Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
10K - 100K
ArXiv:
License:
import os | |
import random | |
import datasets | |
from datasets.tasks import ImageClassification | |
_HOMEPAGE = f"https://www.modelscope.cn/datasets/Genius-Society/{os.path.basename(__file__)[:-3]}" | |
_URL = f"{_HOMEPAGE}/resolve/master/images.zip" | |
_NAMES = ["Centromere", "Golgi", "Homogeneous", "NuMem", "Nucleolar", "Speckled"] | |
class HEp2(datasets.GeneratorBasedBuilder): | |
def _info(self): | |
return datasets.DatasetInfo( | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"label": datasets.features.ClassLabel(names=_NAMES), | |
} | |
), | |
supervised_keys=("image", "label"), | |
homepage=_HOMEPAGE, | |
license="mit", | |
version="0.0.1", | |
task_templates=[ | |
ImageClassification( | |
task="image-classification", | |
image_column="image", | |
label_column="label", | |
) | |
], | |
) | |
def _ground_truth(self, id): | |
if id < 2495: | |
return "Homogeneous" | |
elif id < 5326: | |
return "Speckled" | |
elif id < 7924: | |
return "Nucleolar" | |
elif id < 10665: | |
return "Centromere" | |
elif id < 12873: | |
return "NuMem" | |
else: | |
return "Golgi" | |
def _split_generators(self, dl_manager): | |
data_files = dl_manager.download_and_extract(_URL) | |
files = dl_manager.iter_files([data_files]) | |
dataset = [] | |
for path in files: | |
file_name = os.path.basename(path) | |
if file_name.endswith(".png"): | |
dataset.append( | |
{ | |
"image": path, | |
"label": self._ground_truth(int(file_name.split(".")[0])), | |
} | |
) | |
random.shuffle(dataset) | |
data_count = len(dataset) | |
p80 = int(data_count * 0.8) | |
p90 = int(data_count * 0.9) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"files": dataset[:p80], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"files": dataset[p80:p90], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"files": dataset[p90:], | |
}, | |
), | |
] | |
def _generate_examples(self, files): | |
for i, path in enumerate(files): | |
yield i, path | |