qanastek commited on
Commit
6a21eef
1 Parent(s): 924f6f2

Update MANTRAGSC.py

Browse files
Files changed (1) hide show
  1. MANTRAGSC.py +30 -32
MANTRAGSC.py CHANGED
@@ -118,26 +118,22 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
118
 
119
  def _info(self):
120
 
121
- # if self.config.name.find("emea") != -1:
122
- # names = ['O', 'DISO', 'CHEM|PHEN', 'DEVI', 'PHEN', 'PROC', 'OBJC', 'ANAT', 'LIVB', 'CHEM', 'PHYS']
123
- # elif self.config.name.find("medline") != -1:
124
- # names = ['O', 'DISO', 'GEOG', 'DEVI', 'Manufactured Object', 'PHEN', 'PROC', 'Research Device', 'OBJC', 'Mental or Behavioral Dysfunction', 'Research Activity', 'ANAT', 'LIVB', 'CHEM', 'PHYS']
125
- # elif self.config.name.find("patents") != -1:
126
- # names = ['O', 'PROC', 'DISO', 'LIVB', 'PHYS', 'PHEN', 'ANAT', 'OBJC', 'Amino Acid, Peptide, or Protein|Enzyme|Receptor', 'DEVI', 'CHEM']
127
 
128
  features = datasets.Features(
129
  {
130
  "id": datasets.Value("string"),
131
- # "document_id": datasets.Value("string"),
132
  "tokens": [datasets.Value("string")],
133
  "ner_tags": datasets.Sequence(
134
- datasets.Value("string")
 
 
135
  ),
136
- # "ner_tags": datasets.Sequence(
137
- # datasets.features.ClassLabel(
138
- # names = names,
139
- # )
140
- # ),
141
  }
142
  )
143
 
@@ -152,9 +148,8 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
152
  def _split_generators(self, dl_manager):
153
 
154
  language, dataset_type = self.config.name.split("_")
155
-
156
- data_dir = dl_manager.download_and_extract(_URL)
157
 
 
158
  data_dir = Path(data_dir) / "GSC-v1.1" / f"{_DATASET_TYPES[dataset_type]}_GSC_{language}_man.xml"
159
 
160
  return [
@@ -162,8 +157,6 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
162
  name=datasets.Split.TRAIN,
163
  gen_kwargs={
164
  "data_dir": data_dir,
165
- "language": language,
166
- "dataset_type": dataset_type,
167
  "split": "train",
168
  },
169
  ),
@@ -171,8 +164,6 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
171
  name=datasets.Split.VALIDATION,
172
  gen_kwargs={
173
  "data_dir": data_dir,
174
- "language": language,
175
- "dataset_type": dataset_type,
176
  "split": "validation",
177
  },
178
  ),
@@ -180,15 +171,12 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
180
  name=datasets.Split.TEST,
181
  gen_kwargs={
182
  "data_dir": data_dir,
183
- "language": language,
184
- "dataset_type": dataset_type,
185
  "split": "test",
186
  },
187
  ),
188
  ]
189
 
190
- def _generate_examples(self, data_dir, language, dataset_type, split):
191
- """Yields examples as (key, example) tuples."""
192
 
193
  with open(data_dir) as fd:
194
  doc = xmltodict.parse(fd.read())
@@ -197,9 +185,6 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
197
 
198
  for d in doc["Corpus"]["document"]:
199
 
200
- # print(d)
201
- # print()
202
-
203
  if type(d["unit"]) != type(list()):
204
  d["unit"] = [d["unit"]]
205
 
@@ -236,13 +221,14 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
236
  "offset_end": offset_end,
237
  })
238
 
239
- ner_tags = ["O" for o in tokens]
240
 
241
  for tag in tags:
242
 
 
 
243
  for idx, token in enumerate(tokens):
244
 
245
- # Range du tag
246
  rtok = range(token["offset_start"], token["offset_end"]+1)
247
  rtag = range(tag["offset_start"], tag["offset_end"]+1)
248
 
@@ -252,15 +238,27 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
252
  # if ner_tags[idx] != "O" and ner_tags[idx] != tag['label']:
253
  # print(f"{token} - currently: {ner_tags[idx]} - after: {tag['label']}")
254
 
255
- ner_tags[idx] = tag["label"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256
 
257
  obj = {
258
  "id": u["@id"],
259
  "tokens": [t["token"] for t in tokens],
260
- "ner_tags": ner_tags,
261
  }
262
- # print(obj)
263
- # print("*"*50)
264
 
265
  all_res.append(obj)
266
 
 
118
 
119
  def _info(self):
120
 
121
+ if self.config.name.find("emea") != -1:
122
+ names = ['B-ANAT', 'I-ANAT', 'I-PHEN', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'B-PHYS', 'I-DEVI', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-LIVB', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC']
123
+ elif self.config.name.find("medline") != -1:
124
+ names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-GEOG', 'B-DEVI', 'O', 'B-PHYS', 'I-LIVB', 'B-OBJC', 'I-DISO', 'I-DEVI', 'B-PHEN', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC']
125
+ elif self.config.name.find("patents") != -1:
126
+ names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'I-LIVB', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-PROC', 'B-DISO', 'I-DEVI', 'B-LIVB', 'B-CHEM', 'B-PHYS']
127
 
128
  features = datasets.Features(
129
  {
130
  "id": datasets.Value("string"),
 
131
  "tokens": [datasets.Value("string")],
132
  "ner_tags": datasets.Sequence(
133
+ datasets.features.ClassLabel(
134
+ names = names,
135
+ )
136
  ),
 
 
 
 
 
137
  }
138
  )
139
 
 
148
  def _split_generators(self, dl_manager):
149
 
150
  language, dataset_type = self.config.name.split("_")
 
 
151
 
152
+ data_dir = dl_manager.download_and_extract(_URL)
153
  data_dir = Path(data_dir) / "GSC-v1.1" / f"{_DATASET_TYPES[dataset_type]}_GSC_{language}_man.xml"
154
 
155
  return [
 
157
  name=datasets.Split.TRAIN,
158
  gen_kwargs={
159
  "data_dir": data_dir,
 
 
160
  "split": "train",
161
  },
162
  ),
 
164
  name=datasets.Split.VALIDATION,
165
  gen_kwargs={
166
  "data_dir": data_dir,
 
 
167
  "split": "validation",
168
  },
169
  ),
 
171
  name=datasets.Split.TEST,
172
  gen_kwargs={
173
  "data_dir": data_dir,
 
 
174
  "split": "test",
175
  },
176
  ),
177
  ]
178
 
179
+ def _generate_examples(self, data_dir, split):
 
180
 
181
  with open(data_dir) as fd:
182
  doc = xmltodict.parse(fd.read())
 
185
 
186
  for d in doc["Corpus"]["document"]:
187
 
 
 
 
188
  if type(d["unit"]) != type(list()):
189
  d["unit"] = [d["unit"]]
190
 
 
221
  "offset_end": offset_end,
222
  })
223
 
224
+ ner_tags = [["O", 0] for o in tokens]
225
 
226
  for tag in tags:
227
 
228
+ cpt = 0
229
+
230
  for idx, token in enumerate(tokens):
231
 
 
232
  rtok = range(token["offset_start"], token["offset_end"]+1)
233
  rtag = range(tag["offset_start"], tag["offset_end"]+1)
234
 
 
238
  # if ner_tags[idx] != "O" and ner_tags[idx] != tag['label']:
239
  # print(f"{token} - currently: {ner_tags[idx]} - after: {tag['label']}")
240
 
241
+ if ner_tags[idx][0] == "O":
242
+ cpt += 1
243
+ ner_tags[idx][0] = tag["label"]
244
+ ner_tags[idx][1] = cpt
245
+
246
+ for i in range(len(ner_tags)):
247
+
248
+ tag = ner_tags[i][0]
249
+
250
+ if tag == "O":
251
+ continue
252
+ elif tag != "O" and ner_tags[i][1] == 1:
253
+ ner_tags[i][0] = "B-" + tag
254
+ elif tag != "O" and ner_tags[i][1] != 1:
255
+ ner_tags[i][0] = "I-" + tag
256
 
257
  obj = {
258
  "id": u["@id"],
259
  "tokens": [t["token"] for t in tokens],
260
+ "ner_tags": [n[0] for n in ner_tags],
261
  }
 
 
262
 
263
  all_res.append(obj)
264