File size: 4,707 Bytes
423482e
b015b0a
423482e
b015b0a
423482e
b015b0a
423482e
 
b015b0a
423482e
 
 
b015b0a
 
423482e
b015b0a
423482e
 
 
 
 
b015b0a
423482e
 
 
b015b0a
423482e
 
 
 
 
b015b0a
423482e
 
 
 
 
 
 
 
b015b0a
423482e
 
b015b0a
 
 
423482e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b015b0a
423482e
 
 
b015b0a
 
 
423482e
b015b0a
423482e
b015b0a
 
 
 
423482e
 
b015b0a
 
 
 
423482e
b015b0a
 
 
 
 
 
 
 
423482e
 
 
 
b015b0a
423482e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import csv
import os
import tarfile

import datasets
from tqdm import tqdm

_DESCRIPTION = """\

This dataset is designed for speech-to-text (STT) tasks. It contains audio files stored as tar archives along with their corresponding transcript files in TSV format. The data is for the Uzbek language.

"""

_CITATION = """\

@misc{dataset_stt2025,

  title={Dataset_STT},

  author={Your Name},

  year={2025}

}

"""

class DatasetSTT(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    
    def _info(self):
        features = datasets.Features({
            "id": datasets.Value("string"),
            "audio": datasets.Audio(sampling_rate=16000),  # Agar kerak bo'lsa, sampling_rate ni moslashtiring
            "sentence": datasets.Value("string"),
            "duration": datasets.Value("float"),
            "age": datasets.Value("string"),
            "gender": datasets.Value("string"),
            "accents": datasets.Value("string"),
            "locale": datasets.Value("string")
        })
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage="https://huggingface.co/datasets/Elyordev/Dataset_STT",
            citation=_CITATION,
        )
    
    def _split_generators(self, dl_manager):
        """

        _split_generators da har bir split uchun kerakli fayllarni belgilaymiz.

        Biz quyidagi splitlarni qo'llaymiz: TRAIN, TEST va VALIDATION.

        Data_files argumenti orqali audio arxiv va transcript TSV fayllarini olamiz.

        """
        data_files = self.config.data_files
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "audio_archive": data_files["train"]["audio"],
                    "transcript_file": data_files["train"]["transcript"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "audio_archive": data_files["test"]["audio"],
                    "transcript_file": data_files["test"]["transcript"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "audio_archive": data_files["validation"]["audio"],
                    "transcript_file": data_files["validation"]["transcript"],
                },
            ),
        ]
    
    def _generate_examples(self, audio_archive, transcript_file):
        """

        Transcript TSV faylini o'qib, har bir yozuv uchun:

          - Tar arxivni ochamiz va audio fayllarni indekslaymiz.

          - Transcript faylida ko'rsatilgan "path" ustuni orqali mos audio faylni topamiz.

          - Audio faylni butun baytlar shaklida o'qib, audio maydoni sifatida qaytaramiz.

        """
        # Tar arxivni ochamiz
        with tarfile.open(audio_archive, "r:*") as tar:
            # Arxiv ichidagi barcha fayllarni (fayl nomi -> tarinfo) indekslaymiz
            tar_index = {os.path.basename(member.name): member for member in tar.getmembers() if member.isfile()}
            
            # Transcript TSV faylini ochamiz (UTF-8 kodlashda)
            with open(transcript_file, "r", encoding="utf-8") as f:
                reader = csv.DictReader(f, delimiter="\t")
                for row in tqdm(reader, desc="Processing transcripts"):
                    file_name = row["path"]  # Masalan: "2cd08f62-aa25-4f5e-bb73-40cfc19a215e.mp3"
                    if file_name not in tar_index:
                        print(f"Warning: {file_name} not found in {audio_archive}")
                        continue
                    
                    audio_member = tar.extractfile(tar_index[file_name])
                    if audio_member is None:
                        print(f"Warning: Could not extract {file_name}")
                        continue
                    
                    audio_bytes = audio_member.read()
                    
                    yield row["id"], {
                        "id": row["id"],
                        "audio": {"path": file_name, "bytes": audio_bytes},
                        "sentence": row["sentence"],
                        "duration": float(row["duration"]) if row["duration"] else 0.0,
                        "age": row["age"],
                        "gender": row["gender"],
                        "accents": row["accents"],
                        "locale": row["locale"],
                    }