text
stringlengths 0
4.99k
|
---|
Epoch 97/200 |
45/45 [==============================] - 23s 518ms/step - loss: 0.1951 - sparse_categorical_accuracy: 0.9264 - val_loss: 0.3281 - val_sparse_categorical_accuracy: 0.8682 |
Epoch 98/200 |
45/45 [==============================] - 23s 516ms/step - loss: 0.1899 - sparse_categorical_accuracy: 0.9354 - val_loss: 0.3307 - val_sparse_categorical_accuracy: 0.8696 |
Epoch 99/200 |
45/45 [==============================] - 23s 519ms/step - loss: 0.1901 - sparse_categorical_accuracy: 0.9250 - val_loss: 0.3307 - val_sparse_categorical_accuracy: 0.8710 |
Epoch 100/200 |
45/45 [==============================] - 23s 516ms/step - loss: 0.1902 - sparse_categorical_accuracy: 0.9319 - val_loss: 0.3259 - val_sparse_categorical_accuracy: 0.8696 |
Epoch 101/200 |
45/45 [==============================] - 23s 518ms/step - loss: 0.1868 - sparse_categorical_accuracy: 0.9358 - val_loss: 0.3262 - val_sparse_categorical_accuracy: 0.8724 |
Epoch 102/200 |
45/45 [==============================] - 23s 518ms/step - loss: 0.1779 - sparse_categorical_accuracy: 0.9431 - val_loss: 0.3250 - val_sparse_categorical_accuracy: 0.8710 |
Epoch 103/200 |
45/45 [==============================] - 23s 520ms/step - loss: 0.1870 - sparse_categorical_accuracy: 0.9351 - val_loss: 0.3260 - val_sparse_categorical_accuracy: 0.8724 |
Epoch 104/200 |
45/45 [==============================] - 23s 521ms/step - loss: 0.1826 - sparse_categorical_accuracy: 0.9344 - val_loss: 0.3232 - val_sparse_categorical_accuracy: 0.8766 |
Epoch 105/200 |
45/45 [==============================] - 23s 519ms/step - loss: 0.1731 - sparse_categorical_accuracy: 0.9399 - val_loss: 0.3245 - val_sparse_categorical_accuracy: 0.8724 |
Epoch 106/200 |
45/45 [==============================] - 23s 518ms/step - loss: 0.1766 - sparse_categorical_accuracy: 0.9361 - val_loss: 0.3254 - val_sparse_categorical_accuracy: 0.8682 |
Epoch 107/200 |
Conclusions |
In about 110-120 epochs (25s each on Colab), the model reaches a training accuracy of ~0.95, validation accuracy of ~84 and a testing accuracy of ~85, without hyperparameter tuning. And that is for a model with less than 100k parameters. Of course, parameter count and accuracy could be improved by a hyperparameter search and a more sophisticated learning rate schedule, or a different optimizer. |
This notebook demonstrates how to do timeseries forecasting using a LSTM model. |
Setup |
This example requires TensorFlow 2.3 or higher. |
import pandas as pd |
import matplotlib.pyplot as plt |
import tensorflow as tf |
from tensorflow import keras |
Climate Data Time-Series |
We will be using Jena Climate dataset recorded by the Max Planck Institute for Biogeochemistry. The dataset consists of 14 features such as temperature, pressure, humidity etc, recorded once per 10 minutes. |
Location: Weather Station, Max Planck Institute for Biogeochemistry in Jena, Germany |
Time-frame Considered: Jan 10, 2009 - December 31, 2016 |
The table below shows the column names, their value formats, and their description. |
Index Features Format Description |
1 Date Time 01.01.2009 00:10:00 Date-time reference |
2 p (mbar) 996.52 The pascal SI derived unit of pressure used to quantify internal pressure. Meteorological reports typically state atmospheric pressure in millibars. |
3 T (degC) -8.02 Temperature in Celsius |
4 Tpot (K) 265.4 Temperature in Kelvin |
5 Tdew (degC) -8.9 Temperature in Celsius relative to humidity. Dew Point is a measure of the absolute amount of water in the air, the DP is the temperature at which the air cannot hold all the moisture in it and water condenses. |
6 rh (%) 93.3 Relative Humidity is a measure of how saturated the air is with water vapor, the %RH determines the amount of water contained within collection objects. |
7 VPmax (mbar) 3.33 Saturation vapor pressure |
8 VPact (mbar) 3.11 Vapor pressure |
9 VPdef (mbar) 0.22 Vapor pressure deficit |
10 sh (g/kg) 1.94 Specific humidity |
11 H2OC (mmol/mol) 3.12 Water vapor concentration |
12 rho (g/m ** 3) 1307.75 Airtight |
13 wv (m/s) 1.03 Wind speed |
14 max. wv (m/s) 1.75 Maximum wind speed |
15 wd (deg) 152.3 Wind direction in degrees |
from zipfile import ZipFile |
import os |
uri = \"https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip\" |
zip_path = keras.utils.get_file(origin=uri, fname=\"jena_climate_2009_2016.csv.zip\") |
zip_file = ZipFile(zip_path) |
zip_file.extractall() |
csv_path = \"jena_climate_2009_2016.csv\" |
df = pd.read_csv(csv_path) |
Raw Data Visualization |
To give us a sense of the data we are working with, each feature has been plotted below. This shows the distinct pattern of each feature over the time period from 2009 to 2016. It also shows where anomalies are present, which will be addressed during normalization. |
titles = [ |
\"Pressure\", |
\"Temperature\", |
\"Temperature in Kelvin\", |
\"Temperature (dew point)\", |
\"Relative Humidity\", |
\"Saturation vapor pressure\", |
\"Vapor pressure\", |
\"Vapor pressure deficit\", |
\"Specific humidity\", |
\"Water vapor concentration\", |
\"Airtight\", |
\"Wind speed\", |
\"Maximum wind speed\", |
\"Wind direction in degrees\", |
] |
feature_keys = [ |
\"p (mbar)\", |
\"T (degC)\", |
\"Tpot (K)\", |
\"Tdew (degC)\", |
\"rh (%)\", |
\"VPmax (mbar)\", |
\"VPact (mbar)\", |
\"VPdef (mbar)\", |
\"sh (g/kg)\", |
\"H2OC (mmol/mol)\", |
\"rho (g/m**3)\", |