File size: 4,946 Bytes
afa87a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
"""MNIST text dataset with no spaces."""
from __future__ import absolute_import, division, print_function
import json
import os
import math
import numpy as np
import datasets
_DESCRIPTION = """\
MNIST dataset adapted to a text-based representation.
This allows testing interpolation quality for Transformer-VAEs.
System is heavily inspired by Matthew Rayfield's work https://youtu.be/Z9K3cwSL6uM
Works by quantising each MNIST pixel into one of 64 characters.
Every sample has an up & down version to encourage the model to learn rotation invarient features.
Use `.array_to_text(` and `.text_to_array(` methods to test your generated data.
Removed spaces to get better BPE compression on sequences.
**Should only be used with a trained tokenizer.**
Data format:
- text: (30 x 28 tokens, 840 tokens total): Textual representation of MNIST digit, for example:
```
00down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
01down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
02down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
03down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
04down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
05down!!!!!!!!!!!!!%%%@CL'Ja^@!!!!
06down!!!!!!!!(*8GK`````YL`]Q1!!!!
07down!!!!!!!-\\````````_855/*!!!!!
08down!!!!!!!%W`````RN^]!!!!!!!!!!
09down!!!!!!!!5H;``T#!+G!!!!!!!!!!
10down!!!!!!!!!$!G`7!!!!!!!!!!!!!!
11down!!!!!!!!!!!C`P!!!!!!!!!!!!!!
12down!!!!!!!!!!!#P`2!!!!!!!!!!!!!
13down!!!!!!!!!!!!)]YI<!!!!!!!!!!!
14down!!!!!!!!!!!!!5]``>'!!!!!!!!!
15down!!!!!!!!!!!!!!,O``F'!!!!!!!!
16down!!!!!!!!!!!!!!!%8``O!!!!!!!!
17down!!!!!!!!!!!!!!!!!_`_1!!!!!!!
18down!!!!!!!!!!!!!!,AN``T!!!!!!!!
19down!!!!!!!!!!!!*FZ```_N!!!!!!!!
20down!!!!!!!!!!'=X````S4!!!!!!!!!
21down!!!!!!!!&1V````R5!!!!!!!!!!!
22down!!!!!!%KW````Q5#!!!!!!!!!!!!
23down!!!!.LY````^B#!!!!!!!!!!!!!!
24down!!!!C```VBB%!!!!!!!!!!!!!!!!
25down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
26down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
```
- label: Just a number with the texts matching label.
"""
_CITATION = """\
@dataset{dataset,
author = {Fraser Greenlee},
year = {2021},
month = {2},
pages = {},
title = {MNIST text dataset (no spaces).},
doi = {}
}
"""
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-no-spaces/train.json.zip"
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-no-spaces/test.json"
LABELS = list(range(10))
class MnistText(datasets.GeneratorBasedBuilder):
"""MNIST represented by text."""
def array_to_text(pixels: np.array):
'''
Takes a 2D array of pixel brightness, converts to text using 64 tokens to represent all brightness values.
'''
width = pixels.shape[0]
height = pixels.shape[1]
lines = []
for y in range(height):
split = ['%02d down' % y]
for x in range(width):
brightness = pixels[y, x]
mBrightness = math.floor(brightness * 64)
s = chr(mBrightness + 33)
split.append(s)
lines.append(' '.join(split))
reversed = []
for line in lines:
reversed.insert(0, (line.replace(' down ', ' up ', 1)))
return ['\n'.join(lines), '\n'.join(reversed)]
def text_to_array(text: str):
lines = text.split('\n')
pixels = np.zeros((len(lines), len(lines[0].split(' ')) - 2))
for y, line in enumerate(lines):
tokens = line.split(' ')
assert(tokens[1] == 'down')
pixel_tokens = tokens[2:]
for x, token in enumerate(pixel_tokens):
pixels[y, x] = (ord(token) - 33) / 64
return pixels
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'label': datasets.features.ClassLabel(names=LABELS),
'text': datasets.Value("string"),
}
),
homepage="https://github.com/Fraser-Greenlee/my-huggingface-datasets",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(train_path, 'train.json')}
),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
]
def _generate_examples(self, filepath):
"""Generate examples."""
with open(filepath, encoding="utf-8") as json_lines_file:
data = []
for line in json_lines_file:
data.append(json.loads(line))
for id_, row in enumerate(data):
yield id_, row
|