|
from argparse import ArgumentParser |
|
from typing import List, Dict |
|
|
|
import numpy as np |
|
import pytorch_lightning as pl |
|
import sklearn.metrics |
|
import sklearn.model_selection |
|
import torch |
|
import torch.optim |
|
import torch.utils.data |
|
import transformers |
|
import pandas as pd |
|
import random |
|
import sklearn.metrics |
|
|
|
try: |
|
from polyglot.text import Text |
|
except: |
|
print("polyglot not installed. Cannot use --strategy_words") |
|
|
|
class MyDataModule(pl.LightningDataModule): |
|
def __init__(self, train_file, test_file, binary, tokenizer, max_length, batch_size, strategy_words_replacement_negate=False, strategy_words=None, random_masking_ratio=None): |
|
super().__init__() |
|
self.train_file = train_file |
|
self.test_file = test_file |
|
self.binary = binary |
|
self.max_length = max_length |
|
self.batch_size = batch_size |
|
self.tokenizer = tokenizer |
|
|
|
if strategy_words: |
|
self.strategy_words = pd.read_csv(strategy_words) |
|
self.strategy_words = set(list(self.strategy_words.values[:, 1:].reshape(-1))) |
|
else: |
|
self.strategy_words = None |
|
self.strategy_words_replacement_negate = strategy_words_replacement_negate |
|
self.random_masking_ratio = random_masking_ratio |
|
|
|
@staticmethod |
|
def read_file(file_name, text_only=False): |
|
if file_name.split(".")[-1] == "csv": |
|
df = pd.read_csv(file_name) |
|
data = [(a, b) for a, b in zip(list(df['sentence']), df['score'])] |
|
if text_only: |
|
data = [t[0] for t in data] |
|
else: |
|
data = open(file_name).read().strip().split('\n') |
|
return data |
|
|
|
def setup(self, stage=None): |
|
if self.train_file: |
|
self.train_data = MyDataModule.read_file(self.train_file) |
|
self.train_data, self.val_data = sklearn.model_selection.train_test_split(self.train_data, shuffle=False, test_size=0.2) |
|
if self.test_file: |
|
self.test_data = MyDataModule.read_file(self.test_file) |
|
|
|
def prepare_dataloader(self, mode): |
|
if mode == "train": |
|
data = self.train_data |
|
elif mode == "val": |
|
data = self.val_data |
|
else: |
|
data = self.test_data |
|
|
|
|
|
tokenized = MyDataModule.tokenize([t[0] for t in data], self.tokenizer, self.max_length, self.strategy_words_replacement_negate, self.strategy_words, self.random_masking_ratio) |
|
if self.binary: |
|
labels = torch.tensor([t[1] > 0 for t in data], dtype=int) |
|
else: |
|
labels = torch.tensor([t[1] for t in data]) |
|
|
|
if mode == "train": |
|
weights = torch.zeros_like(labels) |
|
weights[labels == 0] = labels.shape[0] - labels.sum() |
|
weights[labels == 1] = labels.sum() |
|
return torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask'], labels), batch_size=self.batch_size, sampler=torch.utils.data.WeightedRandomSampler(1 / weights, len(weights), replacement=True)) |
|
else: |
|
return torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask'], labels), batch_size=self.batch_size) |
|
|
|
@staticmethod |
|
def tokenize(data: List[str], tokenizer, max_length, strategy_words_replacement_negate, strategy_words, random_masking_ratio): |
|
if strategy_words is not None or random_masking_ratio is not None: |
|
tokenized_data = [] |
|
for sentence in data: |
|
words = Text(sentence).words |
|
words = [t.lower() for t in words] |
|
if strategy_words: |
|
words = [t if ((t in strategy_words) != strategy_words_replacement_negate) else tokenizer.mask_token for t in words] |
|
elif random_masking_ratio: |
|
words = [t if random.random() <= random_masking_ratio else tokenizer.mask_token for t in words] |
|
tokenized_data.append(' '.join(words)) |
|
out = tokenizer(tokenized_data, padding="max_length", truncation=True, max_length=max_length, return_tensors="pt") |
|
|
|
return out |
|
else: |
|
return tokenizer(data, padding="max_length", truncation=True, max_length=max_length, return_tensors="pt") |
|
|
|
def train_dataloader(self): |
|
return self.prepare_dataloader("train") |
|
|
|
|
|
def test_dataloader(self): |
|
return self.prepare_dataloader("test") |
|
|
|
|
|
def val_dataloader(self): |
|
return self.prepare_dataloader("val") |
|
|
|
|
|
|
|
class RegressionModel(pl.LightningModule): |
|
def __init__(self, pretrained_model, binary, learning_rate, num_warmup_steps, tokenizer): |
|
super(RegressionModel, self).__init__() |
|
self.save_hyperparameters() |
|
self.pretrained_model = pretrained_model |
|
self.binary = binary |
|
self.learning_rate = learning_rate |
|
self.num_warmup_steps = num_warmup_steps |
|
self.tokenizer = tokenizer |
|
self.model = transformers.AutoModelForSequenceClassification.from_pretrained(self.pretrained_model, num_labels=2 if self.binary else 1) |
|
|
|
def forward(self, **kwargs): |
|
return self.model(**kwargs) |
|
|
|
def training_step(self, batch, batch_idx): |
|
outputs = self.forward(input_ids=batch[0], attention_mask=batch[1], labels=batch[2]) |
|
loss = outputs['loss'] |
|
ret = {"loss": loss} |
|
if self.binary: |
|
acc = torch.tensor(batch[2] == torch.argmax(outputs['logits']), dtype=float).mean().item() |
|
ret["acc"] = acc |
|
else: |
|
rmse = (torch.mean((batch[2] - outputs['logits'])**2)**0.5).item() |
|
ret["rmse"] = rmse |
|
|
|
return {"loss": loss, "log": ret} |
|
|
|
def configure_optimizers(self): |
|
optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate) |
|
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, self.num_warmup_steps, len(self.trainer.datamodule.train_dataloader()) // self.trainer.accumulate_grad_batches) |
|
return [optimizer], [scheduler] |
|
|
|
def test_step(self, batch, batch_idx): |
|
return self.validation_step(batch, batch_idx, mode="test") |
|
|
|
def validation_step(self, batch, batch_idx, mode="val"): |
|
outputs = self.forward(input_ids=batch[0], attention_mask=batch[1], labels=batch[2]) |
|
loss = outputs['loss'] |
|
self.log("{}_loss".format(mode), loss, prog_bar=True) |
|
|
|
ret = {"loss": loss} |
|
if self.binary: |
|
preds = torch.argmax(outputs['logits'], axis=1).tolist() |
|
gold = batch[2].tolist() |
|
ret["preds"] = preds |
|
ret["gold"] = gold |
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
preds = outputs['logits'].tolist() |
|
gold = batch[2].tolist() |
|
ret['preds'] = preds |
|
ret['gold'] = gold |
|
|
|
|
|
|
|
|
|
return {"loss": loss, "log": ret} |
|
|
|
def validation_epoch_end(self, outputs, mode="val"): |
|
gold = [] |
|
preds = [] |
|
for batch in outputs: |
|
gold.extend(batch['log']['gold']) |
|
preds.extend(batch['log']['preds']) |
|
if self.binary: |
|
f1 = sklearn.metrics.f1_score(gold, preds) |
|
acc = sklearn.metrics.accuracy_score(gold, preds) |
|
self.log("{}_acc".format(mode), acc, prog_bar=True) |
|
self.log("{}_f1".format(mode), f1, prog_bar=True) |
|
else: |
|
rmse = (torch.mean((torch.tensor(gold) - torch.tensor(preds))**2)**0.5).item() |
|
self.log("{}_rmse".format(mode), rmse, prog_bar=True) |
|
|
|
def test_epoch_end(self, outputs): |
|
return self.validation_epoch_end(outputs, mode="test") |
|
|
|
def predict_step(self, batch, batch_idx): |
|
preds = self.forward(input_ids=batch[0], attention_mask=batch[1]) |
|
if self.binary: |
|
ret = preds['logits'].tolist() |
|
else: |
|
ret = preds['logits'].view(-1).tolist() |
|
return ret |
|
|
|
@staticmethod |
|
def add_model_specific_args(parent_parser): |
|
parser = parent_parser.add_argument_group("RegressionModel") |
|
parser.add_argument('--pretrained_model', type=str) |
|
parser.add_argument('--learning_rate', type=float, default="5e-6") |
|
parser.add_argument('--num_warmup_steps', type=float, default="0") |
|
return parent_parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = ArgumentParser() |
|
parser.add_argument("--train", action="store_true") |
|
parser.add_argument("--test", action="store_true") |
|
parser.add_argument("--load_model", type=str) |
|
parser.add_argument("--train_file", type=str) |
|
parser.add_argument("--test_file", type=str) |
|
parser.add_argument("--binary", action="store_true") |
|
parser.add_argument("--seed", type=int, default=42) |
|
parser.add_argument("--batch_size", type=int, default=64) |
|
parser.add_argument("--max_length", type=int, default=128) |
|
parser.add_argument("--model_save_location", type=str) |
|
parser.add_argument("--preds_save_location", type=str) |
|
parser.add_argument("--preds_save_logits", action="store_true") |
|
parser.add_argument("--strategy_words", type=str) |
|
parser.add_argument("--strategy_words_replacement_negate", action="store_true") |
|
parser.add_argument("--random_masking_ratio", type=float) |
|
parser = RegressionModel.add_model_specific_args(parser) |
|
parser = pl.Trainer.add_argparse_args(parser) |
|
args = parser.parse_args() |
|
print(args) |
|
|
|
pl.utilities.seed.seed_everything(seed=args.seed) |
|
if args.load_model: |
|
model = RegressionModel.load_from_checkpoint(args.load_model) |
|
tokenizer = model.tokenizer |
|
else: |
|
tokenizer = transformers.AutoTokenizer.from_pretrained(args.pretrained_model) |
|
model = RegressionModel(pretrained_model=args.pretrained_model, binary=args.binary, learning_rate=args.learning_rate, num_warmup_steps=args.num_warmup_steps, tokenizer=tokenizer) |
|
trainer = pl.Trainer.from_argparse_args(args) |
|
|
|
dataset = MyDataModule(train_file=args.train_file, test_file=args.test_file, binary=model.binary, max_length=args.max_length, batch_size=args.batch_size, tokenizer=tokenizer, strategy_words_replacement_negate=args.strategy_words_replacement_negate, strategy_words=args.strategy_words, random_masking_ratio=args.random_masking_ratio) |
|
dataset.setup() |
|
|
|
if args.train: |
|
trainer.fit(model, dataset) |
|
|
|
if args.test: |
|
trainer.test(model, dataset.test_dataloader()) |
|
|
|
if args.preds_save_location: |
|
data = MyDataModule.read_file(args.test_file, True) |
|
strategy_words = None |
|
if args.strategy_words: |
|
strategy_words = pd.read_csv(args.strategy_words) |
|
strategy_words = set(list(args.strategy_words.values[:, 1:].reshape(-1))) |
|
tokenized = MyDataModule.tokenize(data, tokenizer, args.max_length, args.strategy_words_replacement_negate, strategy_words, args.random_masking_ratio) |
|
input_data = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask']), batch_size=args.batch_size) |
|
preds = trainer.predict(model, input_data, return_predictions=True) |
|
preds = [t for y in preds for t in y] |
|
preds = torch.tensor(preds) |
|
if model.binary: |
|
if args.preds_save_logits: |
|
preds = torch.softmax(preds, axis=1)[:, 1].tolist() |
|
else: |
|
preds = preds.argmax(axis=1).tolist() |
|
else: |
|
preds = preds.view(-1).tolist() |
|
preds = [str(t) for t in preds] |
|
|
|
with open(args.preds_save_location, 'w') as f: |
|
f.write('\n'.join(preds) + '\n') |
|
|
|
if args.model_save_location: |
|
trainer.save_checkpoint(args.model_save_location, weights_only=True) |
|
|