name
stringlengths
12
16
split
stringclasses
1 value
informal_prefix
stringlengths
10
481
formal_statement
stringlengths
50
348
goal
stringlengths
22
299
header
stringclasses
17 values
formal_proof
stringclasses
1 value
exercise_1_1_20
test
/-- For $x$ an element in $G$ show that $x$ and $x^{-1}$ have the same order.-/
theorem exercise_1_1_20 {G : Type*} [Group G] {x : G} : orderOf x = orderOf x⁻¹ :=
G : Type u_1 inst✝ : Group G x : G ⊢ orderOf x = orderOf x⁻¹
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_1_22b
test
/-- Deduce that $|a b|=|b a|$ for all $a, b \in G$.-/
theorem exercise_1_1_22b {G: Type*} [Group G] (a b : G) : orderOf (a * b) = orderOf (b * a) :=
G : Type u_1 inst✝ : Group G a b : G ⊢ orderOf (a * b) = orderOf (b * a)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_1_29
test
/-- Prove that $A \times B$ is an abelian group if and only if both $A$ and $B$ are abelian.-/
theorem exercise_1_1_29 {A B : Type*} [Group A] [Group B] : ∀ x y : A × B, x*y = y*x ↔ (∀ x y : A, x*y = y*x) ∧ (∀ x y : B, x*y = y*x) :=
A : Type u_1 B : Type u_2 inst✝¹ : Group A inst✝ : Group B ⊢ ∀ (x y : A × B), x * y = y * x ↔ (∀ (x y : A), x * y = y * x) ∧ ∀ (x y : B), x * y = y * x
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_3_8
test
/-- Prove that if $\Omega=\{1,2,3, \ldots\}$ then $S_{\Omega}$ is an infinite group-/
theorem exercise_1_3_8 : Infinite (Equiv.Perm ℕ) :=
⊢ Infinite (Equiv.Perm ℕ)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_6_11
test
/-- Let $A$ and $B$ be groups. Prove that $A \times B \cong B \times A$.-/
noncomputable def exercise_1_6_11 {A B : Type*} [Group A] [Group B] : A × B ≃* B × A :=
A : Type u_1 B : Type u_2 inst✝¹ : Group A inst✝ : Group B ⊢ A × B ≃* B × A
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_1_6_23
test
/-- Let $G$ be a finite group which possesses an automorphism $\sigma$ such that $\sigma(g)=g$ if and only if $g=1$. If $\sigma^{2}$ is the identity map from $G$ to $G$, prove that $G$ is abelian.-/
theorem exercise_1_6_23 {G : Type*} [Group G] (σ : MulAut G) (hs : ∀ g : G, σ g = 1 → g = 1) (hs2 : ∀ g : G, σ (σ g) = g) : ∀ x y : G, x*y = y*x :=
G : Type u_1 inst✝ : Group G σ : MulAut G hs : ∀ (g : G), σ g = 1 → g = 1 hs2 : ∀ (g : G), σ (σ g) = g ⊢ ∀ (x y : G), x * y = y * x
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_2_1_13
test
/-- Let $H$ be a subgroup of the additive group of rational numbers with the property that $1 / x \in H$ for every nonzero element $x$ of $H$. Prove that $H=0$ or $\mathbb{Q}$.-/
theorem exercise_2_1_13 (H : AddSubgroup ℚ) {x : ℚ} (hH : x ∈ H → (1 / x) ∈ H): H = ⊥ ∨ H = ⊤ :=
H : AddSubgroup ℚ x : ℚ hH : x ∈ H → 1 / x ∈ H ⊢ H = ⊥ ∨ H = ⊤
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_2_4_16a
test
/-- A subgroup $M$ of a group $G$ is called a maximal subgroup if $M \neq G$ and the only subgroups of $G$ which contain $M$ are $M$ and $G$. Prove that if $H$ is a proper subgroup of the finite group $G$ then there is a maximal subgroup of $G$ containing $H$.-/
theorem exercise_2_4_16a {G : Type*} [Group G] {H : Subgroup G} (hH : H ≠ ⊤) : ∃ M : Subgroup G, M ≠ ⊤ ∧ ∀ K : Subgroup G, M ≤ K → K = M ∨ K = ⊤ ∧ H ≤ M :=
G : Type u_1 inst✝ : Group G H : Subgroup G hH : H ≠ ⊤ ⊢ ∃ M, M ≠ ⊤ ∧ ∀ (K : Subgroup G), M ≤ K → K = M ∨ K = ⊤ ∧ H ≤ M
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_2_4_16c
test
/-- Show that if $G=\langle x\rangle$ is a cyclic group of order $n \geq 1$ then a subgroup $H$ is maximal if and only $H=\left\langle x^{p}\right\rangle$ for some prime $p$ dividing $n$.-/
theorem exercise_2_4_16c {n : ℕ} (H : AddSubgroup (ZMod n)) : ∃ p : (ZMod n), Prime p ∧ H = AddSubgroup.closure {p} ↔ (H ≠ ⊤ ∧ ∀ K : AddSubgroup (ZMod n), H ≤ K → K = H ∨ K = ⊤) :=
n : ℕ H : AddSubgroup (ZMod n) ⊢ ∃ p, Prime p ∧ H = AddSubgroup.closure {p} ↔ H ≠ ⊤ ∧ ∀ (K : AddSubgroup (ZMod n)), H ≤ K → K = H ∨ K = ⊤
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_1_22a
test
/-- Prove that if $H$ and $K$ are normal subgroups of a group $G$ then their intersection $H \cap K$ is also a normal subgroup of $G$.-/
theorem exercise_3_1_22a (G : Type*) [Group G] (H K : Subgroup G) [Normal H] [Normal K] : Normal (H ⊓ K) :=
G : Type u_1 inst✝² : Group G H K : Subgroup G inst✝¹ : H.Normal inst✝ : K.Normal ⊢ (H ⊓ K).Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_2_8
test
/-- Prove that if $H$ and $K$ are finite subgroups of $G$ whose orders are relatively prime then $H \cap K=1$.-/
theorem exercise_3_2_8 {G : Type*} [Group G] (H K : Subgroup G) [Fintype H] [Fintype K] (hHK : Nat.Coprime (card H) (card K)) : H ⊓ K = ⊥ :=
G : Type u_1 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype ↥H inst✝ : Fintype ↥K hHK : (card ↥H).Coprime (card ↥K) ⊢ H ⊓ K = ⊥
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_2_16
test
/-- Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$to prove Fermat's Little Theorem: if $p$ is a prime then $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{Z}$.-/
theorem exercise_3_2_16 (p : ℕ) (hp : Nat.Prime p) (a : ℕ) : Nat.Coprime a p → a ^ p ≡ a [ZMOD p] :=
p : ℕ hp : p.Prime a : ℕ ⊢ a.Coprime p → ↑a ^ p ≡ ↑a [ZMOD ↑p]
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_3_3
test
/-- Prove that if $H$ is a normal subgroup of $G$ of prime index $p$ then for all $K \leq G$ either $K \leq H$, or $G=H K$ and $|K: K \cap H|=p$.-/
theorem exercise_3_3_3 {p : Nat.Primes} {G : Type*} [Group G] {H : Subgroup G} [hH : H.Normal] (hH1 : H.index = p) : ∀ K : Subgroup G, K ≤ H ∨ H ⊔ K = ⊤ ∨ (K ⊓ H).relindex K = p :=
p : Nat.Primes G : Type u_1 inst✝ : Group G H : Subgroup G hH : H.Normal hH1 : H.index = ↑p ⊢ ∀ (K : Subgroup G), K ≤ H ∨ H ⊔ K = ⊤ ∨ (K ⊓ H).relindex K = ↑p
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_4_4
test
/-- Use Cauchy's Theorem and induction to show that a finite abelian group has a subgroup of order $n$ for each positive divisor $n$ of its order.-/
theorem exercise_3_4_4 {G : Type*} [CommGroup G] [Fintype G] {n : ℕ} (hn : n ∣ (card G)) : ∃ (H : Subgroup G) (H_fin : Fintype H), @card H H_fin = n :=
G : Type u_1 inst✝¹ : CommGroup G inst✝ : Fintype G n : ℕ hn : n ∣ card G ⊢ ∃ H H_fin, card ↥H = n
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_3_4_5b
test
/-- Prove that quotient groups of a solvable group are solvable.-/
theorem exercise_3_4_5b {G : Type*} [Group G] [IsSolvable G] (H : Subgroup G) [Normal H] : IsSolvable (G ⧸ H) :=
G : Type u_1 inst✝² : Group G inst✝¹ : IsSolvable G H : Subgroup G inst✝ : H.Normal ⊢ IsSolvable (G ⧸ H)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_2_8
test
/-- Prove that if $H$ has finite index $n$ then there is a normal subgroup $K$ of $G$ with $K \leq H$ and $|G: K| \leq n!$.-/
theorem exercise_4_2_8 {G : Type*} [Group G] {H : Subgroup G} {n : ℕ} (hn : n > 0) (hH : H.index = n) : ∃ K ≤ H, K.Normal ∧ K.index ≤ n.factorial :=
G : Type u_1 inst✝ : Group G H : Subgroup G n : ℕ hn : n > 0 hH : H.index = n ⊢ ∃ K ≤ H, K.Normal ∧ K.index ≤ n.factorial
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_2_9a
test
/-- Prove that if $p$ is a prime and $G$ is a group of order $p^{\alpha}$ for some $\alpha \in \mathbb{Z}^{+}$, then every subgroup of index $p$ is normal in $G$.-/
theorem exercise_4_2_9a {G : Type*} [Fintype G] [Group G] {p α : ℕ} (hp : p.Prime) (ha : α > 0) (hG : card G = p ^ α) : ∀ H : Subgroup G, H.index = p → H.Normal :=
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G p α : ℕ hp : p.Prime ha : α > 0 hG : card G = p ^ α ⊢ ∀ (H : Subgroup G), H.index = p → H.Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_4_2
test
/-- Prove that if $G$ is an abelian group of order $p q$, where $p$ and $q$ are distinct primes, then $G$ is cyclic.-/
theorem exercise_4_4_2 {G : Type*} [Fintype G] [Group G] {p q : Nat.Primes} (hpq : p ≠ q) (hG : card G = p*q) : IsCyclic G :=
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G p q : Nat.Primes hpq : p ≠ q hG : card G = ↑p * ↑q ⊢ IsCyclic G
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_4_6b
test
/-- Prove that there exists a normal subgroup that is not characteristic.-/
theorem exercise_4_4_6b : ∃ (G : Type*) (hG : Group G) (H : @Subgroup G hG), @Characteristic G hG H ∧ ¬ @Normal G hG H :=
⊢ ∃ G hG H, H.Characteristic ∧ ¬H.Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_4_8a
test
/-- Let $G$ be a group with subgroups $H$ and $K$ with $H \leq K$. Prove that if $H$ is characteristic in $K$ and $K$ is normal in $G$ then $H$ is normal in $G$.-/
theorem exercise_4_4_8a {G : Type*} [Group G] (H K : Subgroup G) (hHK : H ≤ K) [hHK1 : (H.subgroupOf K).Normal] [hK : K.Normal] : H.Normal :=
G : Type u_1 inst✝ : Group G H K : Subgroup G hHK : H ≤ K hHK1 : (H.subgroupOf K).Normal hK : K.Normal ⊢ H.Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_13
test
/-- Prove that a group of order 56 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.-/
theorem exercise_4_5_13 {G : Type*} [Group G] [Fintype G] (hG : card G = 56) : ∃ (p : ℕ) (P : Sylow p G), P.Normal :=
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : card G = 56 ⊢ ∃ p P, (↑P).Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_15
test
/-- Prove that a group of order 351 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order.-/
theorem exercise_4_5_15 {G : Type*} [Group G] [Fintype G] (hG : card G = 351) : ∃ (p : ℕ) (P : Sylow p G), P.Normal :=
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : card G = 351 ⊢ ∃ p P, (↑P).Normal
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_17
test
/-- Prove that if $|G|=105$ then $G$ has a normal Sylow 5 -subgroup and a normal Sylow 7-subgroup.-/
theorem exercise_4_5_17 {G : Type*} [Fintype G] [Group G] (hG : card G = 105) : Nonempty (Sylow 5 G) ∧ Nonempty (Sylow 7 G) :=
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G hG : card G = 105 ⊢ Nonempty (Sylow 5 G) ∧ Nonempty (Sylow 7 G)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_19
test
/-- Prove that if $|G|=6545$ then $G$ is not simple.-/
theorem exercise_4_5_19 {G : Type*} [Fintype G] [Group G] (hG : card G = 6545) : ¬ IsSimpleGroup G :=
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G hG : card G = 6545 ⊢ ¬IsSimpleGroup G
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_21
test
/-- Prove that if $|G|=2907$ then $G$ is not simple.-/
theorem exercise_4_5_21 {G : Type*} [Fintype G] [Group G] (hG : card G = 2907) : ¬ IsSimpleGroup G :=
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G hG : card G = 2907 ⊢ ¬IsSimpleGroup G
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_23
test
/-- Prove that if $|G|=462$ then $G$ is not simple.-/
theorem exercise_4_5_23 {G : Type*} [Fintype G] [Group G] (hG : card G = 462) : ¬ IsSimpleGroup G :=
G : Type u_1 inst✝¹ : Fintype G inst✝ : Group G hG : card G = 462 ⊢ ¬IsSimpleGroup G
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_4_5_33
test
/-- Let $P$ be a normal Sylow $p$-subgroup of $G$ and let $H$ be any subgroup of $G$. Prove that $P \cap H$ is the unique Sylow $p$-subgroup of $H$.-/
theorem exercise_4_5_33 {G : Type*} [Group G] [Fintype G] {p : ℕ} (P : Sylow p G) [hP : P.Normal] (H : Subgroup G) [Fintype H] : ∀ R : Sylow p H, R.toSubgroup = (H ⊓ P.toSubgroup).subgroupOf H ∧ Nonempty (Sylow p H) :=
G : Type u_1 inst✝² : Group G inst✝¹ : Fintype G p : ℕ P : Sylow p G hP : (↑P).Normal H : Subgroup G inst✝ : Fintype ↥H ⊢ ∀ (R : Sylow p ↥H), ↑R = (H ⊓ ↑P).subgroupOf H ∧ Nonempty (Sylow p ↥H)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_1_2
test
/-- Prove that if $u$ is a unit in $R$ then so is $-u$.-/
theorem exercise_7_1_2 {R : Type*} [Ring R] {u : R} (hu : IsUnit u) : IsUnit (-u) :=
R : Type u_1 inst✝ : Ring R u : R hu : IsUnit u ⊢ IsUnit (-u)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_1_12
test
/-- Prove that any subring of a field which contains the identity is an integral domain.-/
theorem exercise_7_1_12 {F : Type*} [Field F] {K : Subring F} (hK : (1 : F) ∈ K) : IsDomain K :=
F : Type u_1 inst✝ : Field F K : Subring F hK : 1 ∈ K ⊢ IsDomain ↥K
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_2_2
test
/-- Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b \in R$ such that $b p(x)=0$.-/
theorem exercise_7_2_2 {R : Type*} [Ring R] (p : Polynomial R) : p ∣ 0 ↔ ∃ b : R, b ≠ 0 ∧ b • p = 0 :=
R : Type u_1 inst✝ : Ring R p : R[X] ⊢ p ∣ 0 ↔ ∃ b, b ≠ 0 ∧ b • p = 0
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_3_16
test
/-- Let $\varphi: R \rightarrow S$ be a surjective homomorphism of rings. Prove that the image of the center of $R$ is contained in the center of $S$.-/
theorem exercise_7_3_16 {R S : Type*} [Ring R] [Ring S] {φ : R →+* S} (hf : Function.Surjective φ) : φ '' (center R) ⊂ center S :=
R : Type u_1 S : Type u_2 inst✝¹ : Ring R inst✝ : Ring S φ : R →+* S hf : Function.Surjective ⇑φ ⊢ ⇑φ '' Set.center R ⊂ Set.center S
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_7_4_27
test
/-- Let $R$ be a commutative ring with $1 \neq 0$. Prove that if $a$ is a nilpotent element of $R$ then $1-a b$ is a unit for all $b \in R$.-/
theorem exercise_7_4_27 {R : Type*} [CommRing R] (hR : (0 : R) ≠ 1) {a : R} (ha : IsNilpotent a) (b : R) : IsUnit (1-a*b) :=
R : Type u_1 inst✝ : CommRing R hR : 0 ≠ 1 a : R ha : IsNilpotent a b : R ⊢ IsUnit (1 - a * b)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_8_2_4
test
/-- Let $R$ be an integral domain. Prove that if the following two conditions hold then $R$ is a Principal Ideal Domain: (i) any two nonzero elements $a$ and $b$ in $R$ have a greatest common divisor which can be written in the form $r a+s b$ for some $r, s \in R$, and (ii) if $a_{1}, a_{2}, a_{3}, \ldots$ are nonzero elements of $R$ such that $a_{i+1} \mid a_{i}$ for all $i$, then there is a positive integer $N$ such that $a_{n}$ is a unit times $a_{N}$ for all $n \geq N$.-/
theorem exercise_8_2_4 {R : Type*} [Ring R][NoZeroDivisors R] [CancelCommMonoidWithZero R] [GCDMonoid R] (h1 : ∀ a b : R, a ≠ 0 → b ≠ 0 → ∃ r s : R, gcd a b = r*a + s*b) (h2 : ∀ a : ℕ → R, (∀ i j : ℕ, i < j → a i ∣ a j) → ∃ N : ℕ, ∀ n ≥ N, ∃ u : R, IsUnit u ∧ a n = u * a N) : IsPrincipalIdealRing R :=
R : Type u_1 inst✝³ : Ring R inst✝² : NoZeroDivisors R inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R h1 : ∀ (a b : R), a ≠ 0 → b ≠ 0 → ∃ r s, gcd a b = r * a + s * b h2 : ∀ (a : ℕ → R), (∀ (i j : ℕ), i < j → a i ∣ a j) → ∃ N, ∀ n ≥ N, ∃ u, IsUnit u ∧ a n = u * a N ⊢ IsPrincipalIdealRing R
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_8_3_5a
test
/-- Let $R=\mathbb{Z}[\sqrt{-n}]$ where $n$ is a squarefree integer greater than 3. Prove that $2, \sqrt{-n}$ and $1+\sqrt{-n}$ are irreducibles in $R$.-/
theorem exercise_8_3_5a {n : ℤ} (hn0 : n > 3) (hn1 : Squarefree n) : Irreducible (2 : Zsqrtd $ -n) ∧ Irreducible (⟨0, 1⟩ : Zsqrtd $ -n) ∧ Irreducible (1 + ⟨0, 1⟩ : Zsqrtd $ -n) :=
n : ℤ hn0 : n > 3 hn1 : Squarefree n ⊢ Irreducible 2 ∧ Irreducible { re := 0, im := 1 } ∧ Irreducible (1 + { re := 0, im := 1 })
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_8_3_6b
test
/-- Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \bmod 4$. Prove that the quotient ring $\mathbb{Z}[i] /(q)$ is a field with $q^{2}$ elements.-/
theorem exercise_8_3_6b {q : ℕ} (hq0 : q.Prime) (hq1 : q ≡ 3 [ZMOD 4]) {R : Type} [Ring R] (hR : R = (GaussianInt ⧸ span ({↑q} : Set GaussianInt))) : IsField R ∧ ∃ finR : Fintype R, @card R finR = q^2 :=
q : ℕ hq0 : q.Prime hq1 : ↑q ≡ 3 [ZMOD 4] R : Type inst✝ : Ring R hR : R = (GaussianInt ⧸ span {↑q}) ⊢ IsField R ∧ ∃ finR, card R = q ^ 2
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_1_10
test
/-- Prove that the ring $\mathbb{Z}\left[x_{1}, x_{2}, x_{3}, \ldots\right] /\left(x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}, \ldots\right)$ contains infinitely many minimal prime ideals.-/
theorem exercise_9_1_10 {f : ℕ → MvPolynomial ℕ ℤ} (hf : f = λ i => MvPolynomial.X i * MvPolynomial.X (i+1)): Infinite (minimalPrimes (MvPolynomial ℕ ℤ ⧸ span (range f))) :=
f : ℕ → MvPolynomial ℕ ℤ hf : f = fun i => MvPolynomial.X i * MvPolynomial.X (i + 1) ⊢ Infinite ↑(minimalPrimes (MvPolynomial ℕ ℤ ⧸ span (range f)))
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_4_2a
test
/-- Prove that $x^4-4x^3+6$ is irreducible in $\mathbb{Z}[x]$.-/
theorem exercise_9_4_2a : Irreducible (X^4 - 4*X^3 + 6 : Polynomial ℤ) :=
⊢ Irreducible (X ^ 4 - 4 * X ^ 3 + 6)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_4_2c
test
/-- Prove that $x^4+4x^3+6x^2+2x+1$ is irreducible in $\mathbb{Z}[x]$.-/
theorem exercise_9_4_2c : Irreducible (X^4 + 4*X^3 + 6*X^2 + 2*X + 1 : Polynomial ℤ) :=
⊢ Irreducible (X ^ 4 + 4 * X ^ 3 + 6 * X ^ 2 + 2 * X + 1)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_9_4_9
test
/-- Prove that the polynomial $x^{2}-\sqrt{2}$ is irreducible over $\mathbb{Z}[\sqrt{2}]$. You may assume that $\mathbb{Z}[\sqrt{2}]$ is a U.F.D.-/
theorem exercise_9_4_9 : Irreducible (X^2 - C Zsqrtd.sqrtd : Polynomial (Zsqrtd 2)) :=
⊢ Irreducible (X ^ 2 - C Zsqrtd.sqrtd)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_11_1_13
test
/-- Prove that as vector spaces over $\mathbb{Q}, \mathbb{R}^n \cong \mathbb{R}$, for all $n \in \mathbb{Z}^{+}$.-/
def exercise_11_1_13 {ι : Type*} [Fintype ι] : (ι → ℝ) ≃ₗ[ℚ] ℝ :=
ι : Type u_1 inst✝ : Fintype ι ⊢ (ι → ℝ) ≃ₗ[ℚ] ℝ
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
exercise_13_3b
test
/-- Show that the collection $$\mathcal{T}_\infty = \{U | X - U \text{ is infinite or empty or all of X}\}$$ does not need to be a topology on the set $X$.-/
theorem exercise_13_3b : ¬ ∀ X : Type, ∀s : Set (Set X), (∀ t : Set X, t ∈ s → (Set.Infinite tᶜ ∨ t = ∅ ∨ t = ⊤)) → (Set.Infinite (⋃₀ s)ᶜ ∨ (⋃₀ s) = ∅ ∨ (⋃₀ s) = ⊤) :=
⊢ ¬∀ (X : Type) (s : Set (Set X)), (∀ t ∈ s, tᶜ.Infinite ∨ t = ∅ ∨ t = ⊤) → (⋃₀ s)ᶜ.Infinite ∨ ⋃₀ s = ∅ ∨ ⋃₀ s = ⊤
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_13_4a2
test
/-- If $\mathcal{T}_\alpha$ is a family of topologies on $X$, show that $\bigcup \mathcal{T}_\alpha$ does not need to be a topology on $X$.-/
theorem exercise_13_4a2 : ∃ (X I : Type*) (T : I → Set (Set X)), (∀ i, is_topology X (T i)) ∧ ¬ is_topology X (⋂ i : I, T i) :=
⊢ ∃ X I T, (∀ (i : I), is_topology X (T i)) ∧ ¬is_topology X (⋂ i, T i)
import Mathlib open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
exercise_13_4b2
test
/-- Let $\mathcal{T}_\alpha$ be a family of topologies on $X$. Show that there is a unique largest topology on $X$ contained in all the collections $\mathcal{T}_\alpha$.-/
theorem exercise_13_4b2 (X I : Type*) (T : I → Set (Set X)) (h : ∀ i, is_topology X (T i)) : ∃! T', is_topology X T' ∧ (∀ i, T' ⊆ T i) ∧ ∀ T'', is_topology X T'' → (∀ i, T'' ⊆ T i) → T' ⊆ T'' :=
X : Type u_1 I : Type u_2 T : I → Set (Set X) h : ∀ (i : I), is_topology X (T i) ⊢ ∃! T', is_topology X T' ∧ (∀ (i : I), T' ⊆ T i) ∧ ∀ (T'' : Set (Set X)), is_topology X T'' → (∀ (i : I), T'' ⊆ T i) → T' ⊆ T''
import Mathlib open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
exercise_13_5b
test
/-- Show that if $\mathcal{A}$ is a subbasis for a topology on $X$, then the topology generated by $\mathcal{A}$ equals the intersection of all topologies on $X$ that contain $\mathcal{A}$.-/
theorem exercise_13_5b {X : Type*} [t : TopologicalSpace X] (A : Set (Set X)) (hA : t = generateFrom A) : generateFrom A = generateFrom (sInter {T | is_topology X T ∧ A ⊆ T}) :=
X : Type u_1 t : TopologicalSpace X A : Set (Set X) hA : t = generateFrom A ⊢ generateFrom A = generateFrom (⋂₀ {T | is_topology X T ∧ A ⊆ T})
import Mathlib open Filter Set TopologicalSpace open scoped Topology def is_topology (X : Type*) (T : Set (Set X)) := univ ∈ T ∧ (∀ s t, s ∈ T → t ∈ T → s ∩ t ∈ T) ∧ (∀s, (∀t ∈ s, t ∈ T) → sUnion s ∈ T)
exercise_13_8a
test
/-- Show that the collection $\{(a,b) \mid a < b, a \text{ and } b \text{ rational}\}$ is a basis that generates the standard topology on $\mathbb{R}$.-/
theorem exercise_13_8a : IsTopologicalBasis {S : Set ℝ | ∃ a b : ℚ, a < b ∧ S = Ioo ↑a ↑b} :=
⊢ IsTopologicalBasis {S | ∃ a b, a < b ∧ S = Ioo ↑a ↑b}
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_16_1
test
/-- Show that if $Y$ is a subspace of $X$, and $A$ is a subset of $Y$, then the topology $A$ inherits as a subspace of $Y$ is the same as the topology it inherits as a subspace of $X$.-/
theorem exercise_16_1 {X : Type*} [TopologicalSpace X] (Y : Set X) (A : Set Y) : ∀ U : Set A, IsOpen U ↔ IsOpen (Subtype.val '' U) :=
X : Type u_1 inst✝ : TopologicalSpace X Y : Set X A : Set ↑Y ⊢ ∀ (U : Set ↑A), IsOpen U ↔ IsOpen (Subtype.val '' U)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_16_6
test
/-- Show that the countable collection \[\{(a, b) \times (c, d) \mid a < b \text{ and } c < d, \text{ and } a, b, c, d \text{ are rational}\}\] is a basis for $\mathbb{R}^2$.-/
theorem exercise_16_6 (S : Set (Set (ℝ × ℝ))) (hS : ∀ s, s ∈ S → ∃ a b c d, (rational a ∧ rational b ∧ rational c ∧ rational d ∧ s = {x | ∃ x₁ x₂, x = (x₁, x₂) ∧ a < x₁ ∧ x₁ < b ∧ c < x₂ ∧ x₂ < d})) : IsTopologicalBasis S :=
S : Set (Set (ℝ × ℝ)) hS : ∀ s ∈ S, ∃ a b c d, rational a ∧ rational b ∧ rational c ∧ rational d ∧ s = {x | ∃ x₁ x₂, x = (x₁, x₂) ∧ a < x₁ ∧ x₁ < b ∧ c < x₂ ∧ x₂ < d} ⊢ IsTopologicalBasis S
import Mathlib open Filter Set TopologicalSpace open scoped Topology def rational (x : ℝ) := x ∈ range ((↑) : ℚ → ℝ)
exercise_18_8a
test
/-- Let $Y$ be an ordered set in the order topology. Let $f, g: X \rightarrow Y$ be continuous. Show that the set $\{x \mid f(x) \leq g(x)\}$ is closed in $X$.-/
theorem exercise_18_8a {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] [LinearOrder Y] [OrderTopology Y] {f g : X → Y} (hf : Continuous f) (hg : Continuous g) : IsClosed {x | f x ≤ g x} :=
X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : LinearOrder Y inst✝ : OrderTopology Y f g : X → Y hf : Continuous f hg : Continuous g ⊢ IsClosed {x | f x ≤ g x}
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_18_13
test
/-- Let $A \subset X$; let $f: A \rightarrow Y$ be continuous; let $Y$ be Hausdorff. Show that if $f$ may be extended to a continuous function $g: \bar{A} \rightarrow Y$, then $g$ is uniquely determined by $f$.-/
theorem exercise_18_13 {X : Type*} [TopologicalSpace X] {Y : Type*} [TopologicalSpace Y] [T2Space Y] {A : Set X} {f : A → Y} (hf : Continuous f) (g : closure A → Y) (g_con : Continuous g) : ∀ (g' : closure A → Y), Continuous g' → (∀ (x : closure A), g x = g' x) :=
X : Type u_1 inst✝² : TopologicalSpace X Y : Type u_2 inst✝¹ : TopologicalSpace Y inst✝ : T2Space Y A : Set X f : ↑A → Y hf : Continuous f g : ↑(closure A) → Y g_con : Continuous g ⊢ ∀ (g' : ↑(closure A) → Y), Continuous g' → ∀ (x : ↑(closure A)), g x = g' x
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_20_2
test
/-- Show that $\mathbb{R} \times \mathbb{R}$ in the dictionary order topology is metrizable.-/
theorem exercise_20_2 [TopologicalSpace (ℝ ×ₗ ℝ)] [OrderTopology (ℝ ×ₗ ℝ)] : MetrizableSpace (ℝ ×ₗ ℝ) :=
inst✝¹ : TopologicalSpace (Lex (ℝ × ℝ)) inst✝ : OrderTopology (Lex (ℝ × ℝ)) ⊢ MetrizableSpace (Lex (ℝ × ℝ))
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_21_6b
test
/-- Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by the equation $f_{n}(x)=x^{n}$. Show that the sequence $\left(f_{n}\right)$ does not converge uniformly.-/
theorem exercise_21_6b (f : ℕ → I → ℝ ) (h : ∀ x n, f n x = x ^ n) : ¬ ∃ f₀, TendstoUniformly f f₀ atTop :=
f : ℕ → ↑I → ℝ h : ∀ (x : ↑I) (n : ℕ), f n x = ↑x ^ n ⊢ ¬∃ f₀, TendstoUniformly f f₀ atTop
import Mathlib open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
exercise_22_2a
test
/-- Let $p: X \rightarrow Y$ be a continuous map. Show that if there is a continuous map $f: Y \rightarrow X$ such that $p \circ f$ equals the identity map of $Y$, then $p$ is a quotient map.-/
theorem exercise_22_2a {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] (p : X → Y) (h : Continuous p) : QuotientMap p ↔ ∃ (f : Y → X), Continuous f ∧ p ∘ f = id :=
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y p : X → Y h : Continuous p ⊢ QuotientMap p ↔ ∃ f, Continuous f ∧ p ∘ f = id
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_22_5
test
/-- Let $p \colon X \rightarrow Y$ be an open map. Show that if $A$ is open in $X$, then the map $q \colon A \rightarrow p(A)$ obtained by restricting $p$ is an open map.-/
theorem exercise_22_5 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] (p : X → Y) (hp : IsOpenMap p) (A : Set X) (hA : IsOpen A) : IsOpenMap (p ∘ Subtype.val : A → Y) :=
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y p : X → Y hp : IsOpenMap p A : Set X hA : IsOpen A ⊢ IsOpenMap (p ∘ Subtype.val)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_23_3
test
/-- Let $\left\{A_{\alpha}\right\}$ be a collection of connected subspaces of $X$; let $A$ be a connected subset of $X$. Show that if $A \cap A_{\alpha} \neq \varnothing$ for all $\alpha$, then $A \cup\left(\bigcup A_{\alpha}\right)$ is connected.-/
theorem exercise_23_3 {X : Type*} [TopologicalSpace X] [TopologicalSpace X] {A : ℕ → Set X} (hAn : ∀ n, IsConnected (A n)) (A₀ : Set X) (hA : IsConnected A₀) (h : ∀ n, A₀ ∩ A n ≠ ∅) : IsConnected (A₀ ∪ (⋃ n, A n)) :=
X : Type u_1 inst✝¹ inst✝ : TopologicalSpace X A : ℕ → Set X hAn : ∀ (n : ℕ), IsConnected (A n) A₀ : Set X hA : IsConnected A₀ h : ∀ (n : ℕ), A₀ ∩ A n ≠ ∅ ⊢ IsConnected (A₀ ∪ ⋃ n, A n)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_23_6
test
/-- Let $A \subset X$. Show that if $C$ is a connected subspace of $X$ that intersects both $A$ and $X-A$, then $C$ intersects $\operatorname{Bd} A$.-/
theorem exercise_23_6 {X : Type*} [TopologicalSpace X] {A C : Set X} (hc : IsConnected C) (hCA : C ∩ A ≠ ∅) (hCXA : C ∩ Aᶜ ≠ ∅) : C ∩ (frontier A) ≠ ∅ :=
X : Type u_1 inst✝ : TopologicalSpace X A C : Set X hc : IsConnected C hCA : C ∩ A ≠ ∅ hCXA : C ∩ Aᶜ ≠ ∅ ⊢ C ∩ frontier A ≠ ∅
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_23_11
test
/-- Let $p: X \rightarrow Y$ be a quotient map. Show that if each set $p^{-1}(\{y\})$ is connected, and if $Y$ is connected, then $X$ is connected.-/
theorem exercise_23_11 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] (p : X → Y) (hq : QuotientMap p) (hY : ConnectedSpace Y) (hX : ∀ y : Y, IsConnected (p ⁻¹' {y})) : ConnectedSpace X :=
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y p : X → Y hq : QuotientMap p hY : ConnectedSpace Y hX : ∀ (y : Y), IsConnected (p ⁻¹' {y}) ⊢ ConnectedSpace X
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_24_3a
test
/-- Let $f \colon X \rightarrow X$ be continuous. Show that if $X = [0, 1]$, there is a point $x$ such that $f(x) = x$. (The point $x$ is called a fixed point of $f$.)-/
theorem exercise_24_3a [TopologicalSpace I] [CompactSpace I] (f : I → I) (hf : Continuous f) : ∃ (x : I), f x = x :=
I : Type u_1 inst✝¹ : TopologicalSpace I inst✝ : CompactSpace I f : I → I hf : Continuous f ⊢ ∃ x, f x = x
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_25_9
test
/-- Let $G$ be a topological group; let $C$ be the component of $G$ containing the identity element $e$. Show that $C$ is a normal subgroup of $G$.-/
theorem exercise_25_9 {G : Type*} [TopologicalSpace G] [Group G] [TopologicalGroup G] (C : Set G) (h : C = connectedComponent 1) : IsNormalSubgroup C :=
G : Type u_1 inst✝² : TopologicalSpace G inst✝¹ : Group G inst✝ : TopologicalGroup G C : Set G h : C = connectedComponent 1 ⊢ IsNormalSubgroup C
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_26_12
test
/-- Let $p: X \rightarrow Y$ be a closed continuous surjective map such that $p^{-1}(\{y\})$ is compact, for each $y \in Y$. (Such a map is called a perfect map.) Show that if $Y$ is compact, then $X$ is compact.-/
theorem exercise_26_12 {X Y : Type*} [TopologicalSpace X] [TopologicalSpace Y] (p : X → Y) (h : Function.Surjective p) (hc : Continuous p) (hp : ∀ y, IsCompact (p ⁻¹' {y})) (hY : CompactSpace Y) : CompactSpace X :=
X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y p : X → Y h : Function.Surjective p hc : Continuous p hp : ∀ (y : Y), IsCompact (p ⁻¹' {y}) hY : CompactSpace Y ⊢ CompactSpace X
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_28_4
test
/-- A space $X$ is said to be countably compact if every countable open covering of $X$ contains a finite subcollection that covers $X$. Show that for a $T_1$ space $X$, countable compactness is equivalent to limit point compactness.-/
theorem exercise_28_4 {X : Type*} [TopologicalSpace X] (hT1 : T1Space X) : countably_compact X ↔ limit_point_compact X :=
X : Type u_1 inst✝ : TopologicalSpace X hT1 : T1Space X ⊢ countably_compact X ↔ limit_point_compact X
import Mathlib open Filter Set TopologicalSpace open scoped Topology def countably_compact (X : Type*) [TopologicalSpace X] := ∀ U : ℕ → Set X, (∀ i, IsOpen (U i)) ∧ ((univ : Set X) ⊆ ⋃ i, U i) → (∃ t : Finset ℕ, (univ : Set X) ⊆ ⋃ i ∈ t, U i) def limit_point_compact (X : Type*) [TopologicalSpace X] := ∀ U : Set X, Infinite U → ∃ x ∈ U, ClusterPt x (𝓟 U)
exercise_28_6
test
/-- Let $(X, d)$ be a metric space. If $f: X \rightarrow X$ satisfies the condition $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$, then $f$ is called an isometry of $X$. Show that if $f$ is an isometry and $X$ is compact, then $f$ is bijective and hence a homeomorphism.-/
theorem exercise_28_6 {X : Type*} [MetricSpace X] [CompactSpace X] {f : X → X} (hf : Isometry f) : Function.Bijective f :=
X : Type u_1 inst✝¹ : MetricSpace X inst✝ : CompactSpace X f : X → X hf : Isometry f ⊢ Function.Bijective f
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_29_4
test
/-- Show that $[0, 1]^\omega$ is not locally compact in the uniform topology.-/
theorem exercise_29_4 [TopologicalSpace (ℕ → I)] : ¬ LocallyCompactSpace (ℕ → I) :=
inst✝ : TopologicalSpace (ℕ → ↑I) ⊢ ¬LocallyCompactSpace (ℕ → ↑I)
import Mathlib open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
exercise_30_10
test
/-- Show that if $X$ is a countable product of spaces having countable dense subsets, then $X$ has a countable dense subset.-/
theorem exercise_30_10 {X : ℕ → Type*} [∀ i, TopologicalSpace (X i)] (h : ∀ i, ∃ (s : Set (X i)), Countable s ∧ Dense s) : ∃ (s : Set (Π i, X i)), Countable s ∧ Dense s :=
X : ℕ → Type u_1 inst✝ : (i : ℕ) → TopologicalSpace (X i) h : ∀ (i : ℕ), ∃ s, Countable ↑s ∧ Dense s ⊢ ∃ s, Countable ↑s ∧ Dense s
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_31_1
test
/-- Show that if $X$ is regular, every pair of points of $X$ have neighborhoods whose closures are disjoint.-/
theorem exercise_31_1 {X : Type*} [TopologicalSpace X] (hX : RegularSpace X) (x y : X) : ∃ (U V : Set X), IsOpen U ∧ IsOpen V ∧ x ∈ U ∧ y ∈ V ∧ closure U ∩ closure V = ∅ :=
X : Type u_1 inst✝ : TopologicalSpace X hX : RegularSpace X x y : X ⊢ ∃ U V, IsOpen U ∧ IsOpen V ∧ x ∈ U ∧ y ∈ V ∧ closure U ∩ closure V = ∅
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_31_3
test
/-- Show that every order topology is regular.-/
theorem exercise_31_3 {α : Type*} [PartialOrder α] [TopologicalSpace α] (h : OrderTopology α) : RegularSpace α :=
α : Type u_1 inst✝¹ : PartialOrder α inst✝ : TopologicalSpace α h : OrderTopology α ⊢ RegularSpace α
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_32_2a
test
/-- Show that if $\prod X_\alpha$ is Hausdorff, then so is $X_\alpha$. Assume that each $X_\alpha$ is nonempty.-/
theorem exercise_32_2a {ι : Type*} {X : ι → Type*} [∀ i, TopologicalSpace (X i)] (h : ∀ i, Nonempty (X i)) (h2 : T2Space (Π i, X i)) : ∀ i, T2Space (X i) :=
ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) h : ∀ (i : ι), Nonempty (X i) h2 : T2Space ((i : ι) → X i) ⊢ ∀ (i : ι), T2Space (X i)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_32_2c
test
/-- Show that if $\prod X_\alpha$ is normal, then so is $X_\alpha$. Assume that each $X_\alpha$ is nonempty.-/
theorem exercise_32_2c {ι : Type*} {X : ι → Type*} [∀ i, TopologicalSpace (X i)] (h : ∀ i, Nonempty (X i)) (h2 : NormalSpace (Π i, X i)) : ∀ i, NormalSpace (X i) :=
ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) h : ∀ (i : ι), Nonempty (X i) h2 : NormalSpace ((i : ι) → X i) ⊢ ∀ (i : ι), NormalSpace (X i)
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_33_7
test
/-- Show that every locally compact Hausdorff space is completely regular.-/
theorem exercise_33_7 {X : Type*} [TopologicalSpace X] (hX : LocallyCompactSpace X) (hX' : T2Space X) : ∀ x A, IsClosed A ∧ ¬ x ∈ A → ∃ (f : X → I), Continuous f ∧ f x = 1 ∧ f '' A = {0} :=
X : Type u_1 inst✝ : TopologicalSpace X hX : LocallyCompactSpace X hX' : T2Space X ⊢ ∀ (x : X) (A : Set X), IsClosed A ∧ x ∉ A → ∃ f, Continuous f ∧ f x = 1 ∧ f '' A = {0}
import Mathlib open Filter Set TopologicalSpace open scoped Topology abbrev I : Set ℝ := Icc 0 1
exercise_34_9
test
/-- Let $X$ be a compact Hausdorff space that is the union of the closed subspaces $X_1$ and $X_2$. If $X_1$ and $X_2$ are metrizable, show that $X$ is metrizable.-/
theorem exercise_34_9 (X : Type*) [TopologicalSpace X] [CompactSpace X] (X1 X2 : Set X) (hX1 : IsClosed X1) (hX2 : IsClosed X2) (hX : X1 ∪ X2 = univ) (hX1m : MetrizableSpace X1) (hX2m : MetrizableSpace X2) : MetrizableSpace X :=
X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X X1 X2 : Set X hX1 : IsClosed X1 hX2 : IsClosed X2 hX : X1 ∪ X2 = univ hX1m : MetrizableSpace ↑X1 hX2m : MetrizableSpace ↑X2 ⊢ MetrizableSpace X
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_43_2
test
/-- Let $(X, d_X)$ and $(Y, d_Y)$ be metric spaces; let $Y$ be complete. Let $A \subset X$. Show that if $f \colon A \rightarrow Y$ is uniformly continuous, then $f$ can be uniquely extended to a continuous function $g \colon \bar{A} \rightarrow Y$, and $g$ is uniformly continuous.-/
theorem exercise_43_2 {X : Type*} [MetricSpace X] {Y : Type*} [MetricSpace Y] [CompleteSpace Y] (A : Set X) (f : X → Y) (hf : UniformContinuousOn f A) : ∃! (g : X → Y), ContinuousOn g (closure A) ∧ UniformContinuousOn g (closure A) ∧ ∀ (x : A), g x = f x :=
X : Type u_1 inst✝² : MetricSpace X Y : Type u_2 inst✝¹ : MetricSpace Y inst✝ : CompleteSpace Y A : Set X f : X → Y hf : UniformContinuousOn f A ⊢ ∃! g, ContinuousOn g (closure A) ∧ UniformContinuousOn g (closure A) ∧ ∀ (x : ↑A), g ↑x = f ↑x
import Mathlib open Filter Set TopologicalSpace open scoped Topology
exercise_1_30
test
/-- Prove that $\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is not an integer.-/
theorem exercise_1_30 {n : ℕ} : ¬ ∃ a : ℤ, ∑ i : Fin n, (1 : ℚ) / (n+2) = a :=
n : ℕ ⊢ ¬∃ a, ∑ i : Fin n, 1 / (↑n + 2) = ↑a
import Mathlib open Real open scoped BigOperators
exercise_2_4
test
/-- If $a$ is a nonzero integer, then for $n>m$ show that $\left(a^{2^{n}}+1, a^{2^{m}}+1\right)=1$ or 2 depending on whether $a$ is odd or even.-/
theorem exercise_2_4 {a : ℤ} (ha : a ≠ 0) (f_a := λ n m : ℕ => Int.gcd (a^(2^n) + 1) (a^(2^m)+1)) {n m : ℕ} (hnm : n > m) : (Odd a → f_a n m = 1) ∧ (Even a → f_a n m = 2) :=
a : ℤ ha : a ≠ 0 f_a : optParam (ℕ → ℕ → ℕ) fun n m => (a ^ 2 ^ n + 1).gcd (a ^ 2 ^ m + 1) n m : ℕ hnm : n > m ⊢ (Odd a → f_a n m = 1) ∧ (Even a → f_a n m = 2)
import Mathlib open Real open scoped BigOperators
exercise_2_27a
test
/-- Show that $\sum^{\prime} 1 / n$, the sum being over square free integers, diverges.-/
theorem exercise_2_27a : ¬ Summable (λ i : {p : ℤ // Squarefree p} => (1 : ℚ) / i) :=
⊢ ¬Summable fun i => 1 / ↑↑i
import Mathlib open Real open scoped BigOperators
exercise_3_4
test
/-- Show that the equation $3 x^{2}+2=y^{2}$ has no solution in integers.-/
theorem exercise_3_4 : ¬ ∃ x y : ℤ, 3*x^2 + 2 = y^2 :=
⊢ ¬∃ x y, 3 * x ^ 2 + 2 = y ^ 2
import Mathlib open Real open scoped BigOperators
exercise_3_10
test
/-- If $n$ is not a prime, show that $(n-1) ! \equiv 0(n)$, except when $n=4$.-/
theorem exercise_3_10 {n : ℕ} (hn0 : ¬ n.Prime) (hn1 : n ≠ 4) : Nat.factorial (n-1) ≡ 0 [MOD n] :=
n : ℕ hn0 : ¬n.Prime hn1 : n ≠ 4 ⊢ (n - 1).factorial ≡ 0 [MOD n]
import Mathlib open Real open scoped BigOperators
exercise_4_4
test
/-- Consider a prime $p$ of the form $4 t+1$. Show that $a$ is a primitive root modulo $p$ iff $-a$ is a primitive root modulo $p$.-/
theorem exercise_4_4 {p t: ℕ} (hp0 : p.Prime) (hp1 : p = 4*t + 1) (a : ZMod p) : IsPrimitiveRoot a p ↔ IsPrimitiveRoot (-a) p :=
p t : ℕ hp0 : p.Prime hp1 : p = 4 * t + 1 a : ZMod p ⊢ IsPrimitiveRoot a p ↔ IsPrimitiveRoot (-a) p
import Mathlib open Real open scoped BigOperators
exercise_4_6
test
/-- If $p=2^{n}+1$ is a Fermat prime, show that 3 is a primitive root modulo $p$.-/
theorem exercise_4_6 {p n : ℕ} (hp : p.Prime) (hpn : p = 2^n + 1) : IsPrimitiveRoot 3 p :=
p n : ℕ hp : p.Prime hpn : p = 2 ^ n + 1 ⊢ IsPrimitiveRoot 3 p
import Mathlib open Real open scoped BigOperators
exercise_4_11
test
/-- Prove that $1^{k}+2^{k}+\cdots+(p-1)^{k} \equiv 0(p)$ if $p-1 \nmid k$ and $-1(p)$ if $p-1 \mid k$.-/
theorem exercise_4_11 {p : ℕ} (hp : p.Prime) (k s: ℕ) (s := ∑ n : Fin p, (n : ℕ) ^ k) : ((¬ p - 1 ∣ k) → s ≡ 0 [MOD p]) ∧ (p - 1 ∣ k → s ≡ 0 [MOD p]) :=
p : ℕ hp : p.Prime k s✝ : ℕ s : optParam ℕ (∑ n : Fin p, ↑n ^ k) ⊢ (¬p - 1 ∣ k → s ≡ 0 [MOD p]) ∧ (p - 1 ∣ k → s ≡ 0 [MOD p])
import Mathlib open Real open scoped BigOperators
exercise_5_28
test
/-- Show that $x^{4} \equiv 2(p)$ has a solution for $p \equiv 1(4)$ iff $p$ is of the form $A^{2}+64 B^{2}$.-/
theorem exercise_5_28 {p : ℕ} (hp : p.Prime) (hp1 : p ≡ 1 [MOD 4]): ∃ x, x^4 ≡ 2 [MOD p] ↔ ∃ A B, p = A^2 + 64*B^2 :=
p : ℕ hp : p.Prime hp1 : p ≡ 1 [MOD 4] ⊢ ∃ x, x ^ 4 ≡ 2 [MOD p] ↔ ∃ A B, p = A ^ 2 + 64 * B ^ 2
import Mathlib open Real open scoped BigOperators
exercise_12_12
test
/-- Show that $\sin (\pi / 12)$ is an algebraic number.-/
theorem exercise_12_12 : IsAlgebraic ℚ (sin (Real.pi/12)) :=
⊢ IsAlgebraic ℚ (π / 12).sin
import Mathlib open Real open scoped BigOperators
exercise_2018_a5
test
/-- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function satisfying $f(0)=0, f(1)=1$, and $f(x) \geq 0$ for all $x \in$ $\mathbb{R}$. Show that there exist a positive integer $n$ and a real number $x$ such that $f^{(n)}(x)<0$.-/
theorem exercise_2018_a5 (f : ℝ → ℝ) (hf : ContDiff ℝ ⊤ f) (hf0 : f 0 = 0) (hf1 : f 1 = 1) (hf2 : ∀ x, f x ≥ 0) : ∃ (n : ℕ) (x : ℝ), iteratedDeriv n f x = 0 :=
f : ℝ → ℝ hf : ContDiff ℝ ⊤ f hf0 : f 0 = 0 hf1 : f 1 = 1 hf2 : ∀ (x : ℝ), f x ≥ 0 ⊢ ∃ n x, iteratedDeriv n f x = 0
import Mathlib open scoped BigOperators
exercise_2018_b4
test
/-- Given a real number $a$, we define a sequence by $x_{0}=1$, $x_{1}=x_{2}=a$, and $x_{n+1}=2 x_{n} x_{n-1}-x_{n-2}$ for $n \geq 2$. Prove that if $x_{n}=0$ for some $n$, then the sequence is periodic.-/
theorem exercise_2018_b4 (a : ℝ) (x : ℕ → ℝ) (hx0 : x 0 = a) (hx1 : x 1 = a) (hxn : ∀ n : ℕ, n ≥ 2 → x (n+1) = 2*(x n)*(x (n-1)) - x (n-2)) (h : ∃ n, x n = 0) : ∃ c, Function.Periodic x c :=
a : ℝ x : ℕ → ℝ hx0 : x 0 = a hx1 : x 1 = a hxn : ∀ n ≥ 2, x (n + 1) = 2 * x n * x (n - 1) - x (n - 2) h : ∃ n, x n = 0 ⊢ ∃ c, Function.Periodic x c
import Mathlib open scoped BigOperators
exercise_2014_a5
test
/-- Let-/
theorem exercise_2014_a5 (P : ℕ → Polynomial ℤ) (hP : ∀ n, P n = ∑ i : Fin n, (n+1) * Polynomial.X ^ n) : ∀ (j k : ℕ), j ≠ k → IsCoprime (P j) (P k) :=
P : ℕ → Polynomial ℤ hP : ∀ (n : ℕ), P n = ∑ i : Fin n, (↑n + 1) * Polynomial.X ^ n ⊢ ∀ (j k : ℕ), j ≠ k → IsCoprime (P j) (P k)
import Mathlib open scoped BigOperators
exercise_2001_a5
test
/-- Prove that there are unique positive integers $a, n$ such that $a^{n+1}-(a+1)^n=2001$.-/
theorem exercise_2001_a5 : ∃! a : ℕ, ∃! n : ℕ, a > 0 ∧ n > 0 ∧ a^(n+1) - (a+1)^n = 2001 :=
⊢ ∃! a, ∃! n, a > 0 ∧ n > 0 ∧ a ^ (n + 1) - (a + 1) ^ n = 2001
import Mathlib open scoped BigOperators
exercise_1999_b4
test
/-- Let $f$ be a real function with a continuous third derivative such that $f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ are positive for all $x$. Suppose that $f^{\prime \prime \prime}(x) \leq f(x)$ for all $x$. Show that $f^{\prime}(x)<2 f(x)$ for all $x$.-/
theorem exercise_1999_b4 (f : ℝ → ℝ) (hf: ContDiff ℝ 3 f) (hf1 : ∀ n ≤ 3, ∀ x : ℝ, iteratedDeriv n f x > 0) (hf2 : ∀ x : ℝ, iteratedDeriv 3 f x ≤ f x) : ∀ x : ℝ, deriv f x < 2 * f x :=
f : ℝ → ℝ hf : ContDiff ℝ 3 f hf1 : ∀ n ≤ 3, ∀ (x : ℝ), iteratedDeriv n f x > 0 hf2 : ∀ (x : ℝ), iteratedDeriv 3 f x ≤ f x ⊢ ∀ (x : ℝ), deriv f x < 2 * f x
import Mathlib open scoped BigOperators
exercise_1998_b6
test
/-- Prove that, for any integers $a, b, c$, there exists a positive integer $n$ such that $\sqrt{n^3+a n^2+b n+c}$ is not an integer.-/
theorem exercise_1998_b6 (a b c : ℤ) : ∃ n : ℤ, n > 0 ∧ ¬ ∃ m : ℤ, Real.sqrt (n^3 + a*n^2 + b*n + c) = m :=
a b c : ℤ ⊢ ∃ n > 0, ¬∃ m, √(↑n ^ 3 + ↑a * ↑n ^ 2 + ↑b * ↑n + ↑c) = ↑m
import Mathlib open scoped BigOperators