBasedBuilder._save_info`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005896 / 0.011353 (-0.005457) | 0.003642 / 0.011008 (-0.007366) | 0.081917 / 0.038508 (0.043409) | 0.059513 / 0.023109 (0.036404) | 0.341422 / 0.275898 (0.065524) | 0.359278 / 0.323480 (0.035798) | 0.004707 / 0.007986 (-0.003279) | 0.002938 / 0.004328 (-0.001390) | 0.063095 / 0.004250 (0.058845) | 0.051777 / 0.037052 (0.014725) | 0.321114 / 0.258489 (0.062625) | 0.363823 / 0.293841 (0.069982) | 0.027590 / 0.128546 (-0.100957) | 0.007846 / 0.075646 (-0.067800) | 0.261197 / 0.419271 (-0.158074) | 0.045812 / 0.043533 (0.002279) | 0.319787 / 0.255139 (0.064648) | 0.341839 / 0.283200 (0.058640) | 0.021913 / 0.141683 (-0.119770) | 1.397525 / 1.452155 (-0.054630) | 1.495902 / 1.492716 (0.003186) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224815 / 0.018006 (0.206809) | 0.425780 / 0.000490 (0.425290) | 0.006934 / 0.000200 (0.006734) | 0.000225 / 0.000054 (0.000171) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024342 / 0.037411 (-0.013070) | 0.073923 / 0.014526 (0.059398) | 0.082108 / 0.176557 (-0.094448) | 0.143017 / 0.737135 (-0.594119) | 0.083163 / 0.296338 (-0.213175) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398244 / 0.215209 (0.183035) | 3.957688 / 2.077655 (1.880033) | 1.904615 / 1.504120 (0.400495) | 1.710353 / 1.541195 (0.169158) | 1.798980 / 1.468490 (0.330490) | 0.499307 / 4.584777 (-4.085470) | 3.026734 / 3.745712 (-0.718978) | 2.923940 / 5.269862 (-2.345922) | 1.831870 / 4.565676 (-2.733807) | 0.058551 / 0.424275 (-0.365724) | 0.006403 / 0.007607 (-0.001204) | 0.464164 / 0.226044 (0.238119) | 4.644556 / 2.268929 (2.375628) | 2.341455 / 55.444624 (-53.103169) | 2.004385 / 6.876477 (-4.872092) | 2.051819 / 2.142072 (-0.090253) | 0.585610 / 4.805227 (-4.219617) | 0.124735 / 6.500664 (-6.375929) | 0.061150 / 0.075469 (-0.014319) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224665 / 1.841788 (-0.617122) | 17.476227 / 8.074308 (9.401919) | 13.867617 / 10.191392 (3.676225) | 0.144177 / 0.680424 (-0.536247) | 0.017045 / 0.534201 (-0.517156) | 0.337468 / 0.579283 (-0.241815) | 0.374476 / 0.434364 (-0.059888) | 0.393428 / 0.540337 (-0.146910) | 0.535335 / 1.386936 (-0.851601) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006208 / 0.011353 (-0.005145) | 0.003650 / 0.011008 (-0.007359) | 0.062843 / 0.038508 (0.024335) | 0.062272 / 0.023109 (0.039162) | 0.446336 / 0.275898 (0.170438) | 0.477476 / 0.323480 (0.153996) | 0.004862 / 0.007986 (-0.003124) | 0.002822 / 0.004328 (-0.001506) | 0.063427 / 0.004250 (0.059177) | 0.049023 / 0.037052 (0.011971) | 0.453633 / 0.258489 (0.195144) | 0.486494 / 0.293841 (0.192653) | 0.028634 / 0.128546 (-0.099912) | 0.008187 / 0.075646 (-0.067460) | 0.068846 / 0.419271 (-0.350425) | 0.041104 / 0.043533 (-0.002429) | 0.446646 / 0.255139 (0.191507) | 0.468860 / 0.283200 (0.185660) | 0.020980 / 0.141683 (-0.120703) | 1.455565 / 1.452155 (0.003410) | 1.511142 / 1.492716 (0.018426) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224242 / 0.018006 (0.206236) | 0.408483 / 0.000490 (0.407993) | 0.003495 / 0.000200 (0.003296) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027286 / 0.037411 (-0.010125) | 0.081151 / 0.014526 (0.066625) | 0.096598 / 0.176557 (-0.079959) | 0.146193 / 0.737135 (-0.590942) | 0.092213 / 0.296338 (-0.204125) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463837 / 0.215209 (0.248628) | 4.636820 / 2.077655 (2.559165) | 2.576100 / 1.504120 (1.071980) | 2.396974 / 1.541195 (0.855779) | 2.461526 / 1.468490 (0.993036) | 0.502360 / 4.584777 (-4.082417) | 3.099973 / 3.745712 (-0.645739) | 2.937260 / 5.269862 (-2.332602) | 1.871274 / 4.565676 (-2.694402) | 0.057913 / 0.424275 (-0.366362) | 0.006511 / 0.007607 (-0.001096) | 0.536917 / 0.226044 (0.310873) | 5.396966 / 2.268929 (3.128038) | 3.015646 / 55.444624 (-52.428978) | 2.673793 / 6.876477 (-4.202684) | 2.712376 / 2.142072 (0.570304) | 0.591632 / 4.805227 (-4.213595) | 0.124872 / 6.500664 (-6.375792) | 0.061820 / 0.075469 (-0.013649) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356828 / 1.841788 (-0.484960) | 18.076995 / 8.074308 (10.002687) | 15.116482 / 10.191392 (4.925090) | 0.151375 / 0.680424 (-0.529049) | 0.017867 / 0.534201 (-0.516334) | 0.335012 / 0.579283 (-0.244271) | 0.384137 / 0.434364 (-0.050226) | 0.397792 / 0.540337 (-0.142546) | 0.551521 / 1.386936 (-0.835415) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#46a0506765d0f92916ed5c37eb19e5fa1a77736a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009418 / 0.011353 (-0.001935) | 0.005186 / 0.011008 (-0.005822) | 0.112270 / 0.038508 (0.073761) | 0.114856 / 0.023109 (0.091747) | 0.402267 / 0.275898 (0.126369) | 0.445213 / 0.323480 (0.121733) | 0.005588 / 0.007986 (-0.002398) | 0.004315 / 0.004328 (-0.000013) | 0.083561 / 0.004250 (0.079311) | 0.087319 / 0.037052 (0.050267) | 0.400989 / 0.258489 (0.142500) | 0.455636 / 0.293841 (0.161795) | 0.045168 / 0.128546 (-0.083378) | 0.010939 / 0.075646 (-0.064707) | 0.400120 / 0.419271 (-0.019151) | 0.071599 / 0.043533 (0.028066) | 0.418112 / 0.255139 (0.162973) | 0.443889 / 0.283200 (0.160690) | 0.032433 / 0.141683 (-0.109250) | 1.886313 / 1.452155 (0.434159) | 2.012909 / 1.492716 (0.520193) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.306991 / 0.018006 (0.288985) | 0.590426 / 0.000490 (0.589937) | 0.011811 / 0.000200 (0.011611) | 0.000596 / 0.000054 (0.000542) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.042520 / 0.037411 (0.005108) | 0.129808 / 0.014526 (0.115283) | 0.125481 / 0.176557 (-0.051075) | 0.199181 / 0.737135 (-0.537954) | 0.130426 / 0.296338 (-0.165913) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.526455 / 0.215209 (0.311246) | 5.213304 / 2.077655 (3.135649) | 2.643406 / 1.504120 (1.139286) | 2.611214 / 1.541195 (1.070019) | 2.586730 / 1.468490 (1.118240) | 0.639103 / 4.584777 (-3.945674) | 5.197421 / 3.745712 (1.451709) | 4.634642 / 5.269862 (-0.635220) | 2.741079 / 4.565676 (-1.824598) | 0.073064 / 0.424275 (-0.351211) | 0.009441 / 0.007607 (0.001834) | 0.635984 / 0.226044 (0.409940) | 6.283268 / 2.268929 (4.014339) | 3.337205 / 55.444624 (-52.107419) | 3.192362 / 6.876477 (-3.684114) | 2.910367 / 2.142072 (0.768294) | 0.767937 / 4.805227 (-4.037290) | 0.177467 / 6.500664 (-6.323198) | 0.081162 / 0.075469 (0.005693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.803717 / 1.841788 (-0.038071) | 26.823235 / 8.074308 (18.748927) | 19.714471 / 10.191392 (9.523079) | 0.204048 / 0.680424 (-0.476376) | 0.025992 / 0.534201 (-0.508209) | 0.521438 / 0.579283 (-0.057845) | 0.596524 / 0.434364 (0.162160) | 0.600763 / 0.540337 (0.060425) | 0.945971 / 1.386936 (-0.440965) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009126 / 0.011353 (-0.002226) | 0.005109 / 0.011008 (-0.005899) | 0.083046 / 0.038508 (0.044538) | 0.115930 / 0.023109 (0.092821) | 0.534311 / 0.275898 (0.258413) | 0.552846 / 0.323480 (0.229366) | 0.007240 / 0.007986 (-0.000746) | 0.004617 / 0.004328 (0.000289) | 0.083927 / 0.004250 (0.079676) | 0.075926 / 0.037052 (0.038873) | 0.534750 / 0.258489 (0.276261) | 0.575122 / 0.293841 (0.281281) | 0.041001 / 0.128546 (-0.087545) | 0.010851 / 0.075646 (-0.064795) | 0.096574 / 0.419271 (-0.322697) | 0.063533 / 0.043533 (0.020001) | 0.546850 / 0.255139 (0.291711) | 0.547122 / 0.283200 (0.263922) | 0.032437 / 0.141683 (-0.109245) | 1.926191 / 1.452155 (0.474036) | 2.029841 / 1.492716 (0.537125) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275582 / 0.018006 (0.257576) | 0.574212 / 0.000490 (0.573722) | 0.006863 / 0.000200 (0.006663) | 0.000236 / 0.000054 (0.000181) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.045340 / 0.037411 (0.007928) | 0.129196 / 0.014526 (0.114670) | 0.136637 / 0.176557 (-0.039920) | 0.200040 / 0.737135 (-0.537096) | 0.136328 / 0.296338 (-0.160011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.612379 / 0.215209 (0.397170) | 5.874664 / 2.077655 (3.797010) | 3.070626 / 1.504120 (1.566506) | 2.999319 / 1.541195 (1.458124) | 3.000571 / 1.468490 (1.532081) | 0.732119 / 4.584777 (-3.852658) | 5.193226 / 3.745712 (1.447514) | 4.714571 / 5.269862 (-0.555291) | 2.870438 / 4.565676 (-1.695239) | 0.075793 / 0.424275 (-0.348482) | 0.009238 / 0.007607 (0.001631) | 0.695192 / 0.226044 (0.469148) | 6.897996 / 2.268929 (4.629067) | 3.923474 / 55.444624 (-51.521150) | 3.458326 / 6.876477 (-3.418151) | 3.331652 / 2.142072 (1.189579) | 0.821132 / 4.805227 (-3.984095) | 0.182252 / 6.500664 (-6.318412) | 0.084730 / 0.075469 (0.009260) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.919861 / 1.841788 (0.078073) | 27.437228 / 8.074308 (19.362920) | 21.109899 / 10.191392 (10.918507) | 0.245998 / 0.680424 (-0.434426) | 0.025817 / 0.534201 (-0.508384) | 0.517757 / 0.579283 (-0.061526) | 0.576375 / 0.434364 (0.142011) | 0.625283 / 0.540337 (0.084945) | 0.956877 / 1.386936 (-0.430059) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8ddee15a8650a0ea52073477036d8c973da50f11 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008099 / 0.011353 (-0.003254) | 0.004815 / 0.011008 (-0.006194) | 0.099657 / 0.038508 (0.061149) | 0.064737 / 0.023109 (0.041628) | 0.461773 / 0.275898 (0.185875) | 0.444810 / 0.323480 (0.121330) | 0.004247 / 0.007986 (-0.003739) | 0.004956 / 0.004328 (0.000628) | 0.068664 / 0.004250 (0.064414) | 0.052039 / 0.037052 (0.014986) | 0.406750 / 0.258489 (0.148261) | 0.452832 / 0.293841 (0.158991) | 0.044518 / 0.128546 (-0.084028) | 0.013220 / 0.075646 (-0.062426) | 0.317713 / 0.419271 (-0.101558) | 0.061897 / 0.043533 (0.018364) | 0.398664 / 0.255139 (0.143525) | 0.531494 / 0.283200 (0.248294) | 0.064033 / 0.141683 (-0.077650) | 1.590385 / 1.452155 (0.138231) | 1.769918 / 1.492716 (0.277202) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230795 / 0.018006 (0.212789) | 0.568797 / 0.000490 (0.568308) | 0.013498 / 0.000200 (0.013298) | 0.000448 / 0.000054 (0.000393) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028394 / 0.037411 (-0.009017) | 0.081973 / 0.014526 (0.067447) | 0.097623 / 0.176557 (-0.078934) | 0.158691 / 0.737135 (-0.578445) | 0.101548 / 0.296338 (-0.194791) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.574459 / 0.215209 (0.359249) | 5.709871 / 2.077655 (3.632217) | 2.521460 / 1.504120 (1.017340) | 2.239463 / 1.541195 (0.698268) | 2.195067 / 1.468490 (0.726577) | 0.792390 / 4.584777 (-3.792387) | 4.841665 / 3.745712 (1.095952) | 4.201620 / 5.269862 (-1.068241) | 2.664081 / 4.565676 (-1.901595) | 0.097661 / 0.424275 (-0.326614) | 0.008428 / 0.007607 (0.000821) | 0.698729 / 0.226044 (0.472684) | 6.908867 / 2.268929 (4.639939) | 3.247480 / 55.444624 (-52.197145) | 2.563921 / 6.876477 (-4.312556) | 2.738249 / 2.142072 (0.596177) | 0.972066 / 4.805227 (-3.833161) | 0.191196 / 6.500664 (-6.309468) | 0.064732 / 0.075469 (-0.010737) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.421910 / 1.841788 (-0.419877) | 20.633538 / 8.074308 (12.559230) | 18.054562 / 10.191392 (7.863170) | 0.194125 / 0.680424 (-0.486299) | 0.028097 / 0.534201 (-0.506104) | 0.417857 / 0.579283 (-0.161426) | 0.518758 / 0.434364 (0.084394) | 0.500199 / 0.540337 (-0.040138) | 0.754662 / 1.386936 (-0.632274) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008452 / 0.011353 (-0.002901) | 0.004646 / 0.011008 (-0.006362) | 0.077286 / 0.038508 (0.038778) | 0.072507 / 0.023109 (0.049398) | 0.439580 / 0.275898 (0.163682) | 0.506166 / 0.323480 (0.182686) | 0.006035 / 0.007986 (-0.001950) | 0.003886 / 0.004328 (-0.000442) | 0.075091 / 0.004250 (0.070841) | 0.063163 / 0.037052 (0.026110) | 0.468550 / 0.258489 (0.210061) | 0.523273 / 0.293841 (0.229432) | 0.048728 / 0.128546 (-0.079818) | 0.012991 / 0.075646 (-0.062655) | 0.087964 / 0.419271 (-0.331308) | 0.058920 / 0.043533 (0.015387) | 0.451247 / 0.255139 (0.196108) | 0.489827 / 0.283200 (0.206628) | 0.031164 / 0.141683 (-0.110519) | 1.675504 / 1.452155 (0.223349) | 1.806098 / 1.492716 (0.313382) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253567 / 0.018006 (0.235561) | 0.508971 / 0.000490 (0.508481) | 0.010882 / 0.000200 (0.010682) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029490 / 0.037411 (-0.007921) | 0.090255 / 0.014526 (0.075729) | 0.110075 / 0.176557 (-0.066482) | 0.159375 / 0.737135 (-0.577760) | 0.109313 / 0.296338 (-0.187025) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.580252 / 0.215209 (0.365043) | 5.911741 / 2.077655 (3.834086) | 2.659405 / 1.504120 (1.155285) | 2.344943 / 1.541195 (0.803749) | 2.390748 / 1.468490 (0.922258) | 0.827823 / 4.584777 (-3.756954) | 4.973544 / 3.745712 (1.227832) | 4.300220 / 5.269862 (-0.969642) | 2.826181 / 4.565676 (-1.739495) | 0.101013 / 0.424275 (-0.323263) | 0.008025 / 0.007607 (0.000418) | 0.728414 / 0.226044 (0.502369) | 7.508045 / 2.268929 (5.239117) | 3.687627 / 55.444624 (-51.756997) | 2.902953 / 6.876477 (-3.973524) | 3.094624 / 2.142072 (0.952551) | 1.054696 / 4.805227 (-3.750531) | 0.212297 / 6.500664 (-6.288367) | 0.070211 / 0.075469 (-0.005258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.567117 / 1.841788 (-0.274670) | 21.420746 / 8.074308 (13.346438) | 19.857467 / 10.191392 (9.666075) | 0.228554 / 0.680424 (-0.451870) | 0.032278 / 0.534201 (-0.501923) | 0.459966 / 0.579283 (-0.119317) | 0.541219 / 0.434364 (0.106855) | 0.549599 / 0.540337 (0.009261) | 0.731476 / 1.386936 (-0.655460) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0cc77d7f45c73698c31eab4f8cfff901044d0020 \"CML watermark\")\n" ]
2023-09-27T13:56:34
2023-09-28T18:34:02
2023-09-28T18:23:35
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6265", "html_url": "https://github.com/huggingface/datasets/pull/6265", "diff_url": "https://github.com/huggingface/datasets/pull/6265.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6265.patch", "merged_at": "2023-09-28T18:23:35" }
... to avoid an `ImportError` raised in `BeamBasedBuilder._save_info` when `apache_beam` is not installed (e.g., when downloading the processed version of a dataset from the HF GCS) Fix https://github.com/huggingface/datasets/issues/6260
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6265/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6265/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6264
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6264/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6264/comments
https://api.github.com/repos/huggingface/datasets/issues/6264/events
https://github.com/huggingface/datasets/pull/6264
1,914,958,781
PR_kwDODunzps5bTvzh
6,264
Temporarily pin tensorflow < 2.14.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008356 / 0.011353 (-0.002997) | 0.004553 / 0.011008 (-0.006455) | 0.101025 / 0.038508 (0.062517) | 0.090194 / 0.023109 (0.067085) | 0.427127 / 0.275898 (0.151229) | 0.469116 / 0.323480 (0.145636) | 0.007593 / 0.007986 (-0.000393) | 0.003751 / 0.004328 (-0.000578) | 0.077432 / 0.004250 (0.073182) | 0.082744 / 0.037052 (0.045692) | 0.433638 / 0.258489 (0.175149) | 0.482387 / 0.293841 (0.188546) | 0.040658 / 0.128546 (-0.087888) | 0.009799 / 0.075646 (-0.065848) | 0.345274 / 0.419271 (-0.073998) | 0.076642 / 0.043533 (0.033109) | 0.424417 / 0.255139 (0.169278) | 0.457045 / 0.283200 (0.173846) | 0.033642 / 0.141683 (-0.108041) | 1.765446 / 1.452155 (0.313291) | 1.859279 / 1.492716 (0.366562) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273629 / 0.018006 (0.255623) | 0.505743 / 0.000490 (0.505253) | 0.009300 / 0.000200 (0.009100) | 0.000359 / 0.000054 (0.000305) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032510 / 0.037411 (-0.004901) | 0.099628 / 0.014526 (0.085103) | 0.112904 / 0.176557 (-0.063652) | 0.179118 / 0.737135 (-0.558018) | 0.115946 / 0.296338 (-0.180393) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456431 / 0.215209 (0.241222) | 4.556559 / 2.077655 (2.478904) | 2.207893 / 1.504120 (0.703773) | 2.024706 / 1.541195 (0.483512) | 2.165424 / 1.468490 (0.696934) | 0.571745 / 4.584777 (-4.013031) | 4.341017 / 3.745712 (0.595305) | 3.980520 / 5.269862 (-1.289342) | 2.333077 / 4.565676 (-2.232599) | 0.067200 / 0.424275 (-0.357075) | 0.008563 / 0.007607 (0.000956) | 0.545294 / 0.226044 (0.319250) | 5.445152 / 2.268929 (3.176224) | 2.740657 / 55.444624 (-52.703968) | 2.370635 / 6.876477 (-4.505842) | 2.451642 / 2.142072 (0.309570) | 0.679385 / 4.805227 (-4.125842) | 0.155967 / 6.500664 (-6.344697) | 0.072812 / 0.075469 (-0.002657) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.494483 / 1.841788 (-0.347305) | 23.673700 / 8.074308 (15.599392) | 16.608529 / 10.191392 (6.417137) | 0.170220 / 0.680424 (-0.510204) | 0.021630 / 0.534201 (-0.512571) | 0.470771 / 0.579283 (-0.108512) | 0.535874 / 0.434364 (0.101510) | 0.550376 / 0.540337 (0.010039) | 0.776633 / 1.386936 (-0.610303) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007899 / 0.011353 (-0.003454) | 0.004581 / 0.011008 (-0.006427) | 0.076520 / 0.038508 (0.038012) | 0.090374 / 0.023109 (0.067265) | 0.495016 / 0.275898 (0.219118) | 0.532384 / 0.323480 (0.208904) | 0.006160 / 0.007986 (-0.001825) | 0.003780 / 0.004328 (-0.000548) | 0.077164 / 0.004250 (0.072914) | 0.064444 / 0.037052 (0.027391) | 0.501642 / 0.258489 (0.243153) | 0.549170 / 0.293841 (0.255329) | 0.038051 / 0.128546 (-0.090495) | 0.010081 / 0.075646 (-0.065565) | 0.083752 / 0.419271 (-0.335520) | 0.061334 / 0.043533 (0.017801) | 0.493502 / 0.255139 (0.238363) | 0.518018 / 0.283200 (0.234818) | 0.029534 / 0.141683 (-0.112149) | 1.929432 / 1.452155 (0.477277) | 1.889985 / 1.492716 (0.397268) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254802 / 0.018006 (0.236795) | 0.494463 / 0.000490 (0.493974) | 0.005040 / 0.000200 (0.004840) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038372 / 0.037411 (0.000960) | 0.112247 / 0.014526 (0.097721) | 0.124365 / 0.176557 (-0.052191) | 0.187142 / 0.737135 (-0.549993) | 0.126070 / 0.296338 (-0.170269) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.513418 / 0.215209 (0.298209) | 5.132267 / 2.077655 (3.054613) | 2.773676 / 1.504120 (1.269556) | 2.576840 / 1.541195 (1.035645) | 2.681729 / 1.468490 (1.213238) | 0.581809 / 4.584777 (-4.002968) | 4.327075 / 3.745712 (0.581363) | 4.040264 / 5.269862 (-1.229598) | 2.436192 / 4.565676 (-2.129484) | 0.067819 / 0.424275 (-0.356456) | 0.008760 / 0.007607 (0.001153) | 0.610765 / 0.226044 (0.384720) | 6.105679 / 2.268929 (3.836750) | 3.341341 / 55.444624 (-52.103284) | 2.926695 / 6.876477 (-3.949781) | 3.017269 / 2.142072 (0.875196) | 0.707289 / 4.805227 (-4.097938) | 0.157379 / 6.500664 (-6.343285) | 0.072549 / 0.075469 (-0.002920) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.666738 / 1.841788 (-0.175050) | 23.698567 / 8.074308 (15.624259) | 17.806437 / 10.191392 (7.615045) | 0.172103 / 0.680424 (-0.508321) | 0.023508 / 0.534201 (-0.510693) | 0.473171 / 0.579283 (-0.106112) | 0.524834 / 0.434364 (0.090470) | 0.562562 / 0.540337 (0.022224) | 0.788667 / 1.386936 (-0.598269) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1e7338259b26b32a095d251d5cdbc779c3573307 \"CML watermark\")\n", "CI 404 errors are unrelated. See:\r\n- #6262 ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006657 / 0.011353 (-0.004696) | 0.003975 / 0.011008 (-0.007033) | 0.084614 / 0.038508 (0.046106) | 0.074557 / 0.023109 (0.051448) | 0.309213 / 0.275898 (0.033315) | 0.338245 / 0.323480 (0.014765) | 0.005375 / 0.007986 (-0.002610) | 0.003355 / 0.004328 (-0.000973) | 0.064406 / 0.004250 (0.060156) | 0.061763 / 0.037052 (0.024711) | 0.313405 / 0.258489 (0.054916) | 0.352149 / 0.293841 (0.058308) | 0.031597 / 0.128546 (-0.096949) | 0.008499 / 0.075646 (-0.067147) | 0.289098 / 0.419271 (-0.130174) | 0.054415 / 0.043533 (0.010882) | 0.313210 / 0.255139 (0.058071) | 0.326728 / 0.283200 (0.043528) | 0.024597 / 0.141683 (-0.117086) | 1.449916 / 1.452155 (-0.002239) | 1.526314 / 1.492716 (0.033598) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231435 / 0.018006 (0.213429) | 0.537224 / 0.000490 (0.536734) | 0.007287 / 0.000200 (0.007088) | 0.000227 / 0.000054 (0.000172) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028340 / 0.037411 (-0.009071) | 0.084085 / 0.014526 (0.069560) | 0.428211 / 0.176557 (0.251655) | 0.157360 / 0.737135 (-0.579775) | 0.139470 / 0.296338 (-0.156868) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.389311 / 0.215209 (0.174102) | 3.871329 / 2.077655 (1.793674) | 1.861533 / 1.504120 (0.357413) | 1.688082 / 1.541195 (0.146887) | 1.804036 / 1.468490 (0.335546) | 0.489154 / 4.584777 (-4.095623) | 3.603843 / 3.745712 (-0.141869) | 3.424868 / 5.269862 (-1.844994) | 2.013525 / 4.565676 (-2.552152) | 0.057387 / 0.424275 (-0.366888) | 0.007274 / 0.007607 (-0.000333) | 0.462340 / 0.226044 (0.236295) | 4.620095 / 2.268929 (2.351167) | 2.326641 / 55.444624 (-53.117984) | 1.990082 / 6.876477 (-4.886395) | 2.037841 / 2.142072 (-0.104232) | 0.581973 / 4.805227 (-4.223254) | 0.135932 / 6.500664 (-6.364732) | 0.061092 / 0.075469 (-0.014377) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249586 / 1.841788 (-0.592202) | 19.036233 / 8.074308 (10.961925) | 14.083365 / 10.191392 (3.891973) | 0.169802 / 0.680424 (-0.510622) | 0.018547 / 0.534201 (-0.515654) | 0.392926 / 0.579283 (-0.186357) | 0.409993 / 0.434364 (-0.024371) | 0.460081 / 0.540337 (-0.080257) | 0.643836 / 1.386936 (-0.743100) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006889 / 0.011353 (-0.004464) | 0.004060 / 0.011008 (-0.006948) | 0.064332 / 0.038508 (0.025824) | 0.077067 / 0.023109 (0.053958) | 0.401235 / 0.275898 (0.125337) | 0.437139 / 0.323480 (0.113659) | 0.005510 / 0.007986 (-0.002476) | 0.003338 / 0.004328 (-0.000991) | 0.064446 / 0.004250 (0.060195) | 0.055537 / 0.037052 (0.018485) | 0.432689 / 0.258489 (0.174200) | 0.460005 / 0.293841 (0.166164) | 0.033122 / 0.128546 (-0.095424) | 0.008637 / 0.075646 (-0.067010) | 0.071088 / 0.419271 (-0.348183) | 0.049024 / 0.043533 (0.005491) | 0.400258 / 0.255139 (0.145119) | 0.419324 / 0.283200 (0.136124) | 0.022050 / 0.141683 (-0.119632) | 1.475744 / 1.452155 (0.023589) | 1.546565 / 1.492716 (0.053848) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226241 / 0.018006 (0.208235) | 0.448574 / 0.000490 (0.448085) | 0.004732 / 0.000200 (0.004533) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033260 / 0.037411 (-0.004151) | 0.092622 / 0.014526 (0.078096) | 0.105501 / 0.176557 (-0.071056) | 0.157981 / 0.737135 (-0.579155) | 0.105993 / 0.296338 (-0.190345) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445716 / 0.215209 (0.230507) | 4.451848 / 2.077655 (2.374194) | 2.404769 / 1.504120 (0.900649) | 2.232594 / 1.541195 (0.691399) | 2.312735 / 1.468490 (0.844245) | 0.491208 / 4.584777 (-4.093569) | 3.561629 / 3.745712 (-0.184083) | 3.444269 / 5.269862 (-1.825592) | 2.060365 / 4.565676 (-2.505311) | 0.057723 / 0.424275 (-0.366552) | 0.007392 / 0.007607 (-0.000215) | 0.526447 / 0.226044 (0.300403) | 5.264307 / 2.268929 (2.995379) | 2.951481 / 55.444624 (-52.493143) | 2.593178 / 6.876477 (-4.283299) | 2.689780 / 2.142072 (0.547707) | 0.588649 / 4.805227 (-4.216579) | 0.133566 / 6.500664 (-6.367098) | 0.060462 / 0.075469 (-0.015008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.381008 / 1.841788 (-0.460780) | 19.452394 / 8.074308 (11.378086) | 15.255912 / 10.191392 (5.064520) | 0.171043 / 0.680424 (-0.509381) | 0.020395 / 0.534201 (-0.513806) | 0.396429 / 0.579283 (-0.182854) | 0.422820 / 0.434364 (-0.011544) | 0.477305 / 0.540337 (-0.063032) | 0.658274 / 1.386936 (-0.728663) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#faedc670ca896584d0f8edcb1fd9c13d1d6cc903 \"CML watermark\")\n" ]
2023-09-27T08:16:06
2023-09-27T08:45:24
2023-09-27T08:36:39
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6264", "html_url": "https://github.com/huggingface/datasets/pull/6264", "diff_url": "https://github.com/huggingface/datasets/pull/6264.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6264.patch", "merged_at": "2023-09-27T08:36:39" }
Temporarily pin tensorflow < 2.14.0 until permanent solution is found. Hot fix #6263.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6264/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6264/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6263
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6263/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6263/comments
https://api.github.com/repos/huggingface/datasets/issues/6263/events
https://github.com/huggingface/datasets/issues/6263
1,914,951,043
I_kwDODunzps5yI9WD
6,263
CI is broken: ImportError: cannot import name 'context' from 'tensorflow.python'
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[]
2023-09-27T08:12:05
2023-09-27T08:36:40
2023-09-27T08:36:40
MEMBER
null
null
Python 3.10 CI is broken for `test_py310`. See: https://github.com/huggingface/datasets/actions/runs/6322990957/job/17169678812?pr=6262 ``` FAILED tests/test_py_utils.py::TempSeedTest::test_tensorflow - ImportError: cannot import name 'context' from 'tensorflow.python' (/opt/hostedtoolcache/Python/3.10.13/x64/lib/python3.10/site-packages/tensorflow/python/__init__.py) ``` ``` _________________________ TempSeedTest.test_tensorflow _________________________ [gw1] linux -- Python 3.10.13 /opt/hostedtoolcache/Python/3.10.13/x64/bin/python self = <tests.test_py_utils.TempSeedTest testMethod=test_tensorflow> @require_tf def test_tensorflow(self): import tensorflow as tf from tensorflow.keras import layers model = layers.Dense(2) def gen_random_output(): x = tf.random.uniform((1, 3)) return model(x).numpy() > with temp_seed(42, set_tensorflow=True): tests/test_py_utils.py:155: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /opt/hostedtoolcache/Python/3.10.13/x64/lib/python3.10/contextlib.py:135: in __enter__ return next(self.gen) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ seed = 42, set_pytorch = False, set_tensorflow = True @contextmanager def temp_seed(seed: int, set_pytorch=False, set_tensorflow=False): """Temporarily set the random seed. This works for python numpy, pytorch and tensorflow.""" np_state = np.random.get_state() np.random.seed(seed) if set_pytorch and config.TORCH_AVAILABLE: import torch torch_state = torch.random.get_rng_state() torch.random.manual_seed(seed) if torch.cuda.is_available(): torch_cuda_states = torch.cuda.get_rng_state_all() torch.cuda.manual_seed_all(seed) if set_tensorflow and config.TF_AVAILABLE: import tensorflow as tf > from tensorflow.python import context as tfpycontext E ImportError: cannot import name 'context' from 'tensorflow.python' (/opt/hostedtoolcache/Python/3.10.13/x64/lib/python3.10/site-packages/tensorflow/python/__init__.py) /opt/hostedtoolcache/Python/3.10.13/x64/lib/python3.10/site-packages/datasets/utils/py_utils.py:257: ImportError ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6263/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6263/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6262
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6262/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6262/comments
https://api.github.com/repos/huggingface/datasets/issues/6262/events
https://github.com/huggingface/datasets/pull/6262
1,914,895,459
PR_kwDODunzps5bTh6H
6,262
Fix CI 404 errors
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008220 / 0.011353 (-0.003133) | 0.005560 / 0.011008 (-0.005448) | 0.100147 / 0.038508 (0.061639) | 0.070106 / 0.023109 (0.046996) | 0.411906 / 0.275898 (0.136008) | 0.432825 / 0.323480 (0.109345) | 0.004795 / 0.007986 (-0.003190) | 0.004094 / 0.004328 (-0.000235) | 0.075719 / 0.004250 (0.071468) | 0.067426 / 0.037052 (0.030374) | 0.428531 / 0.258489 (0.170042) | 0.437114 / 0.293841 (0.143273) | 0.045603 / 0.128546 (-0.082943) | 0.013333 / 0.075646 (-0.062313) | 0.353137 / 0.419271 (-0.066134) | 0.067902 / 0.043533 (0.024369) | 0.396633 / 0.255139 (0.141494) | 0.399185 / 0.283200 (0.115985) | 0.036377 / 0.141683 (-0.105306) | 1.624249 / 1.452155 (0.172094) | 1.792575 / 1.492716 (0.299859) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.315847 / 0.018006 (0.297840) | 0.595009 / 0.000490 (0.594519) | 0.018876 / 0.000200 (0.018676) | 0.000613 / 0.000054 (0.000558) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029886 / 0.037411 (-0.007526) | 0.085765 / 0.014526 (0.071239) | 0.108680 / 0.176557 (-0.067877) | 0.174588 / 0.737135 (-0.562548) | 0.104494 / 0.296338 (-0.191844) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.594429 / 0.215209 (0.379220) | 5.912352 / 2.077655 (3.834698) | 2.408501 / 1.504120 (0.904381) | 2.050914 / 1.541195 (0.509720) | 2.199349 / 1.468490 (0.730859) | 0.813797 / 4.584777 (-3.770980) | 5.169577 / 3.745712 (1.423864) | 4.653951 / 5.269862 (-0.615911) | 2.805423 / 4.565676 (-1.760253) | 0.092278 / 0.424275 (-0.331997) | 0.007394 / 0.007607 (-0.000213) | 0.684029 / 0.226044 (0.457985) | 6.964260 / 2.268929 (4.695331) | 3.108408 / 55.444624 (-52.336217) | 2.470907 / 6.876477 (-4.405569) | 2.460153 / 2.142072 (0.318081) | 0.986445 / 4.805227 (-3.818782) | 0.213069 / 6.500664 (-6.287596) | 0.074061 / 0.075469 (-0.001408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.590732 / 1.841788 (-0.251056) | 23.736918 / 8.074308 (15.662609) | 21.223910 / 10.191392 (11.032518) | 0.236173 / 0.680424 (-0.444251) | 0.030056 / 0.534201 (-0.504145) | 0.489461 / 0.579283 (-0.089822) | 0.607582 / 0.434364 (0.173218) | 0.539889 / 0.540337 (-0.000449) | 0.817942 / 1.386936 (-0.568994) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008042 / 0.011353 (-0.003311) | 0.004836 / 0.011008 (-0.006173) | 0.075434 / 0.038508 (0.036926) | 0.080818 / 0.023109 (0.057709) | 0.474797 / 0.275898 (0.198899) | 0.526168 / 0.323480 (0.202689) | 0.006463 / 0.007986 (-0.001522) | 0.004031 / 0.004328 (-0.000297) | 0.074141 / 0.004250 (0.069891) | 0.068265 / 0.037052 (0.031212) | 0.562550 / 0.258489 (0.304061) | 0.544820 / 0.293841 (0.250979) | 0.047263 / 0.128546 (-0.081283) | 0.014113 / 0.075646 (-0.061534) | 0.086061 / 0.419271 (-0.333210) | 0.062475 / 0.043533 (0.018942) | 0.479912 / 0.255139 (0.224773) | 0.494784 / 0.283200 (0.211584) | 0.035847 / 0.141683 (-0.105836) | 1.726452 / 1.452155 (0.274297) | 1.770113 / 1.492716 (0.277396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286713 / 0.018006 (0.268707) | 0.609704 / 0.000490 (0.609214) | 0.009342 / 0.000200 (0.009143) | 0.000134 / 0.000054 (0.000080) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035137 / 0.037411 (-0.002275) | 0.099331 / 0.014526 (0.084805) | 0.108971 / 0.176557 (-0.067586) | 0.170952 / 0.737135 (-0.566183) | 0.111736 / 0.296338 (-0.184603) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.617434 / 0.215209 (0.402225) | 6.204351 / 2.077655 (4.126697) | 2.854347 / 1.504120 (1.350227) | 2.557424 / 1.541195 (1.016229) | 2.638173 / 1.468490 (1.169683) | 0.854234 / 4.584777 (-3.730543) | 5.383288 / 3.745712 (1.637576) | 4.698098 / 5.269862 (-0.571763) | 2.903860 / 4.565676 (-1.661817) | 0.094689 / 0.424275 (-0.329586) | 0.007892 / 0.007607 (0.000285) | 0.729420 / 0.226044 (0.503376) | 7.356691 / 2.268929 (5.087763) | 3.708039 / 55.444624 (-51.736585) | 2.979734 / 6.876477 (-3.896743) | 2.978983 / 2.142072 (0.836911) | 1.040554 / 4.805227 (-3.764673) | 0.211246 / 6.500664 (-6.289418) | 0.079880 / 0.075469 (0.004411) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.676057 / 1.841788 (-0.165731) | 23.428443 / 8.074308 (15.354135) | 21.016293 / 10.191392 (10.824901) | 0.260927 / 0.680424 (-0.419497) | 0.030689 / 0.534201 (-0.503512) | 0.495652 / 0.579283 (-0.083632) | 0.622976 / 0.434364 (0.188612) | 0.561175 / 0.540337 (0.020837) | 0.786733 / 1.386936 (-0.600203) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fb621b9630a69643255d25f192fdb011935122b1 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005942 / 0.011353 (-0.005410) | 0.003706 / 0.011008 (-0.007302) | 0.081002 / 0.038508 (0.042493) | 0.056854 / 0.023109 (0.033745) | 0.358668 / 0.275898 (0.082770) | 0.369718 / 0.323480 (0.046238) | 0.005202 / 0.007986 (-0.002784) | 0.002841 / 0.004328 (-0.001487) | 0.062976 / 0.004250 (0.058726) | 0.051308 / 0.037052 (0.014255) | 0.373636 / 0.258489 (0.115147) | 0.390480 / 0.293841 (0.096639) | 0.027480 / 0.128546 (-0.101067) | 0.007960 / 0.075646 (-0.067686) | 0.262719 / 0.419271 (-0.156552) | 0.046488 / 0.043533 (0.002955) | 0.347299 / 0.255139 (0.092160) | 0.393448 / 0.283200 (0.110249) | 0.019445 / 0.141683 (-0.122238) | 1.431314 / 1.452155 (-0.020841) | 1.495578 / 1.492716 (0.002862) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223724 / 0.018006 (0.205718) | 0.416929 / 0.000490 (0.416440) | 0.005253 / 0.000200 (0.005053) | 0.000217 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023571 / 0.037411 (-0.013841) | 0.073503 / 0.014526 (0.058978) | 0.081366 / 0.176557 (-0.095190) | 0.142716 / 0.737135 (-0.594420) | 0.082612 / 0.296338 (-0.213727) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407319 / 0.215209 (0.192109) | 4.141404 / 2.077655 (2.063749) | 1.910842 / 1.504120 (0.406722) | 1.731694 / 1.541195 (0.190499) | 1.805228 / 1.468490 (0.336738) | 0.497109 / 4.584777 (-4.087668) | 3.107624 / 3.745712 (-0.638088) | 2.890687 / 5.269862 (-2.379174) | 1.795913 / 4.565676 (-2.769763) | 0.057099 / 0.424275 (-0.367176) | 0.006414 / 0.007607 (-0.001194) | 0.482127 / 0.226044 (0.256083) | 4.835158 / 2.268929 (2.566229) | 2.368909 / 55.444624 (-53.075715) | 2.001608 / 6.876477 (-4.874868) | 2.004492 / 2.142072 (-0.137580) | 0.579910 / 4.805227 (-4.225317) | 0.123541 / 6.500664 (-6.377123) | 0.059651 / 0.075469 (-0.015818) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.242364 / 1.841788 (-0.599424) | 16.982676 / 8.074308 (8.908368) | 13.718885 / 10.191392 (3.527493) | 0.132759 / 0.680424 (-0.547665) | 0.017012 / 0.534201 (-0.517189) | 0.333447 / 0.579283 (-0.245836) | 0.360149 / 0.434364 (-0.074215) | 0.385526 / 0.540337 (-0.154811) | 0.536915 / 1.386936 (-0.850021) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005946 / 0.011353 (-0.005407) | 0.003442 / 0.011008 (-0.007566) | 0.062595 / 0.038508 (0.024087) | 0.058699 / 0.023109 (0.035590) | 0.442626 / 0.275898 (0.166728) | 0.473773 / 0.323480 (0.150293) | 0.004622 / 0.007986 (-0.003364) | 0.002812 / 0.004328 (-0.001516) | 0.064099 / 0.004250 (0.059849) | 0.046784 / 0.037052 (0.009731) | 0.466049 / 0.258489 (0.207560) | 0.487912 / 0.293841 (0.194071) | 0.028372 / 0.128546 (-0.100174) | 0.007992 / 0.075646 (-0.067654) | 0.068151 / 0.419271 (-0.351120) | 0.041010 / 0.043533 (-0.002523) | 0.442331 / 0.255139 (0.187192) | 0.469686 / 0.283200 (0.186487) | 0.019694 / 0.141683 (-0.121989) | 1.467928 / 1.452155 (0.015774) | 1.525635 / 1.492716 (0.032918) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204459 / 0.018006 (0.186453) | 0.407766 / 0.000490 (0.407276) | 0.003898 / 0.000200 (0.003698) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025909 / 0.037411 (-0.011503) | 0.080341 / 0.014526 (0.065816) | 0.088231 / 0.176557 (-0.088325) | 0.144056 / 0.737135 (-0.593079) | 0.089769 / 0.296338 (-0.206569) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462876 / 0.215209 (0.247667) | 4.625983 / 2.077655 (2.548329) | 2.580079 / 1.504120 (1.075959) | 2.402792 / 1.541195 (0.861597) | 2.424982 / 1.468490 (0.956491) | 0.503654 / 4.584777 (-4.081123) | 3.178995 / 3.745712 (-0.566717) | 2.956126 / 5.269862 (-2.313735) | 1.847837 / 4.565676 (-2.717840) | 0.057964 / 0.424275 (-0.366311) | 0.006405 / 0.007607 (-0.001202) | 0.536036 / 0.226044 (0.309992) | 5.374416 / 2.268929 (3.105487) | 3.036440 / 55.444624 (-52.408184) | 2.682054 / 6.876477 (-4.194422) | 2.683462 / 2.142072 (0.541390) | 0.592751 / 4.805227 (-4.212477) | 0.124313 / 6.500664 (-6.376351) | 0.061127 / 0.075469 (-0.014342) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.383539 / 1.841788 (-0.458249) | 17.766221 / 8.074308 (9.691913) | 15.306600 / 10.191392 (5.115208) | 0.145035 / 0.680424 (-0.535389) | 0.018078 / 0.534201 (-0.516123) | 0.330102 / 0.579283 (-0.249181) | 0.375380 / 0.434364 (-0.058984) | 0.388531 / 0.540337 (-0.151807) | 0.548720 / 1.386936 (-0.838216) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0082342ac792a05f4a615e4985d1c791e155115a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006757 / 0.011353 (-0.004596) | 0.004110 / 0.011008 (-0.006898) | 0.084727 / 0.038508 (0.046219) | 0.074328 / 0.023109 (0.051219) | 0.310467 / 0.275898 (0.034569) | 0.343209 / 0.323480 (0.019729) | 0.004228 / 0.007986 (-0.003757) | 0.003400 / 0.004328 (-0.000929) | 0.065546 / 0.004250 (0.061296) | 0.063057 / 0.037052 (0.026005) | 0.315023 / 0.258489 (0.056534) | 0.356395 / 0.293841 (0.062554) | 0.031959 / 0.128546 (-0.096588) | 0.008577 / 0.075646 (-0.067069) | 0.289075 / 0.419271 (-0.130196) | 0.055011 / 0.043533 (0.011478) | 0.308861 / 0.255139 (0.053722) | 0.328691 / 0.283200 (0.045491) | 0.027037 / 0.141683 (-0.114646) | 1.464314 / 1.452155 (0.012159) | 1.549644 / 1.492716 (0.056927) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238330 / 0.018006 (0.220324) | 0.451570 / 0.000490 (0.451080) | 0.010873 / 0.000200 (0.010673) | 0.000341 / 0.000054 (0.000286) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029909 / 0.037411 (-0.007503) | 0.085222 / 0.014526 (0.070696) | 0.100180 / 0.176557 (-0.076377) | 0.154842 / 0.737135 (-0.582293) | 0.099253 / 0.296338 (-0.197086) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401603 / 0.215209 (0.186394) | 4.009781 / 2.077655 (1.932126) | 2.021807 / 1.504120 (0.517687) | 1.861017 / 1.541195 (0.319822) | 2.009072 / 1.468490 (0.540582) | 0.483798 / 4.584777 (-4.100979) | 3.580394 / 3.745712 (-0.165318) | 3.464587 / 5.269862 (-1.805275) | 2.018400 / 4.565676 (-2.547276) | 0.057134 / 0.424275 (-0.367141) | 0.007303 / 0.007607 (-0.000304) | 0.473627 / 0.226044 (0.247582) | 4.722634 / 2.268929 (2.453706) | 2.490884 / 55.444624 (-52.953741) | 2.121568 / 6.876477 (-4.754909) | 2.200699 / 2.142072 (0.058626) | 0.576728 / 4.805227 (-4.228499) | 0.135633 / 6.500664 (-6.365032) | 0.061625 / 0.075469 (-0.013844) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250545 / 1.841788 (-0.591243) | 19.167642 / 8.074308 (11.093334) | 14.189891 / 10.191392 (3.998499) | 0.164552 / 0.680424 (-0.515872) | 0.018215 / 0.534201 (-0.515986) | 0.389962 / 0.579283 (-0.189321) | 0.413972 / 0.434364 (-0.020392) | 0.460253 / 0.540337 (-0.080085) | 0.647897 / 1.386936 (-0.739039) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006714 / 0.011353 (-0.004639) | 0.004081 / 0.011008 (-0.006927) | 0.065627 / 0.038508 (0.027119) | 0.077644 / 0.023109 (0.054535) | 0.409950 / 0.275898 (0.134052) | 0.442940 / 0.323480 (0.119460) | 0.005523 / 0.007986 (-0.002463) | 0.003366 / 0.004328 (-0.000962) | 0.065425 / 0.004250 (0.061174) | 0.056222 / 0.037052 (0.019169) | 0.429928 / 0.258489 (0.171439) | 0.457136 / 0.293841 (0.163296) | 0.032356 / 0.128546 (-0.096190) | 0.008676 / 0.075646 (-0.066970) | 0.071785 / 0.419271 (-0.347486) | 0.048458 / 0.043533 (0.004925) | 0.408003 / 0.255139 (0.152864) | 0.433529 / 0.283200 (0.150330) | 0.023232 / 0.141683 (-0.118450) | 1.483640 / 1.452155 (0.031485) | 1.552425 / 1.492716 (0.059709) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282347 / 0.018006 (0.264341) | 0.448742 / 0.000490 (0.448253) | 0.039590 / 0.000200 (0.039390) | 0.000407 / 0.000054 (0.000353) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032516 / 0.037411 (-0.004896) | 0.095269 / 0.014526 (0.080744) | 0.106363 / 0.176557 (-0.070193) | 0.157945 / 0.737135 (-0.579191) | 0.106783 / 0.296338 (-0.189556) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436334 / 0.215209 (0.221125) | 4.348147 / 2.077655 (2.270492) | 2.326830 / 1.504120 (0.822710) | 2.162586 / 1.541195 (0.621391) | 2.257769 / 1.468490 (0.789279) | 0.491677 / 4.584777 (-4.093099) | 3.707385 / 3.745712 (-0.038328) | 3.567147 / 5.269862 (-1.702715) | 2.099451 / 4.565676 (-2.466226) | 0.058486 / 0.424275 (-0.365789) | 0.007324 / 0.007607 (-0.000283) | 0.510962 / 0.226044 (0.284917) | 5.106550 / 2.268929 (2.837622) | 2.785723 / 55.444624 (-52.658901) | 2.452928 / 6.876477 (-4.423548) | 2.545034 / 2.142072 (0.402961) | 0.611124 / 4.805227 (-4.194103) | 0.133503 / 6.500664 (-6.367161) | 0.061118 / 0.075469 (-0.014351) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.386640 / 1.841788 (-0.455148) | 20.485670 / 8.074308 (12.411362) | 15.332223 / 10.191392 (5.140831) | 0.164070 / 0.680424 (-0.516354) | 0.019962 / 0.534201 (-0.514239) | 0.394217 / 0.579283 (-0.185066) | 0.428442 / 0.434364 (-0.005922) | 0.473784 / 0.540337 (-0.066553) | 0.665141 / 1.386936 (-0.721795) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c722eb75a6cc56eac530c44a17ff679ca805aa89 \"CML watermark\")\n", "The CI errors seem unrelated to this PR but I think they need further investigation in another PR.\r\n```\r\nFAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files - KeyError: 'url'\r\n```", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008766 / 0.011353 (-0.002587) | 0.005289 / 0.011008 (-0.005720) | 0.097220 / 0.038508 (0.058712) | 0.072246 / 0.023109 (0.049137) | 0.369359 / 0.275898 (0.093461) | 0.422571 / 0.323480 (0.099091) | 0.004941 / 0.007986 (-0.003044) | 0.006103 / 0.004328 (0.001774) | 0.075828 / 0.004250 (0.071578) | 0.065795 / 0.037052 (0.028743) | 0.412835 / 0.258489 (0.154346) | 0.430062 / 0.293841 (0.136221) | 0.045806 / 0.128546 (-0.082741) | 0.013760 / 0.075646 (-0.061887) | 0.351542 / 0.419271 (-0.067729) | 0.064836 / 0.043533 (0.021304) | 0.370162 / 0.255139 (0.115023) | 0.434949 / 0.283200 (0.151749) | 0.039198 / 0.141683 (-0.102485) | 1.670940 / 1.452155 (0.218785) | 1.809677 / 1.492716 (0.316961) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.295104 / 0.018006 (0.277097) | 0.594584 / 0.000490 (0.594095) | 0.010923 / 0.000200 (0.010723) | 0.000479 / 0.000054 (0.000425) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029174 / 0.037411 (-0.008237) | 0.094637 / 0.014526 (0.080111) | 0.102948 / 0.176557 (-0.073608) | 0.171048 / 0.737135 (-0.566087) | 0.111465 / 0.296338 (-0.184873) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.582017 / 0.215209 (0.366808) | 5.727008 / 2.077655 (3.649354) | 2.563211 / 1.504120 (1.059091) | 2.308912 / 1.541195 (0.767717) | 2.301258 / 1.468490 (0.832768) | 0.819594 / 4.584777 (-3.765183) | 5.177536 / 3.745712 (1.431824) | 4.473602 / 5.269862 (-0.796260) | 2.743819 / 4.565676 (-1.821857) | 0.090052 / 0.424275 (-0.334223) | 0.007903 / 0.007607 (0.000295) | 0.679142 / 0.226044 (0.453097) | 6.887891 / 2.268929 (4.618962) | 3.337926 / 55.444624 (-52.106699) | 2.659228 / 6.876477 (-4.217249) | 2.641289 / 2.142072 (0.499216) | 0.974829 / 4.805227 (-3.830398) | 0.205775 / 6.500664 (-6.294890) | 0.075268 / 0.075469 (-0.000201) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.500562 / 1.841788 (-0.341226) | 22.688483 / 8.074308 (14.614175) | 19.634878 / 10.191392 (9.443486) | 0.227409 / 0.680424 (-0.453015) | 0.029794 / 0.534201 (-0.504407) | 0.475204 / 0.579283 (-0.104079) | 0.579379 / 0.434364 (0.145016) | 0.541244 / 0.540337 (0.000907) | 0.739187 / 1.386936 (-0.647749) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008641 / 0.011353 (-0.002712) | 0.006139 / 0.011008 (-0.004870) | 0.075048 / 0.038508 (0.036540) | 0.074070 / 0.023109 (0.050961) | 0.508288 / 0.275898 (0.232390) | 0.539770 / 0.323480 (0.216290) | 0.006092 / 0.007986 (-0.001894) | 0.003748 / 0.004328 (-0.000581) | 0.077945 / 0.004250 (0.073695) | 0.056989 / 0.037052 (0.019936) | 0.526889 / 0.258489 (0.268400) | 0.560862 / 0.293841 (0.267021) | 0.046507 / 0.128546 (-0.082040) | 0.013249 / 0.075646 (-0.062397) | 0.088363 / 0.419271 (-0.330908) | 0.058776 / 0.043533 (0.015243) | 0.495869 / 0.255139 (0.240730) | 0.538615 / 0.283200 (0.255415) | 0.034055 / 0.141683 (-0.107628) | 1.658713 / 1.452155 (0.206558) | 1.736599 / 1.492716 (0.243883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288355 / 0.018006 (0.270349) | 0.571481 / 0.000490 (0.570991) | 0.006765 / 0.000200 (0.006565) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031836 / 0.037411 (-0.005575) | 0.101312 / 0.014526 (0.086786) | 0.111433 / 0.176557 (-0.065124) | 0.169599 / 0.737135 (-0.567536) | 0.114595 / 0.296338 (-0.181743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.645258 / 0.215209 (0.430049) | 6.446653 / 2.077655 (4.368998) | 2.983498 / 1.504120 (1.479379) | 2.573820 / 1.541195 (1.032625) | 2.624286 / 1.468490 (1.155796) | 0.815997 / 4.584777 (-3.768780) | 5.140248 / 3.745712 (1.394536) | 4.636915 / 5.269862 (-0.632947) | 2.866313 / 4.565676 (-1.699364) | 0.096643 / 0.424275 (-0.327633) | 0.008452 / 0.007607 (0.000845) | 0.765837 / 0.226044 (0.539793) | 7.622897 / 2.268929 (5.353968) | 3.796247 / 55.444624 (-51.648378) | 3.019349 / 6.876477 (-3.857128) | 3.034187 / 2.142072 (0.892115) | 1.001682 / 4.805227 (-3.803546) | 0.211841 / 6.500664 (-6.288823) | 0.073351 / 0.075469 (-0.002119) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.740254 / 1.841788 (-0.101534) | 23.465619 / 8.074308 (15.391311) | 21.651670 / 10.191392 (11.460278) | 0.226129 / 0.680424 (-0.454294) | 0.029611 / 0.534201 (-0.504590) | 0.441140 / 0.579283 (-0.138143) | 0.605591 / 0.434364 (0.171227) | 0.552427 / 0.540337 (0.012090) | 0.771975 / 1.386936 (-0.614961) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef5751522c424c758df0647ff9a449b8b0404b6a \"CML watermark\")\n", "> The CI errors seem unrelated to this PR but I think they need further investigation in another PR.\r\n> \r\n> ```\r\n> FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files - KeyError: 'url'\r\n> ```\r\n\r\nWe need to wait for `huggingface_hub`'s next release to fix this (see https://github.com/huggingface/huggingface_hub/pull/1675; 409 error is currently ignored, hence the `KeyError`)\r\n\r\nAlso, we should be able to fix `test_push_dataset_dict_to_hub_overwrite_files` by inserting `gc.collect()` (to drop the \"reference\" to an Arrow file) between the `load_dataset` calls to avoid the `PermissionError` (also reported in https://github.com/huggingface/datasets/issues/3139)\r\n\r\n(Indeed, this can be addressed in subsequent PRs.)\r\n\r\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008988 / 0.011353 (-0.002365) | 0.005270 / 0.011008 (-0.005738) | 0.114577 / 0.038508 (0.076068) | 0.091630 / 0.023109 (0.068521) | 0.409217 / 0.275898 (0.133319) | 0.440903 / 0.323480 (0.117424) | 0.005226 / 0.007986 (-0.002760) | 0.004289 / 0.004328 (-0.000040) | 0.082246 / 0.004250 (0.077995) | 0.084926 / 0.037052 (0.047873) | 0.407822 / 0.258489 (0.149333) | 0.440891 / 0.293841 (0.147051) | 0.052225 / 0.128546 (-0.076321) | 0.014218 / 0.075646 (-0.061429) | 0.436994 / 0.419271 (0.017722) | 0.066433 / 0.043533 (0.022901) | 0.413909 / 0.255139 (0.158770) | 0.425729 / 0.283200 (0.142530) | 0.039576 / 0.141683 (-0.102107) | 1.905604 / 1.452155 (0.453449) | 1.907032 / 1.492716 (0.414315) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313662 / 0.018006 (0.295655) | 0.614541 / 0.000490 (0.614051) | 0.015631 / 0.000200 (0.015431) | 0.000507 / 0.000054 (0.000453) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029049 / 0.037411 (-0.008362) | 0.094626 / 0.014526 (0.080100) | 0.104718 / 0.176557 (-0.071838) | 0.187346 / 0.737135 (-0.549790) | 0.108001 / 0.296338 (-0.188337) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578997 / 0.215209 (0.363788) | 5.815546 / 2.077655 (3.737892) | 2.411301 / 1.504120 (0.907181) | 2.110088 / 1.541195 (0.568893) | 2.147839 / 1.468490 (0.679349) | 0.861285 / 4.584777 (-3.723492) | 5.264245 / 3.745712 (1.518533) | 4.695786 / 5.269862 (-0.574076) | 2.867522 / 4.565676 (-1.698154) | 0.096523 / 0.424275 (-0.327752) | 0.008777 / 0.007607 (0.001170) | 0.716316 / 0.226044 (0.490272) | 7.257574 / 2.268929 (4.988645) | 3.141502 / 55.444624 (-52.303123) | 2.480604 / 6.876477 (-4.395872) | 2.530031 / 2.142072 (0.387958) | 1.054274 / 4.805227 (-3.750953) | 0.210781 / 6.500664 (-6.289883) | 0.073837 / 0.075469 (-0.001632) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.607689 / 1.841788 (-0.234099) | 23.856780 / 8.074308 (15.782472) | 19.507196 / 10.191392 (9.315804) | 0.232712 / 0.680424 (-0.447712) | 0.027037 / 0.534201 (-0.507164) | 0.466613 / 0.579283 (-0.112670) | 0.571139 / 0.434364 (0.136775) | 0.543109 / 0.540337 (0.002771) | 0.785558 / 1.386936 (-0.601378) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008104 / 0.011353 (-0.003249) | 0.004923 / 0.011008 (-0.006086) | 0.075093 / 0.038508 (0.036585) | 0.075218 / 0.023109 (0.052109) | 0.476615 / 0.275898 (0.200717) | 0.506984 / 0.323480 (0.183504) | 0.006371 / 0.007986 (-0.001614) | 0.004818 / 0.004328 (0.000489) | 0.075634 / 0.004250 (0.071383) | 0.059513 / 0.037052 (0.022461) | 0.523763 / 0.258489 (0.265274) | 0.531858 / 0.293841 (0.238017) | 0.048168 / 0.128546 (-0.080379) | 0.014110 / 0.075646 (-0.061537) | 0.086052 / 0.419271 (-0.333219) | 0.058369 / 0.043533 (0.014836) | 0.475537 / 0.255139 (0.220398) | 0.509429 / 0.283200 (0.226229) | 0.033924 / 0.141683 (-0.107758) | 1.657490 / 1.452155 (0.205336) | 1.762544 / 1.492716 (0.269828) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263863 / 0.018006 (0.245857) | 0.584468 / 0.000490 (0.583978) | 0.007063 / 0.000200 (0.006863) | 0.000181 / 0.000054 (0.000126) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032229 / 0.037411 (-0.005183) | 0.096750 / 0.014526 (0.082224) | 0.117798 / 0.176557 (-0.058758) | 0.173376 / 0.737135 (-0.563760) | 0.117241 / 0.296338 (-0.179098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.701935 / 0.215209 (0.486726) | 6.544655 / 2.077655 (4.467001) | 3.055531 / 1.504120 (1.551411) | 2.896339 / 1.541195 (1.355144) | 3.013157 / 1.468490 (1.544667) | 0.852989 / 4.584777 (-3.731788) | 5.399355 / 3.745712 (1.653643) | 5.119811 / 5.269862 (-0.150051) | 3.167269 / 4.565676 (-1.398407) | 0.096962 / 0.424275 (-0.327313) | 0.008843 / 0.007607 (0.001236) | 0.776170 / 0.226044 (0.550125) | 7.735093 / 2.268929 (5.466164) | 3.792629 / 55.444624 (-51.651996) | 3.249911 / 6.876477 (-3.626565) | 3.235590 / 2.142072 (1.093517) | 1.046426 / 4.805227 (-3.758801) | 0.239854 / 6.500664 (-6.260810) | 0.100648 / 0.075469 (0.025179) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.774488 / 1.841788 (-0.067300) | 25.646958 / 8.074308 (17.572650) | 23.181577 / 10.191392 (12.990185) | 0.231948 / 0.680424 (-0.448476) | 0.030147 / 0.534201 (-0.504054) | 0.464161 / 0.579283 (-0.115122) | 0.598980 / 0.434364 (0.164616) | 0.571156 / 0.540337 (0.030819) | 0.833221 / 1.386936 (-0.553715) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ad876e8908188dcd56759a35c4da182bf121535a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006010 / 0.011353 (-0.005343) | 0.003662 / 0.011008 (-0.007346) | 0.079971 / 0.038508 (0.041463) | 0.066790 / 0.023109 (0.043681) | 0.311387 / 0.275898 (0.035489) | 0.346781 / 0.323480 (0.023301) | 0.003500 / 0.007986 (-0.004485) | 0.002831 / 0.004328 (-0.001498) | 0.063238 / 0.004250 (0.058988) | 0.056163 / 0.037052 (0.019110) | 0.317456 / 0.258489 (0.058967) | 0.356106 / 0.293841 (0.062265) | 0.027358 / 0.128546 (-0.101188) | 0.007906 / 0.075646 (-0.067741) | 0.261779 / 0.419271 (-0.157492) | 0.046385 / 0.043533 (0.002852) | 0.312587 / 0.255139 (0.057448) | 0.339513 / 0.283200 (0.056314) | 0.021474 / 0.141683 (-0.120209) | 1.418637 / 1.452155 (-0.033518) | 1.510257 / 1.492716 (0.017540) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211761 / 0.018006 (0.193755) | 0.424387 / 0.000490 (0.423898) | 0.002579 / 0.000200 (0.002379) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024038 / 0.037411 (-0.013374) | 0.072524 / 0.014526 (0.057998) | 0.083443 / 0.176557 (-0.093113) | 0.144835 / 0.737135 (-0.592300) | 0.084754 / 0.296338 (-0.211585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.392423 / 0.215209 (0.177214) | 3.927220 / 2.077655 (1.849565) | 1.877853 / 1.504120 (0.373733) | 1.699275 / 1.541195 (0.158081) | 1.793144 / 1.468490 (0.324654) | 0.503809 / 4.584777 (-4.080968) | 3.052569 / 3.745712 (-0.693143) | 2.907432 / 5.269862 (-2.362429) | 1.811220 / 4.565676 (-2.754457) | 0.057249 / 0.424275 (-0.367026) | 0.006433 / 0.007607 (-0.001174) | 0.463257 / 0.226044 (0.237213) | 4.631038 / 2.268929 (2.362109) | 2.315870 / 55.444624 (-53.128754) | 2.000476 / 6.876477 (-4.876001) | 2.043581 / 2.142072 (-0.098492) | 0.588911 / 4.805227 (-4.216317) | 0.125370 / 6.500664 (-6.375295) | 0.061721 / 0.075469 (-0.013748) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244486 / 1.841788 (-0.597301) | 17.862422 / 8.074308 (9.788114) | 13.890205 / 10.191392 (3.698813) | 0.145467 / 0.680424 (-0.534957) | 0.016856 / 0.534201 (-0.517345) | 0.329357 / 0.579283 (-0.249926) | 0.367550 / 0.434364 (-0.066814) | 0.377541 / 0.540337 (-0.162796) | 0.534087 / 1.386936 (-0.852849) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006030 / 0.011353 (-0.005323) | 0.003650 / 0.011008 (-0.007359) | 0.063300 / 0.038508 (0.024792) | 0.058877 / 0.023109 (0.035767) | 0.454662 / 0.275898 (0.178764) | 0.489362 / 0.323480 (0.165882) | 0.004856 / 0.007986 (-0.003130) | 0.002909 / 0.004328 (-0.001420) | 0.063356 / 0.004250 (0.059105) | 0.047867 / 0.037052 (0.010814) | 0.465461 / 0.258489 (0.206972) | 0.506684 / 0.293841 (0.212843) | 0.028599 / 0.128546 (-0.099947) | 0.008076 / 0.075646 (-0.067570) | 0.068695 / 0.419271 (-0.350576) | 0.041487 / 0.043533 (-0.002045) | 0.448676 / 0.255139 (0.193537) | 0.471206 / 0.283200 (0.188007) | 0.020401 / 0.141683 (-0.121282) | 1.461181 / 1.452155 (0.009026) | 1.517079 / 1.492716 (0.024363) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222827 / 0.018006 (0.204821) | 0.425074 / 0.000490 (0.424585) | 0.004153 / 0.000200 (0.003953) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026980 / 0.037411 (-0.010431) | 0.080786 / 0.014526 (0.066260) | 0.092040 / 0.176557 (-0.084517) | 0.146082 / 0.737135 (-0.591053) | 0.092739 / 0.296338 (-0.203600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461663 / 0.215209 (0.246454) | 4.604828 / 2.077655 (2.527173) | 2.566926 / 1.504120 (1.062806) | 2.394419 / 1.541195 (0.853224) | 2.458375 / 1.468490 (0.989885) | 0.505140 / 4.584777 (-4.079637) | 3.155916 / 3.745712 (-0.589796) | 3.014474 / 5.269862 (-2.255388) | 1.900296 / 4.565676 (-2.665380) | 0.058063 / 0.424275 (-0.366212) | 0.006409 / 0.007607 (-0.001198) | 0.541165 / 0.226044 (0.315120) | 5.410700 / 2.268929 (3.141772) | 3.010239 / 55.444624 (-52.434386) | 2.668103 / 6.876477 (-4.208373) | 2.730418 / 2.142072 (0.588346) | 0.603471 / 4.805227 (-4.201756) | 0.129852 / 6.500664 (-6.370812) | 0.061507 / 0.075469 (-0.013962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.355272 / 1.841788 (-0.486516) | 18.170088 / 8.074308 (10.095780) | 15.583855 / 10.191392 (5.392463) | 0.146246 / 0.680424 (-0.534178) | 0.018093 / 0.534201 (-0.516108) | 0.331695 / 0.579283 (-0.247588) | 0.380845 / 0.434364 (-0.053519) | 0.388564 / 0.540337 (-0.151774) | 0.551465 / 1.386936 (-0.835471) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#afc3c2b034481a3502f5476186a110cf8613a248 \"CML watermark\")\n" ]
2023-09-27T07:40:18
2023-09-28T15:39:16
2023-09-28T15:30:40
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6262", "html_url": "https://github.com/huggingface/datasets/pull/6262", "diff_url": "https://github.com/huggingface/datasets/pull/6262.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6262.patch", "merged_at": "2023-09-28T15:30:40" }
Currently our CI usually raises 404 errors when trying to delete temporary repositories. See, e.g.: https://github.com/huggingface/datasets/actions/runs/6314980985/job/17146507884 ``` FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files_with_max_shard_size - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fb99-4a52c561752ece3d77eb6d57;2b61cae4-613d-4a73-bbb1-2faf9e32b02d) Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_to_hub_custom_features_audio - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fbb2-0333dd666d42f0e173c2bb68;dfdc4271-b49b-4008-8c49-f05cf7c1d53d) Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_custom_splits - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fbca-167690694f39770a5b3a444e;baeaa905-0a57-4585-ac97-9aaae12dd47d) Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. ``` I think this can be caused by collisions in temporary repository IDs because we create them in multiprocessing: ```python with temporary_repo(f"{CI_HUB_USER}/test-{int(time.time() * 10e3)}") as ds_name: ``` This can also be caused when there is another issue that does not allow the creation of the repository, thus making it impossible to delete it. This PR tries to fix this issue by increasing the precision of the number on the repository ID: `10e6` instead of `10e3`. Additionally, this PR catches RepositoryNotFoundError.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6262/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6262/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6261
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6261/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6261/comments
https://api.github.com/repos/huggingface/datasets/issues/6261/events
https://github.com/huggingface/datasets/issues/6261
1,913,813,178
I_kwDODunzps5yEni6
6,261
Can't load a dataset
{ "login": "joaopedrosdmm", "id": 37955817, "node_id": "MDQ6VXNlcjM3OTU1ODE3", "avatar_url": "https://avatars.githubusercontent.com/u/37955817?v=4", "gravatar_id": "", "url": "https://api.github.com/users/joaopedrosdmm", "html_url": "https://github.com/joaopedrosdmm", "followers_url": "https://api.github.com/users/joaopedrosdmm/followers", "following_url": "https://api.github.com/users/joaopedrosdmm/following{/other_user}", "gists_url": "https://api.github.com/users/joaopedrosdmm/gists{/gist_id}", "starred_url": "https://api.github.com/users/joaopedrosdmm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/joaopedrosdmm/subscriptions", "organizations_url": "https://api.github.com/users/joaopedrosdmm/orgs", "repos_url": "https://api.github.com/users/joaopedrosdmm/repos", "events_url": "https://api.github.com/users/joaopedrosdmm/events{/privacy}", "received_events_url": "https://api.github.com/users/joaopedrosdmm/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "I believe is due to the fact that doesn't work with .tgz files.", "`JourneyDB/JourneyDB` is a gated dataset, so this error means you are not authenticated to access it, either by using an invalid token or by not agreeing to the terms in the dialog on the dataset page.\r\n\r\n> I believe is due to the fact that doesn't work with .tgz files.\r\n\r\nIndeed, the dataset's data files structure is not supported natively by `datasets`. To load it, one option is to clone the repo (or download it with `huggingface_hub.snapshot_download`) and use `Dataset.from_generator` to process the files.", "> JourneyDB/JourneyDB is a gated dataset, so this error means you are not authenticated to access it, either by using an invalid token or by not agreeing to the terms in the dialog on the dataset page.´\r\n\r\nI did authentication with:\r\n\r\n```\r\nfrom huggingface_hub import notebook_login\r\nnotebook_login()\r\n```\r\n\r\nIsn't that the correct way to do it?\r\n\r\n> Indeed, the dataset's data files structure is not supported natively by datasets. To load it, one option is to clone the repo (or download it with huggingface_hub.snapshot_download) and use Dataset.from_generator to process the files.\r\n\r\nGreat suggestion I will give it a try.", "Have you accepted the terms in the dialog [here](https://huggingface.co/datasets/JourneyDB/JourneyDB)?\r\n\r\nIIRC Kaggle preinstalls an outdated `datasets` version, so it's also a good idea to update it before importing `datasets` (and do the same for `huggingface_hub`)", "Sorry for the late reply. Yes, I did. Thanks for the tip!" ]
2023-09-26T15:46:25
2023-10-05T10:23:23
2023-10-05T10:23:22
NONE
null
null
### Describe the bug Can't seem to load the JourneyDB dataset. It throws the following error: ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) Cell In[15], line 2 1 # If the dataset is gated/private, make sure you have run huggingface-cli login ----> 2 dataset = load_dataset("JourneyDB/JourneyDB", data_files="data", use_auth_token=True) File /opt/conda/lib/python3.10/site-packages/datasets/load.py:1664, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs) 1661 ignore_verifications = ignore_verifications or save_infos 1663 # Create a dataset builder -> 1664 builder_instance = load_dataset_builder( 1665 path=path, 1666 name=name, 1667 data_dir=data_dir, 1668 data_files=data_files, 1669 cache_dir=cache_dir, 1670 features=features, 1671 download_config=download_config, 1672 download_mode=download_mode, 1673 revision=revision, 1674 use_auth_token=use_auth_token, 1675 **config_kwargs, 1676 ) 1678 # Return iterable dataset in case of streaming 1679 if streaming: File /opt/conda/lib/python3.10/site-packages/datasets/load.py:1490, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, **config_kwargs) 1488 download_config = download_config.copy() if download_config else DownloadConfig() 1489 download_config.use_auth_token = use_auth_token -> 1490 dataset_module = dataset_module_factory( 1491 path, 1492 revision=revision, 1493 download_config=download_config, 1494 download_mode=download_mode, 1495 data_dir=data_dir, 1496 data_files=data_files, 1497 ) 1499 # Get dataset builder class from the processing script 1500 builder_cls = import_main_class(dataset_module.module_path) File /opt/conda/lib/python3.10/site-packages/datasets/load.py:1238, in dataset_module_factory(path, revision, download_config, download_mode, force_local_path, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1236 raise ConnectionError(f"Couln't reach the Hugging Face Hub for dataset '{path}': {e1}") from None 1237 if isinstance(e1, FileNotFoundError): -> 1238 raise FileNotFoundError( 1239 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " 1240 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" 1241 ) from None 1242 raise e1 from None 1243 else: FileNotFoundError: Couldn't find a dataset script at /kaggle/working/JourneyDB/JourneyDB/JourneyDB.py or any data file in the same directory. Couldn't find 'JourneyDB/JourneyDB' on the Hugging Face Hub either: FileNotFoundError: Unable to find data in dataset repository JourneyDB/JourneyDB with any supported extension ['csv', 'tsv', 'json', 'jsonl', 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'grib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', 'mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', 'emf', 'xbm', 'xpm', 'zip'] ``` ### Steps to reproduce the bug 1) ``` from huggingface_hub import notebook_login notebook_login() ``` 2) ``` !pip install -q datasets from datasets import load_dataset ``` 3) `dataset = load_dataset("JourneyDB/JourneyDB", data_files="data", use_auth_token=True)` ### Expected behavior Load the dataset ### Environment info Notebook
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6261/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6261/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6260
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6260/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6260/comments
https://api.github.com/repos/huggingface/datasets/issues/6260/events
https://github.com/huggingface/datasets/issues/6260
1,912,593,466
I_kwDODunzps5x_9w6
6,260
REUSE_DATASET_IF_EXISTS don't work
{ "login": "rangehow", "id": 88258534, "node_id": "MDQ6VXNlcjg4MjU4NTM0", "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rangehow", "html_url": "https://github.com/rangehow", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "organizations_url": "https://api.github.com/users/rangehow/orgs", "repos_url": "https://api.github.com/users/rangehow/repos", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "received_events_url": "https://api.github.com/users/rangehow/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Hi! Unfortunately, the current behavior is to delete the downloaded data when this error happens. So, I've opened a PR that removes the problematic import to avoid losing data due to `apache_beam` not being installed (we host the preprocessed version of `natual_questions` on the HF GCS, so requiring `apache_beam` in that case doesn't make sense)", "Thanks for your reply. I met another question that I set `export HF_DATASETS_CACHE=/data/lxy/.cache` , but each time I run load_datasets, the datasets module still looking for NQ in the wrong default cache dir '/home/lxy/.cache' 。How to avoid this incorrect behavior. I am sure HF_DATASETS_CACHE was set correctly since I use echo & to check it.\r\n![image](https://github.com/huggingface/datasets/assets/88258534/e7029f27-b9f9-496c-8948-6234ef695646)\r\nby the way I delete the file in '/home/lxy/.cache' since I found there has some kb size file seems useless.", "You need to set this variable before the `datasets` import. Then, you can use `import datasets; datasets.config.HF_DATASETS_CACHE` to verify the cache location." ]
2023-09-26T03:02:16
2023-09-28T18:23:36
2023-09-28T18:23:36
NONE
null
null
### Describe the bug I use the following code to download natural_question dataset. Even though I have completely download it, the next time I run this code, the new download procedure will start and cover the original /data/lxy/NQ config=datasets.DownloadConfig(resume_download=True,max_retries=100,cache_dir=r'/data/lxy/NQ',download_desc='NQ') data=datasets.load_dataset('natural_questions',cache_dir=r'/data/lxy/NQ',download_config=config,download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS) --- Since I don't have apache_beam installed, it throw a exception. After I pip install apache_beam ,the download restart.. ![image](https://github.com/huggingface/datasets/assets/88258534/f28ce7fe-29ea-4348-b87f-e69182a8bd41) ### Steps to reproduce the bug run this two line code config=datasets.DownloadConfig(resume_download=True,max_retries=100,cache_dir=r'/data/lxy/NQ',download_desc='NQ') data=datasets.load_dataset('natural_questions',cache_dir=r'/data/lxy/NQ',download_config=config,download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS) ### Expected behavior Download behavior can be correctly follow DownloadMode ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-3.10.0-1160.88.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.9.17 - Huggingface_hub version: 0.16.4 - PyArrow version: 11.0.0 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6260/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6260/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6259
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6259/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6259/comments
https://api.github.com/repos/huggingface/datasets/issues/6259/events
https://github.com/huggingface/datasets/issues/6259
1,911,965,758
I_kwDODunzps5x9kg-
6,259
Duplicated Rows When Loading Parquet Files from Root Directory with Subdirectories
{ "login": "MF-FOOM", "id": 141304309, "node_id": "U_kgDOCGwh9Q", "avatar_url": "https://avatars.githubusercontent.com/u/141304309?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MF-FOOM", "html_url": "https://github.com/MF-FOOM", "followers_url": "https://api.github.com/users/MF-FOOM/followers", "following_url": "https://api.github.com/users/MF-FOOM/following{/other_user}", "gists_url": "https://api.github.com/users/MF-FOOM/gists{/gist_id}", "starred_url": "https://api.github.com/users/MF-FOOM/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MF-FOOM/subscriptions", "organizations_url": "https://api.github.com/users/MF-FOOM/orgs", "repos_url": "https://api.github.com/users/MF-FOOM/repos", "events_url": "https://api.github.com/users/MF-FOOM/events{/privacy}", "received_events_url": "https://api.github.com/users/MF-FOOM/received_events", "type": "User", "site_admin": false }
[]
open
false
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[ { "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false } ]
[ "Thanks for reporting this issue! We should be able to avoid this by making our `glob` patterns more precise. In the meantime, you can load the dataset by directly assigning splits to the data files: \r\n```python\r\nfrom datasets import load_dataset\r\nds = load_dataset(\"parquet\", data_files={\"train\": \"testing123/train/output_train.parquet\", \"validation\": \"testing123/val/output_val.parquet\"})\r\n```" ]
2023-09-25T17:20:54
2023-09-26T17:54:08
null
NONE
null
null
### Describe the bug When parquet files are saved in "train" and "val" subdirectories under a root directory, and datasets are then loaded using `load_dataset("parquet", data_dir="root_directory")`, the resulting dataset has duplicated rows for both the training and validation sets. ### Steps to reproduce the bug 1. Create a root directory, e.g., "testing123". 2. Under "testing123", create two subdirectories: "train" and "val". 3. Create and save a parquet file with 3 unique rows in the "train" subdirectory. 4. Create and save a parquet file with 4 unique rows in the "val" subdirectory. 5. Load the datasets from the root directory using `load_dataset("parquet", data_dir="testing123")` 6. Iterate through the datasets and print the rows Here's a collab reproducing these steps: https://colab.research.google.com/drive/11NEdImnQ3OqJlwKSHRMhr7jCBesNdLY4?usp=sharing ### Expected behavior - Training set should contain 3 unique rows. - Validation set should contain 4 unique rows. ### Environment info - `datasets` version: 2.14.5 - Platform: Linux-5.15.120+-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.17.2 - PyArrow version: 9.0.0 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6259/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6259/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6258
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6258/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6258/comments
https://api.github.com/repos/huggingface/datasets/issues/6258/events
https://github.com/huggingface/datasets/pull/6258
1,911,445,373
PR_kwDODunzps5bHxHl
6,258
[DOCS] Fix typo: Elasticsearch
{ "login": "leemthompo", "id": 32779855, "node_id": "MDQ6VXNlcjMyNzc5ODU1", "avatar_url": "https://avatars.githubusercontent.com/u/32779855?v=4", "gravatar_id": "", "url": "https://api.github.com/users/leemthompo", "html_url": "https://github.com/leemthompo", "followers_url": "https://api.github.com/users/leemthompo/followers", "following_url": "https://api.github.com/users/leemthompo/following{/other_user}", "gists_url": "https://api.github.com/users/leemthompo/gists{/gist_id}", "starred_url": "https://api.github.com/users/leemthompo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/leemthompo/subscriptions", "organizations_url": "https://api.github.com/users/leemthompo/orgs", "repos_url": "https://api.github.com/users/leemthompo/repos", "events_url": "https://api.github.com/users/leemthompo/events{/privacy}", "received_events_url": "https://api.github.com/users/leemthompo/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006131 / 0.011353 (-0.005222) | 0.003682 / 0.011008 (-0.007327) | 0.081108 / 0.038508 (0.042600) | 0.061580 / 0.023109 (0.038471) | 0.395880 / 0.275898 (0.119982) | 0.427429 / 0.323480 (0.103949) | 0.003570 / 0.007986 (-0.004416) | 0.003874 / 0.004328 (-0.000455) | 0.063322 / 0.004250 (0.059072) | 0.049742 / 0.037052 (0.012690) | 0.396547 / 0.258489 (0.138058) | 0.434759 / 0.293841 (0.140918) | 0.028137 / 0.128546 (-0.100409) | 0.008103 / 0.075646 (-0.067544) | 0.262504 / 0.419271 (-0.156767) | 0.045944 / 0.043533 (0.002411) | 0.397659 / 0.255139 (0.142520) | 0.416479 / 0.283200 (0.133280) | 0.022870 / 0.141683 (-0.118813) | 1.478280 / 1.452155 (0.026126) | 1.543748 / 1.492716 (0.051031) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228851 / 0.018006 (0.210845) | 0.432845 / 0.000490 (0.432355) | 0.005922 / 0.000200 (0.005722) | 0.000227 / 0.000054 (0.000172) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025545 / 0.037411 (-0.011867) | 0.073506 / 0.014526 (0.058980) | 0.087622 / 0.176557 (-0.088935) | 0.145455 / 0.737135 (-0.591680) | 0.085236 / 0.296338 (-0.211102) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433083 / 0.215209 (0.217874) | 4.323121 / 2.077655 (2.245466) | 2.297947 / 1.504120 (0.793827) | 2.126405 / 1.541195 (0.585211) | 2.201635 / 1.468490 (0.733145) | 0.509902 / 4.584777 (-4.074875) | 3.116877 / 3.745712 (-0.628835) | 2.892949 / 5.269862 (-2.376912) | 1.866833 / 4.565676 (-2.698844) | 0.058087 / 0.424275 (-0.366189) | 0.006464 / 0.007607 (-0.001143) | 0.503594 / 0.226044 (0.277550) | 5.027634 / 2.268929 (2.758705) | 2.718030 / 55.444624 (-52.726595) | 2.373876 / 6.876477 (-4.502600) | 2.515496 / 2.142072 (0.373423) | 0.602648 / 4.805227 (-4.202579) | 0.126119 / 6.500664 (-6.374545) | 0.060623 / 0.075469 (-0.014846) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.236429 / 1.841788 (-0.605359) | 17.760532 / 8.074308 (9.686224) | 13.970093 / 10.191392 (3.778701) | 0.145455 / 0.680424 (-0.534969) | 0.017110 / 0.534201 (-0.517091) | 0.329649 / 0.579283 (-0.249634) | 0.366942 / 0.434364 (-0.067421) | 0.384418 / 0.540337 (-0.155920) | 0.552330 / 1.386936 (-0.834606) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006302 / 0.011353 (-0.005051) | 0.003677 / 0.011008 (-0.007331) | 0.062836 / 0.038508 (0.024328) | 0.063317 / 0.023109 (0.040207) | 0.449970 / 0.275898 (0.174072) | 0.480903 / 0.323480 (0.157423) | 0.005013 / 0.007986 (-0.002972) | 0.002934 / 0.004328 (-0.001394) | 0.062975 / 0.004250 (0.058724) | 0.051285 / 0.037052 (0.014233) | 0.448417 / 0.258489 (0.189928) | 0.486022 / 0.293841 (0.192181) | 0.029215 / 0.128546 (-0.099332) | 0.008189 / 0.075646 (-0.067457) | 0.068203 / 0.419271 (-0.351068) | 0.041942 / 0.043533 (-0.001591) | 0.445749 / 0.255139 (0.190610) | 0.465442 / 0.283200 (0.182243) | 0.020681 / 0.141683 (-0.121002) | 1.500704 / 1.452155 (0.048549) | 1.550511 / 1.492716 (0.057795) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224922 / 0.018006 (0.206915) | 0.419714 / 0.000490 (0.419224) | 0.003804 / 0.000200 (0.003604) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026924 / 0.037411 (-0.010487) | 0.082400 / 0.014526 (0.067874) | 0.092193 / 0.176557 (-0.084363) | 0.147045 / 0.737135 (-0.590090) | 0.093173 / 0.296338 (-0.203166) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462510 / 0.215209 (0.247300) | 4.635249 / 2.077655 (2.557594) | 2.627127 / 1.504120 (1.123007) | 2.442879 / 1.541195 (0.901684) | 2.502456 / 1.468490 (1.033966) | 0.506607 / 4.584777 (-4.078170) | 3.127348 / 3.745712 (-0.618364) | 2.901818 / 5.269862 (-2.368044) | 1.906876 / 4.565676 (-2.658801) | 0.058025 / 0.424275 (-0.366250) | 0.006442 / 0.007607 (-0.001165) | 0.534438 / 0.226044 (0.308394) | 5.352481 / 2.268929 (3.083553) | 3.058068 / 55.444624 (-52.386556) | 2.697310 / 6.876477 (-4.179167) | 2.873141 / 2.142072 (0.731069) | 0.594517 / 4.805227 (-4.210710) | 0.125369 / 6.500664 (-6.375295) | 0.061411 / 0.075469 (-0.014058) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369549 / 1.841788 (-0.472238) | 17.933507 / 8.074308 (9.859199) | 14.890107 / 10.191392 (4.698715) | 0.154398 / 0.680424 (-0.526026) | 0.018021 / 0.534201 (-0.516180) | 0.335163 / 0.579283 (-0.244120) | 0.350396 / 0.434364 (-0.083968) | 0.397694 / 0.540337 (-0.142643) | 0.554853 / 1.386936 (-0.832083) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f56fd9d6c877ffa6fb44fb832c13b61227c9cc5b \"CML watermark\")\n" ]
2023-09-25T12:50:59
2023-09-26T14:55:35
2023-09-26T13:36:40
CONTRIBUTOR
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6258", "html_url": "https://github.com/huggingface/datasets/pull/6258", "diff_url": "https://github.com/huggingface/datasets/pull/6258.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6258.patch", "merged_at": "2023-09-26T13:36:40" }
Not ElasticSearch :)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6258/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6258/timeline
null
true
https://api.github.com/repos/huggingface/datasets/issues/6257
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6257/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6257/comments
https://api.github.com/repos/huggingface/datasets/issues/6257/events
https://github.com/huggingface/datasets/issues/6257
1,910,741,044
I_kwDODunzps5x45g0
6,257
HfHubHTTPError - exceeded our hourly quotas for action: commit
{ "login": "yuvalkirstain", "id": 57996478, "node_id": "MDQ6VXNlcjU3OTk2NDc4", "avatar_url": "https://avatars.githubusercontent.com/u/57996478?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yuvalkirstain", "html_url": "https://github.com/yuvalkirstain", "followers_url": "https://api.github.com/users/yuvalkirstain/followers", "following_url": "https://api.github.com/users/yuvalkirstain/following{/other_user}", "gists_url": "https://api.github.com/users/yuvalkirstain/gists{/gist_id}", "starred_url": "https://api.github.com/users/yuvalkirstain/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yuvalkirstain/subscriptions", "organizations_url": "https://api.github.com/users/yuvalkirstain/orgs", "repos_url": "https://api.github.com/users/yuvalkirstain/repos", "events_url": "https://api.github.com/users/yuvalkirstain/events{/privacy}", "received_events_url": "https://api.github.com/users/yuvalkirstain/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "how is your dataset structured? (file types, how many commits and files are you trying to push, etc)", "I succeeded in uploading it after several attempts with an hour gap between each attempt (inconvenient but worked). The final dataset is [here](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2), code and context to the dataset can be found [here](https://github.com/yuvalkirstain/PickScore/).\r\nI can close the issue if this behavior is intended, as most users probably do not need to upload large-scale datasets.", "We could fix this by creating a single commit for all the (Parquet) shards in `push_to_hub` instead of one commit per shard, as we currently do. \r\n\r\n@Wauplin Any updates on the 2-step commit process suggested by you that we need to implement this?", "> Any updates on the 2-step commit process suggested by you that we need to implement this?\r\n\r\nRe-prioritizing this, sorry. Will let you know but probably can be done this week." ]
2023-09-25T06:11:43
2023-10-16T13:30:49
2023-10-16T13:30:48
NONE
null
null
### Describe the bug I try to upload a very large dataset of images, and get the following error: ``` File /fsx-multigen/yuvalkirstain/miniconda/envs/pickapic/lib/python3.10/site-packages/huggingface_hub/hf_api.py:2712, in HfApi.create_commit(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads, parent_commit, run_as_future) 2710 try: 2711 commit_resp = get_session().post(url=commit_url, headers=headers, data=data, params=params) -> 2712 hf_raise_for_status(commit_resp, endpoint_name="commit") 2713 except RepositoryNotFoundError as e: 2714 e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE) File /fsx-multigen/yuvalkirstain/miniconda/envs/pickapic/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py:301, in hf_raise_for_status(response, endpoint_name) 297 raise BadRequestError(message, response=response) from e 299 # Convert `HTTPError` into a `HfHubHTTPError` to display request information 300 # as well (request id and/or server error message) --> 301 raise HfHubHTTPError(str(e), response=response) from e HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co/api/datasets/yuvalkirstain/pickapic_v2/commit/main (Request ID: Root=1-65112399-12d63f7d7f28bfa40a36a0fd) You have exceeded our hourly quotas for action: commit. We invite you to retry later. ``` this makes it much less convenient to host large datasets on HF hub. ### Steps to reproduce the bug Upload a very large dataset of images ### Expected behavior the upload to work well ### Environment info - `datasets` version: 2.13.1 - Platform: Linux-5.15.0-1033-aws-x86_64-with-glibc2.31 - Python version: 3.10.11 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.1 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6257/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6257/timeline
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6256
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6256/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6256/comments
https://api.github.com/repos/huggingface/datasets/issues/6256/events
https://github.com/huggingface/datasets/issues/6256
1,910,275,199
I_kwDODunzps5x3Hx_
6,256
load_dataset() function's cache_dir does not seems to work
{ "login": "andyzhu", "id": 171831, "node_id": "MDQ6VXNlcjE3MTgzMQ==", "avatar_url": "https://avatars.githubusercontent.com/u/171831?v=4", "gravatar_id": "", "url": "https://api.github.com/users/andyzhu", "html_url": "https://github.com/andyzhu", "followers_url": "https://api.github.com/users/andyzhu/followers", "following_url": "https://api.github.com/users/andyzhu/following{/other_user}", "gists_url": "https://api.github.com/users/andyzhu/gists{/gist_id}", "starred_url": "https://api.github.com/users/andyzhu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andyzhu/subscriptions", "organizations_url": "https://api.github.com/users/andyzhu/orgs", "repos_url": "https://api.github.com/users/andyzhu/repos", "events_url": "https://api.github.com/users/andyzhu/events{/privacy}", "received_events_url": "https://api.github.com/users/andyzhu/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Can you share the error message?\r\n\r\nAlso, it would help if you could check whether `huggingface_hub`'s download behaves the same:\r\n```python\r\nfrom huggingface_hub import snapshot_download\r\nsnapshot_download(\"trec\", repo_type=\"dataset\", cache_dir='/path/to/my/dir)\r\n```\r\n\r\nIn the next major release, we aim to switch to `huggingface_hub` for file download/caching, but we could align the `cache_dir`'s `umask` behavior earlier than this if their solution works for your use case." ]
2023-09-24T15:34:06
2023-09-27T13:40:45
null
NONE
null
null
### Describe the bug datasets version: 2.14.5 when trying to run the following command trec = load_dataset('trec', split='train[:1000]', cache_dir='/path/to/my/dir') I keep getting error saying the command does not have permission to the default cache directory on my macbook pro machine. It seems the cache_dir parameter cannot change the dataset saving directory from the default what ever explained in the https://huggingface.co/docs/datasets/cache does not seem to work ### Steps to reproduce the bug datasets version: 2.14.5 when trying to run the following command trec = load_dataset('trec', split='train[:1000]', cache_dir='/path/to/my/dir') I keep getting error saying the command does not have permission to the default cache directory on my macbook pro machine. It seems the cache_dir parameter cannot change the dataset saving directory from the default what ever explained in the https://huggingface.co/docs/datasets/cache does not seem to work ### Expected behavior the dataset should be saved to the cache_dir points to ### Environment info datasets version: 2.14.5 macos X: Ventura 13.4.1 (c)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6256/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6256/timeline
null
false
https://api.github.com/repos/huggingface/datasets/issues/6255
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6255/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6255/comments
https://api.github.com/repos/huggingface/datasets/issues/6255/events
https://github.com/huggingface/datasets/pull/6255
1,909,842,977
PR_kwDODunzps5bCioS
6,255
Parallelize builder configs creation
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005905 / 0.011353 (-0.005448) | 0.003623 / 0.011008 (-0.007385) | 0.079616 / 0.038508 (0.041108) | 0.059840 / 0.023109 (0.036730) | 0.392281 / 0.275898 (0.116383) | 0.434539 / 0.323480 (0.111059) | 0.004746 / 0.007986 (-0.003239) | 0.002935 / 0.004328 (-0.001394) | 0.062907 / 0.004250 (0.058657) | 0.048233 / 0.037052 (0.011181) | 0.394170 / 0.258489 (0.135681) | 0.427430 / 0.293841 (0.133589) | 0.027382 / 0.128546 (-0.101164) | 0.007890 / 0.075646 (-0.067756) | 0.259681 / 0.419271 (-0.159591) | 0.044085 / 0.043533 (0.000552) | 0.388640 / 0.255139 (0.133501) | 0.412665 / 0.283200 (0.129465) | 0.021256 / 0.141683 (-0.120427) | 1.485672 / 1.452155 (0.033518) | 1.531410 / 1.492716 (0.038694) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220346 / 0.018006 (0.202340) | 0.425329 / 0.000490 (0.424840) | 0.006224 / 0.000200 (0.006024) | 0.000208 / 0.000054 (0.000153) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024864 / 0.037411 (-0.012547) | 0.072925 / 0.014526 (0.058399) | 0.083711 / 0.176557 (-0.092845) | 0.144213 / 0.737135 (-0.592923) | 0.084201 / 0.296338 (-0.212137) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399467 / 0.215209 (0.184258) | 3.978979 / 2.077655 (1.901325) | 1.916994 / 1.504120 (0.412874) | 1.753098 / 1.541195 (0.211903) | 1.809866 / 1.468490 (0.341376) | 0.506806 / 4.584777 (-4.077971) | 3.051044 / 3.745712 (-0.694668) | 2.857624 / 5.269862 (-2.412237) | 1.872033 / 4.565676 (-2.693644) | 0.058543 / 0.424275 (-0.365732) | 0.006569 / 0.007607 (-0.001038) | 0.472630 / 0.226044 (0.246586) | 4.724862 / 2.268929 (2.455934) | 2.413068 / 55.444624 (-53.031556) | 2.046910 / 6.876477 (-4.829567) | 2.190455 / 2.142072 (0.048383) | 0.595228 / 4.805227 (-4.210000) | 0.125942 / 6.500664 (-6.374722) | 0.059474 / 0.075469 (-0.015995) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235927 / 1.841788 (-0.605861) | 17.367803 / 8.074308 (9.293495) | 13.550362 / 10.191392 (3.358970) | 0.131664 / 0.680424 (-0.548760) | 0.016331 / 0.534201 (-0.517870) | 0.331295 / 0.579283 (-0.247988) | 0.367641 / 0.434364 (-0.066723) | 0.382595 / 0.540337 (-0.157742) | 0.540361 / 1.386936 (-0.846575) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006120 / 0.011353 (-0.005233) | 0.003691 / 0.011008 (-0.007318) | 0.062768 / 0.038508 (0.024259) | 0.058045 / 0.023109 (0.034936) | 0.443616 / 0.275898 (0.167718) | 0.473854 / 0.323480 (0.150374) | 0.004710 / 0.007986 (-0.003275) | 0.002915 / 0.004328 (-0.001414) | 0.062922 / 0.004250 (0.058672) | 0.048557 / 0.037052 (0.011505) | 0.446136 / 0.258489 (0.187647) | 0.479235 / 0.293841 (0.185394) | 0.028704 / 0.128546 (-0.099842) | 0.008170 / 0.075646 (-0.067477) | 0.068853 / 0.419271 (-0.350419) | 0.041393 / 0.043533 (-0.002140) | 0.444683 / 0.255139 (0.189544) | 0.466607 / 0.283200 (0.183407) | 0.020890 / 0.141683 (-0.120793) | 1.473745 / 1.452155 (0.021590) | 1.498772 / 1.492716 (0.006055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216875 / 0.018006 (0.198868) | 0.411700 / 0.000490 (0.411211) | 0.003337 / 0.000200 (0.003137) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027054 / 0.037411 (-0.010357) | 0.080617 / 0.014526 (0.066092) | 0.091052 / 0.176557 (-0.085505) | 0.144126 / 0.737135 (-0.593009) | 0.090123 / 0.296338 (-0.206216) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461132 / 0.215209 (0.245922) | 4.598662 / 2.077655 (2.521008) | 2.539213 / 1.504120 (1.035093) | 2.362782 / 1.541195 (0.821587) | 2.428648 / 1.468490 (0.960157) | 0.506305 / 4.584777 (-4.078472) | 3.091132 / 3.745712 (-0.654581) | 2.884870 / 5.269862 (-2.384992) | 1.880806 / 4.565676 (-2.684870) | 0.058727 / 0.424275 (-0.365548) | 0.006452 / 0.007607 (-0.001155) | 0.533519 / 0.226044 (0.307474) | 5.346406 / 2.268929 (3.077478) | 2.987920 / 55.444624 (-52.456704) | 2.667591 / 6.876477 (-4.208885) | 2.848696 / 2.142072 (0.706623) | 0.601018 / 4.805227 (-4.204209) | 0.124929 / 6.500664 (-6.375735) | 0.061583 / 0.075469 (-0.013886) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356825 / 1.841788 (-0.484962) | 17.964503 / 8.074308 (9.890195) | 14.691471 / 10.191392 (4.500079) | 0.132525 / 0.680424 (-0.547899) | 0.018061 / 0.534201 (-0.516140) | 0.335459 / 0.579283 (-0.243824) | 0.378260 / 0.434364 (-0.056104) | 0.390681 / 0.540337 (-0.149657) | 0.547030 / 1.386936 (-0.839906) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8c55213a6c5fcff9b3dacce491caa68eacebe10d \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006624 / 0.011353 (-0.004729) | 0.004039 / 0.011008 (-0.006970) | 0.085862 / 0.038508 (0.047354) | 0.077183 / 0.023109 (0.054074) | 0.319132 / 0.275898 (0.043234) | 0.350818 / 0.323480 (0.027338) | 0.004122 / 0.007986 (-0.003864) | 0.003395 / 0.004328 (-0.000934) | 0.065237 / 0.004250 (0.060987) | 0.056675 / 0.037052 (0.019623) | 0.321040 / 0.258489 (0.062551) | 0.362011 / 0.293841 (0.068170) | 0.030988 / 0.128546 (-0.097559) | 0.008623 / 0.075646 (-0.067023) | 0.289433 / 0.419271 (-0.129839) | 0.052755 / 0.043533 (0.009222) | 0.323291 / 0.255139 (0.068152) | 0.340110 / 0.283200 (0.056911) | 0.026299 / 0.141683 (-0.115383) | 1.509405 / 1.452155 (0.057250) | 1.559993 / 1.492716 (0.067277) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233285 / 0.018006 (0.215279) | 0.451633 / 0.000490 (0.451143) | 0.009954 / 0.000200 (0.009754) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029623 / 0.037411 (-0.007788) | 0.083942 / 0.014526 (0.069416) | 0.097378 / 0.176557 (-0.079178) | 0.152630 / 0.737135 (-0.584506) | 0.098379 / 0.296338 (-0.197959) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386237 / 0.215209 (0.171028) | 3.850805 / 2.077655 (1.773150) | 1.896032 / 1.504120 (0.391912) | 1.729746 / 1.541195 (0.188551) | 1.867831 / 1.468490 (0.399341) | 0.481496 / 4.584777 (-4.103281) | 3.564432 / 3.745712 (-0.181280) | 3.336084 / 5.269862 (-1.933777) | 2.040944 / 4.565676 (-2.524732) | 0.057247 / 0.424275 (-0.367028) | 0.007275 / 0.007607 (-0.000332) | 0.464600 / 0.226044 (0.238556) | 4.648562 / 2.268929 (2.379634) | 2.394430 / 55.444624 (-53.050195) | 2.029748 / 6.876477 (-4.846728) | 2.280975 / 2.142072 (0.138902) | 0.619073 / 4.805227 (-4.186154) | 0.150504 / 6.500664 (-6.350160) | 0.061206 / 0.075469 (-0.014263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267309 / 1.841788 (-0.574479) | 19.062725 / 8.074308 (10.988417) | 14.192565 / 10.191392 (4.001173) | 0.162908 / 0.680424 (-0.517515) | 0.018445 / 0.534201 (-0.515756) | 0.392110 / 0.579283 (-0.187173) | 0.415340 / 0.434364 (-0.019024) | 0.456783 / 0.540337 (-0.083554) | 0.653019 / 1.386936 (-0.733917) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006995 / 0.011353 (-0.004358) | 0.004027 / 0.011008 (-0.006981) | 0.064124 / 0.038508 (0.025616) | 0.076004 / 0.023109 (0.052895) | 0.401760 / 0.275898 (0.125862) | 0.432339 / 0.323480 (0.108859) | 0.005471 / 0.007986 (-0.002515) | 0.003335 / 0.004328 (-0.000993) | 0.064164 / 0.004250 (0.059913) | 0.058101 / 0.037052 (0.021048) | 0.401698 / 0.258489 (0.143209) | 0.436033 / 0.293841 (0.142192) | 0.032789 / 0.128546 (-0.095757) | 0.008482 / 0.075646 (-0.067165) | 0.070707 / 0.419271 (-0.348565) | 0.048287 / 0.043533 (0.004755) | 0.395501 / 0.255139 (0.140362) | 0.419385 / 0.283200 (0.136186) | 0.024043 / 0.141683 (-0.117640) | 1.503310 / 1.452155 (0.051156) | 1.562160 / 1.492716 (0.069444) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227629 / 0.018006 (0.209623) | 0.457306 / 0.000490 (0.456816) | 0.005835 / 0.000200 (0.005635) | 0.000109 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032991 / 0.037411 (-0.004420) | 0.093265 / 0.014526 (0.078739) | 0.106595 / 0.176557 (-0.069961) | 0.158557 / 0.737135 (-0.578578) | 0.106805 / 0.296338 (-0.189533) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436573 / 0.215209 (0.221364) | 4.355777 / 2.077655 (2.278122) | 2.323151 / 1.504120 (0.819031) | 2.164101 / 1.541195 (0.622906) | 2.252808 / 1.468490 (0.784318) | 0.494902 / 4.584777 (-4.089875) | 3.615073 / 3.745712 (-0.130639) | 3.329738 / 5.269862 (-1.940124) | 2.059137 / 4.565676 (-2.506539) | 0.058384 / 0.424275 (-0.365891) | 0.007330 / 0.007607 (-0.000277) | 0.512326 / 0.226044 (0.286281) | 5.125652 / 2.268929 (2.856724) | 2.861981 / 55.444624 (-52.582644) | 2.500172 / 6.876477 (-4.376305) | 2.715862 / 2.142072 (0.573789) | 0.597299 / 4.805227 (-4.207928) | 0.134346 / 6.500664 (-6.366318) | 0.060396 / 0.075469 (-0.015074) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353771 / 1.841788 (-0.488017) | 19.334801 / 8.074308 (11.260493) | 14.669875 / 10.191392 (4.478483) | 0.167607 / 0.680424 (-0.512817) | 0.019839 / 0.534201 (-0.514362) | 0.395473 / 0.579283 (-0.183810) | 0.419822 / 0.434364 (-0.014542) | 0.471400 / 0.540337 (-0.068938) | 0.648297 / 1.386936 (-0.738639) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d5a112e7f1ce1635725773d911c825adca7bcfe0 \"CML watermark\")\n", "@mariosasko let me know what you think or if you have better ideas to make it faster", "Yea lazy data files resolution seems a better approach actually" ]
2023-09-23T11:56:20
2024-01-11T06:32:34
2023-09-26T15:44:19
MEMBER
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6255", "html_url": "https://github.com/huggingface/datasets/pull/6255", "diff_url": "https://github.com/huggingface/datasets/pull/6255.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6255.patch", "merged_at": null }
For datasets with lots of configs defined in YAML E.g. `load_dataset("uonlp/CulturaX", "fr", revision="refs/pr/6")` from >1min to 15sec
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6255/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6255/timeline
null
true