|
--- |
|
license: cc-by-4.0 |
|
dataset_info: |
|
features: |
|
- name: original_id |
|
dtype: int32 |
|
- name: edit_goal |
|
dtype: string |
|
- name: edit_type |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: food |
|
dtype: string |
|
- name: ambiance |
|
dtype: string |
|
- name: service |
|
dtype: string |
|
- name: noise |
|
dtype: string |
|
- name: counterfactual |
|
dtype: bool |
|
- name: rating |
|
dtype: int64 |
|
splits: |
|
- name: validation |
|
num_bytes: 306529 |
|
num_examples: 1673 |
|
- name: test |
|
num_bytes: 309751 |
|
num_examples: 1689 |
|
- name: train |
|
num_bytes: 2282439 |
|
num_examples: 11728 |
|
download_size: 628886 |
|
dataset_size: 2898719 |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
--- |
|
# Dataset Card for "CEBaB" |
|
|
|
This is a lightly cleaned and simplified version of the CEBaB counterfactual restaurant review dataset from [this paper](https://arxiv.org/abs/2205.14140). |
|
The most important difference from the original dataset is that the `rating` column corresponds to the _median_ rating provided by the Mechanical Turkers, |
|
rather than the majority rating. These are the same whenever a majority rating exists, but when there is no majority rating (e.g. because there were two 1s, |
|
two 2s, and one 3), the original dataset used a `"no majority"` placeholder whereas we are able to provide an aggregate rating for all reviews. |
|
|
|
The exact code used to process the original dataset is provided below: |
|
```py |
|
from ast import literal_eval |
|
from datasets import DatasetDict, Value, load_dataset |
|
|
|
|
|
def compute_median(x: str): |
|
"""Compute the median rating given a multiset of ratings.""" |
|
# Decode the dictionary from string format |
|
dist = literal_eval(x) |
|
|
|
# Should be a dictionary whose keys are string-encoded integer ratings |
|
# and whose values are the number of times that the rating was observed |
|
assert isinstance(dist, dict) |
|
assert sum(dist.values()) % 2 == 1, "Number of ratings should be odd" |
|
|
|
ratings = [] |
|
for rating, count in dist.items(): |
|
ratings.extend([int(rating)] * count) |
|
|
|
ratings.sort() |
|
return ratings[len(ratings) // 2] |
|
|
|
|
|
cebab = load_dataset('CEBaB/CEBaB') |
|
assert isinstance(cebab, DatasetDict) |
|
|
|
# Remove redundant splits |
|
cebab['train'] = cebab.pop('train_inclusive') |
|
del cebab['train_exclusive'] |
|
del cebab['train_observational'] |
|
|
|
cebab = cebab.cast_column( |
|
'original_id', Value('int32') |
|
).map( |
|
lambda x: { |
|
# New column with inverted label for counterfactuals |
|
'counterfactual': not x['is_original'], |
|
# Reduce the rating multiset into a single median rating |
|
'rating': compute_median(x['review_label_distribution']) |
|
} |
|
).map( |
|
# Replace the empty string and 'None' with Apache Arrow nulls |
|
lambda x: { |
|
k: v if v not in ('', 'no majority', 'None') else None |
|
for k, v in x.items() |
|
} |
|
) |
|
|
|
# Sanity check that all the splits have the same columns |
|
cols = next(iter(cebab.values())).column_names |
|
assert all(split.column_names == cols for split in cebab.values()) |
|
|
|
# Clean up the names a bit |
|
cebab = cebab.rename_columns({ |
|
col: col.removesuffix('_majority').removesuffix('_aspect') |
|
for col in cols if col.endswith('_majority') |
|
}).rename_column( |
|
'description', 'text' |
|
) |
|
|
|
# Drop the unimportant columns |
|
cebab = cebab.remove_columns([ |
|
col for col in cols if col.endswith('_distribution') or col.endswith('_workers') |
|
] + [ |
|
'edit_id', 'edit_worker', 'id', 'is_original', 'opentable_metadata', 'review' |
|
]).sort([ |
|
# Make sure counterfactual reviews come immediately after each original review |
|
'original_id', 'counterfactual' |
|
]) |
|
``` |