metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 857605
num_examples: 15200
- name: validation
num_bytes: 160686
num_examples: 3100
- name: test
num_bytes: 287654
num_examples: 5500
download_size: 542584
dataset_size: 1305945
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regexp_full_match
sequence: 'null'
- name: regexp_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 5368
num_examples: 150
download_size: 5519
dataset_size: 5368
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
clinc150
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
banking77 = Dataset.from_hub("AutoIntent/clinc150")
Source
This dataset is taken from cmaldona/All-Generalization-OOD-CLINC150
and formatted with our AutoIntent Library:
# define util
"""Convert clincq50 dataset to autointent internal format and scheme."""
from datasets import Dataset as HFDataset
from datasets import load_dataset
from autointent import Dataset
from autointent.schemas import Intent, Sample
def extract_intents_data(
clinc150_split: HFDataset, oos_intent_name: str = "ood"
) -> tuple[list[Intent], dict[str, int]]:
"""Extract intent names and assign ids to them."""
intent_names = sorted(clinc150_split.unique("labels"))
oos_intent_id = intent_names.index(oos_intent_name)
intent_names.pop(oos_intent_id)
n_classes = len(intent_names)
assert n_classes == 150 # noqa: PLR2004, S101
name_to_id = dict(zip(intent_names, range(n_classes), strict=False))
intents_data = [Intent(id=i, name=name) for name, i in name_to_id.items()]
return intents_data, name_to_id
def convert_clinc150(
clinc150_split: HFDataset,
name_to_id: dict[str, int],
shots_per_intent: int | None = None,
oos_intent_name: str = "ood",
) -> list[Sample]:
"""Convert one split into desired format."""
oos_samples = []
classwise_samples = [[] for _ in range(len(name_to_id))]
n_unrecognized_labels = 0
for batch in clinc150_split.iter(batch_size=16, drop_last_batch=False):
for txt, name in zip(batch["data"], batch["labels"], strict=False):
if name == oos_intent_name:
oos_samples.append(Sample(utterance=txt))
continue
intent_id = name_to_id.get(name, None)
if intent_id is None:
n_unrecognized_labels += 1
continue
target_list = classwise_samples[intent_id]
if shots_per_intent is not None and len(target_list) >= shots_per_intent:
continue
target_list.append(Sample(utterance=txt, label=intent_id))
in_domain_samples = [sample for samples_from_single_class in classwise_samples for sample in samples_from_single_class]
print(f"{len(in_domain_samples)=}")
print(f"{len(oos_samples)=}")
print(f"{n_unrecognized_labels=}\n")
return in_domain_samples + oos_samples
if __name__ == "__main__":
clinc150 = load_dataset("cmaldona/All-Generalization-OOD-CLINC150")
intents_data, name_to_id = extract_intents_data(clinc150["train"])
train_samples = convert_clinc150(clinc150["train"], name_to_id)
validation_samples = convert_clinc150(clinc150["validation"], name_to_id)
test_samples = convert_clinc150(clinc150["test"], name_to_id)
clinc150_converted = Dataset.from_dict(
{"train": train_samples, "validation": validation_samples, "test": test_samples, "intents": intents_data}
)