|
--- |
|
license: other |
|
dataset_info: |
|
features: |
|
- name: file |
|
dtype: string |
|
- name: audio |
|
dtype: |
|
audio: |
|
sampling_rate: 16000 |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': bark |
|
'1': bow-wow |
|
'2': growling |
|
'3': howl |
|
'4': whimper |
|
'5': yip |
|
- name: is_unknown |
|
dtype: bool |
|
- name: youtube_id |
|
dtype: string |
|
- name: youtube_url |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 8774740.0 |
|
num_examples: 12 |
|
- name: validation |
|
num_bytes: 8774740.0 |
|
num_examples: 12 |
|
- name: test |
|
num_bytes: 8774740.0 |
|
num_examples: 12 |
|
download_size: 26037015 |
|
dataset_size: 26324220.0 |
|
task_categories: |
|
- audio-classification |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
# Gaepago (Gae8J/gaepago_s) |
|
## How to use |
|
### 1. Install dependencies |
|
```bash |
|
pip install datasets==2.10.1 |
|
pip install soundfile==0.12.1 |
|
pip install librosa==0.10.0.post2 |
|
``` |
|
### 2. Load the dataset |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("Gae8J/gaepago_s") |
|
``` |
|
Outputs |
|
``` |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['file', 'audio', 'label', 'is_unknown', 'youtube_id'], |
|
num_rows: 12 |
|
}) |
|
validation: Dataset({ |
|
features: ['file', 'audio', 'label', 'is_unknown', 'youtube_id'], |
|
num_rows: 12 |
|
}) |
|
test: Dataset({ |
|
features: ['file', 'audio', 'label', 'is_unknown', 'youtube_id'], |
|
num_rows: 12 |
|
}) |
|
}) |
|
``` |
|
### 3. Check a sample |
|
```python |
|
dataset['train'][0] |
|
``` |
|
Outputs |
|
``` |
|
{'file': 'bark/1_Q80fDGLRM.wav', 'audio': {'path': 'bark/1_Q80fDGLRM.wav', 'array': array([-9.15838356e-08, 6.80501699e-08, 1.97052145e-07, ..., |
|
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]), 'sampling_rate': 16000}, 'label': 0, 'is_unknown': False, 'youtube_id': '1_Q80fDGLRM'} |
|
``` |