|
import csv
|
|
import os
|
|
import tarfile
|
|
|
|
import datasets
|
|
from tqdm import tqdm
|
|
|
|
_DESCRIPTION = """\
|
|
This dataset is designed for speech-to-text (STT) tasks. It contains audio files stored as tar archives along with their corresponding transcript files in TSV format. The data is for the Uzbek language.
|
|
"""
|
|
|
|
_CITATION = """\
|
|
@misc{dataset_stt2025,
|
|
title={Dataset_STT},
|
|
author={Your Name},
|
|
year={2025}
|
|
}
|
|
"""
|
|
|
|
class DatasetSTT(datasets.GeneratorBasedBuilder):
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
def _info(self):
|
|
features = datasets.Features({
|
|
"id": datasets.Value("string"),
|
|
"audio": datasets.Audio(sampling_rate=16000),
|
|
"sentence": datasets.Value("string"),
|
|
"duration": datasets.Value("float"),
|
|
"age": datasets.Value("string"),
|
|
"gender": datasets.Value("string"),
|
|
"accents": datasets.Value("string"),
|
|
"locale": datasets.Value("string")
|
|
})
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=features,
|
|
supervised_keys=None,
|
|
homepage="https://huggingface.co/datasets/Elyordev/Dataset_STT",
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""
|
|
_split_generators da har bir split uchun kerakli fayllarni belgilaymiz.
|
|
Biz quyidagi splitlarni qo'llaymiz: TRAIN, TEST va VALIDATION.
|
|
Data_files argumenti orqali audio arxiv va transcript TSV fayllarini olamiz.
|
|
"""
|
|
data_files = self.config.data_files
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"audio_archive": data_files["train"]["audio"],
|
|
"transcript_file": data_files["train"]["transcript"],
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"audio_archive": data_files["test"]["audio"],
|
|
"transcript_file": data_files["test"]["transcript"],
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"audio_archive": data_files["validation"]["audio"],
|
|
"transcript_file": data_files["validation"]["transcript"],
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, audio_archive, transcript_file):
|
|
"""
|
|
Transcript TSV faylini o'qib, har bir yozuv uchun:
|
|
- Tar arxivni ochamiz va audio fayllarni indekslaymiz.
|
|
- Transcript faylida ko'rsatilgan "path" ustuni orqali mos audio faylni topamiz.
|
|
- Audio faylni butun baytlar shaklida o'qib, audio maydoni sifatida qaytaramiz.
|
|
"""
|
|
|
|
with tarfile.open(audio_archive, "r:*") as tar:
|
|
|
|
tar_index = {os.path.basename(member.name): member for member in tar.getmembers() if member.isfile()}
|
|
|
|
|
|
with open(transcript_file, "r", encoding="utf-8") as f:
|
|
reader = csv.DictReader(f, delimiter="\t")
|
|
for row in tqdm(reader, desc="Processing transcripts"):
|
|
file_name = row["path"]
|
|
if file_name not in tar_index:
|
|
print(f"Warning: {file_name} not found in {audio_archive}")
|
|
continue
|
|
|
|
audio_member = tar.extractfile(tar_index[file_name])
|
|
if audio_member is None:
|
|
print(f"Warning: Could not extract {file_name}")
|
|
continue
|
|
|
|
audio_bytes = audio_member.read()
|
|
|
|
yield row["id"], {
|
|
"id": row["id"],
|
|
"audio": {"path": file_name, "bytes": audio_bytes},
|
|
"sentence": row["sentence"],
|
|
"duration": float(row["duration"]) if row["duration"] else 0.0,
|
|
"age": row["age"],
|
|
"gender": row["gender"],
|
|
"accents": row["accents"],
|
|
"locale": row["locale"],
|
|
} |