language:
- en
paperswithcode_id: fever
annotations_creators:
- crowdsourced
language_creators:
- found
license:
- cc-by-sa-3.0
- gpl-3.0
multilinguality:
- monolingual
pretty_name: FEVER
size_categories:
- 100K<n<1M
source_datasets:
- extended|wikipedia
task_categories:
- text-classification
task_ids: []
tags:
- knowledge-verification
dataset_info:
- config_name: v1.0
features:
- name: id
dtype: int32
- name: label
dtype: string
- name: claim
dtype: string
- name: evidence_annotation_id
dtype: int32
- name: evidence_id
dtype: int32
- name: evidence_wiki_url
dtype: string
- name: evidence_sentence_id
dtype: int32
splits:
- name: train
num_bytes: 24147163
num_examples: 263822
- name: dev
num_bytes: 2696375
num_examples: 28625
- name: paper_dev
num_bytes: 1348943
num_examples: 14475
- name: paper_test
num_bytes: 1347432
num_examples: 14150
download_size: 44853972
dataset_size: 40043693
- config_name: v2.0
features:
- name: id
dtype: int32
- name: label
dtype: string
- name: claim
dtype: string
- name: evidence_annotation_id
dtype: int32
- name: evidence_id
dtype: int32
- name: evidence_wiki_url
dtype: string
- name: evidence_sentence_id
dtype: int32
splits:
- name: validation
num_bytes: 306243
num_examples: 2384
download_size: 392466
dataset_size: 306243
- config_name: wiki_pages
features:
- name: id
dtype: string
- name: text
dtype: string
- name: lines
dtype: string
splits:
- name: wikipedia_pages
num_bytes: 7254115038
num_examples: 5416537
download_size: 1713485474
dataset_size: 7254115038
Dataset Card for "fever"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://fever.ai/
- Repository: More Information Needed
- Paper: More Information Needed
- Point of Contact: More Information Needed
Dataset Summary
With billions of individual pages on the web providing information on almost every conceivable topic, we should have the ability to collect facts that answer almost every conceivable question. However, only a small fraction of this information is contained in structured sources (Wikidata, Freebase, etc.) – we are therefore limited by our ability to transform free-form text to structured knowledge. There is, however, another problem that has become the focus of a lot of recent research and media coverage: false information coming from unreliable sources.
The FEVER workshops are a venue for work in verifiable knowledge extraction and to stimulate progress in this direction.
FEVER Dataset: FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The claims are classified as Supported, Refuted or NotEnoughInfo. For the first two classes, the annotators also recorded the sentence(s) forming the necessary evidence for their judgment.
FEVER 2.0 Adversarial Attacks Dataset: The FEVER 2.0 Dataset consists of 1174 claims created by the submissions of participants in the Breaker phase of the 2019 shared task. Participants (Breakers) were tasked with generating adversarial examples that induce classification errors for the existing systems. Breakers submitted a dataset of up to 1000 instances with equal number of instances for each of the three classes (Supported, Refuted NotEnoughInfo). Only novel claims (i.e. not contained in the original FEVER dataset) were considered as valid entries to the shared task. The submissions were then manually evaluated for Correctness (grammatical, appropriately labeled and meet the FEVER annotation guidelines requirements).
Supported Tasks and Leaderboards
The task is verification of textual claims against textual sources.
When compared to textual entailment (TE)/natural language inference, the key difference is that in these tasks the passage to verify each claim is given, and in recent years it typically consists a single sentence, while in verification systems it is retrieved from a large set of documents in order to form the evidence.
Languages
The dataset is in English.
Dataset Structure
Data Instances
v1.0
- Size of downloaded dataset files: 44.86 MB
- Size of the generated dataset: 40.05 MB
- Total amount of disk used: 84.89 MB
An example of 'train' looks as follows.
'claim': 'Nikolaj Coster-Waldau worked with the Fox Broadcasting Company.',
'evidence_wiki_url': 'Nikolaj_Coster-Waldau',
'label': 'SUPPORTS',
'id': 75397,
'evidence_id': 104971,
'evidence_sentence_id': 7,
'evidence_annotation_id': 92206}
v2.0
- Size of downloaded dataset files: 0.39 MB
- Size of the generated dataset: 0.30 MB
- Total amount of disk used: 0.70 MB
wiki_pages
- Size of downloaded dataset files: 1.71 GB
- Size of the generated dataset: 7.25 GB
- Total amount of disk used: 8.97 GB
An example of 'wikipedia_pages' looks as follows.
{'text': 'The following are the football -LRB- soccer -RRB- events of the year 1928 throughout the world . ',
'lines': '0\tThe following are the football -LRB- soccer -RRB- events of the year 1928 throughout the world .\n1\t',
'id': '1928_in_association_football'}
Data Fields
The data fields are the same among all splits.
v1.0
id
: aint32
feature.label
: astring
feature.claim
: astring
feature.evidence_annotation_id
: aint32
feature.evidence_id
: aint32
feature.evidence_wiki_url
: astring
feature.evidence_sentence_id
: aint32
feature.
v2.0
id
: aint32
feature.label
: astring
feature.claim
: astring
feature.evidence_annotation_id
: aint32
feature.evidence_id
: aint32
feature.evidence_wiki_url
: astring
feature.evidence_sentence_id
: aint32
feature.
wiki_pages
id
: astring
feature.text
: astring
feature.lines
: astring
feature.
Data Splits
v1.0
train | dev | paper_dev | paper_test | |
---|---|---|---|---|
v1.0 | 311431 | 37566 | 18999 | 18567 |
v2.0
validation | |
---|---|
v2.0 | 2384 |
wiki_pages
wikipedia_pages | |
---|---|
wiki_pages | 5416537 |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
FEVER license:
These data annotations incorporate material from Wikipedia, which is licensed pursuant to the Wikipedia Copyright Policy. These annotations are made available under the license terms described on the applicable Wikipedia article pages, or, where Wikipedia license terms are unavailable, under the Creative Commons Attribution-ShareAlike License (version 3.0), available at http://creativecommons.org/licenses/by-sa/3.0/ (collectively, the “License Termsâ€). You may not use these files except in compliance with the applicable License Terms.
Citation Information
If you use "FEVER Dataset", please cite:
@inproceedings{Thorne18Fever,
author = {Thorne, James and Vlachos, Andreas and Christodoulopoulos, Christos and Mittal, Arpit},
title = {{FEVER}: a Large-scale Dataset for Fact Extraction and {VERification}},
booktitle = {NAACL-HLT},
year = {2018}
}
If you use "FEVER 2.0 Adversarial Attacks Dataset", please cite:
@inproceedings{Thorne19FEVER2,
author = {Thorne, James and Vlachos, Andreas and Cocarascu, Oana and Christodoulopoulos, Christos and Mittal, Arpit},
title = {The {FEVER2.0} Shared Task},
booktitle = {Proceedings of the Second Workshop on {Fact Extraction and VERification (FEVER)}},
year = {2018}
}
Contributions
Thanks to @thomwolf, @lhoestq, @mariamabarham, @lewtun, @albertvillanova for adding this dataset.