|
|
|
# 30 分钟吃掉 Accelerate 模型训练加速工具 |
|
|
|
|
|
🤗 Accelerate 是 Hugging Face 开源的一个方便将 PyTorch 模型迁移到 GPU/multi-GPUs/TPU/fp16/bf16 模式下训练的小巧工具。 |
|
|
|
和标准的 PyTorch 方法相比,使用 Accelerate 进行多 GPU DDP 模式/TPU/fp16/bf16 训练你的模型变得非常简单,而且训练速度非常快。 |
|
|
|
官方范例:<url>https://github.com/huggingface/accelerate/tree/main/examples</url> |
|
|
|
本文将以一个图片分类模型为例,演示在 Accelerate 的帮助下使用 PyTorch 编写一套可以在 CPU、单 GPU、多 GPU (DDP) 模式、TPU 下通用的训练代码。 |
|
|
|
在我们的演示范例中,在 Kaggle 的双 GPU 环境下,双 GPU (DDP) 模式是单 GPU 训练速度的 1.6 倍,加速效果非常明显。 |
|
|
|
|
|
DP 和 DDP 的区别 |
|
|
|
* DP (DataParallel):实现简单但更慢。只能单机多卡使用。GPU 分成 server 节点和 worker 节点,有负载不均衡。 |
|
* DDP (DistributedDataParallel):更快但实现麻烦。可单机多卡也可多机多卡。各个 GPU 是平等的,无负载不均衡。 |
|
|
|
参考文章:《PyTorch 中的分布式训练之 DP vs. DDP》<url>https://zhuanlan.zhihu.com/p/356967195</url> |
|
|
|
|
|
```python |
|
#从 git 安装最新的 accelerate 仓库 |
|
!pip install git+https://github.com/huggingface/accelerate |
|
``` |
|
|
|
Kaggle 源码:https://www.kaggle.com/code/lyhue1991/kaggle-ddp-tpu-examples |
|
|
|
|
|
## 一、使用 CPU / 单 GPU 训练你的 PyTorch 模型 |
|
|
|
|
|
当系统存在 GPU 时,Accelerate 会自动使用 GPU 训练你的 PyTorch 模型,否则会使用 CPU 训练模型。 |
|
|
|
```python |
|
import os,PIL |
|
import numpy as np |
|
from torch.utils.data import DataLoader, Dataset |
|
import torch |
|
from torch import nn |
|
|
|
import torchvision |
|
from torchvision import transforms |
|
import datetime |
|
|
|
#====================================================================== |
|
# import accelerate |
|
from accelerate import Accelerator |
|
from accelerate.utils import set_seed |
|
#====================================================================== |
|
|
|
|
|
def create_dataloaders(batch_size=64): |
|
transform = transforms.Compose([transforms.ToTensor()]) |
|
|
|
ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform) |
|
ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform) |
|
|
|
dl_train = torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True, |
|
num_workers=2,drop_last=True) |
|
dl_val = torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False, |
|
num_workers=2,drop_last=True) |
|
return dl_train,dl_val |
|
|
|
|
|
def create_net(): |
|
net = nn.Sequential() |
|
net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3)) |
|
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) |
|
net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5)) |
|
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)) |
|
net.add_module("dropout",nn.Dropout2d(p = 0.1)) |
|
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))) |
|
net.add_module("flatten",nn.Flatten()) |
|
net.add_module("linear1",nn.Linear(256,128)) |
|
net.add_module("relu",nn.ReLU()) |
|
net.add_module("linear2",nn.Linear(128,10)) |
|
return net |
|
|
|
|
|
|
|
def training_loop(epochs = 5, |
|
lr = 1e-3, |
|
batch_size= 1024, |
|
ckpt_path = "checkpoint.pt", |
|
mixed_precision="no", #'fp16' or 'bf16' |
|
): |
|
|
|
train_dataloader, eval_dataloader = create_dataloaders(batch_size) |
|
model = create_net() |
|
|
|
|
|
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr) |
|
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr, |
|
epochs=epochs, steps_per_epoch=len(train_dataloader)) |
|
|
|
#====================================================================== |
|
# initialize accelerator and auto move data/model to accelerator.device |
|
set_seed(42) |
|
accelerator = Accelerator(mixed_precision=mixed_precision) |
|
accelerator.print(f'device {str(accelerator.device)} is used!') |
|
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare( |
|
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader) |
|
#====================================================================== |
|
|
|
|
|
for epoch in range(epochs): |
|
model.train() |
|
for step, batch in enumerate(train_dataloader): |
|
features,labels = batch |
|
preds = model(features) |
|
loss = nn.CrossEntropyLoss()(preds,labels) |
|
|
|
#====================================================================== |
|
#attention here! |
|
accelerator.backward(loss) #loss.backward() |
|
#====================================================================== |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
model.eval() |
|
accurate = 0 |
|
num_elems = 0 |
|
|
|
for _, batch in enumerate(eval_dataloader): |
|
features,labels = batch |
|
with torch.no_grad(): |
|
preds = model(features) |
|
predictions = preds.argmax(dim=-1) |
|
|
|
#====================================================================== |
|
#gather data from multi-gpus (used when in ddp mode) |
|
predictions = accelerator.gather_for_metrics(predictions) |
|
labels = accelerator.gather_for_metrics(labels) |
|
#====================================================================== |
|
|
|
accurate_preds = (predictions==labels) |
|
num_elems += accurate_preds.shape[0] |
|
accurate += accurate_preds.long().sum() |
|
|
|
eval_metric = accurate.item() / num_elems |
|
|
|
#====================================================================== |
|
#print logs and save ckpt |
|
accelerator.wait_for_everyone() |
|
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%") |
|
net_dict = accelerator.get_state_dict(model) |
|
accelerator.save(net_dict,ckpt_path+"_"+str(epoch)) |
|
#====================================================================== |
|
|
|
#training_loop(epochs = 5,lr = 1e-3,batch_size= 1024,ckpt_path = "checkpoint.pt", |
|
# mixed_precision="no") |
|
``` |
|
|
|
```python |
|
training_loop(epochs = 5,lr = 1e-4,batch_size= 1024, |
|
ckpt_path = "checkpoint.pt", |
|
mixed_precision="no") #mixed_precision='fp16' or 'bf16' |
|
``` |
|
|
|
``` |
|
device cuda is used! |
|
epoch【0】@2023-01-15 12:06:45 --> eval_metric= 95.20% |
|
epoch【1】@2023-01-15 12:07:01 --> eval_metric= 96.79% |
|
epoch【2】@2023-01-15 12:07:17 --> eval_metric= 98.47% |
|
epoch【3】@2023-01-15 12:07:34 --> eval_metric= 98.78% |
|
epoch【4】@2023-01-15 12:07:51 --> eval_metric= 98.87% |
|
``` |
|
|
|
|
|
|
|
## 二、使用多 GPU DDP 模式训练你的 PyTorch 模型 |
|
|
|
|
|
Kaggle 中右边 settings 中的 ACCELERATOR 选择 GPU T4x2。 |
|
|
|
|
|
### 1. 设置 config |
|
|
|
```python |
|
import os |
|
from accelerate.utils import write_basic_config |
|
write_basic_config() # Write a config file |
|
os._exit(0) # Restart the notebook to reload info from the latest config file |
|
|
|
``` |
|
|
|
```python |
|
# or answer some question to create a config |
|
#!accelerate config |
|
``` |
|
|
|
```python |
|
# %load /root/.cache/huggingface/accelerate/default_config.yaml |
|
{ |
|
"compute_environment": "LOCAL_MACHINE", |
|
"deepspeed_config": {}, |
|
"distributed_type": "MULTI_GPU", |
|
"downcast_bf16": false, |
|
"dynamo_backend": "NO", |
|
"fsdp_config": {}, |
|
"machine_rank": 0, |
|
"main_training_function": "main", |
|
"megatron_lm_config": {}, |
|
"mixed_precision": "no", |
|
"num_machines": 1, |
|
"num_processes": 2, |
|
"rdzv_backend": "static", |
|
"same_network": false, |
|
"use_cpu": false |
|
} |
|
|
|
``` |
|
|
|
### 2. 训练代码 |
|
|
|
|
|
与之前代码完全一致。 |
|
|
|
如果是脚本方式启动,需要将训练代码写入到脚本文件中,如 `cv_example.py` |
|
|
|
```python |
|
%%writefile cv_example.py |
|
import os,PIL |
|
import numpy as np |
|
from torch.utils.data import DataLoader, Dataset |
|
import torch |
|
from torch import nn |
|
|
|
import torchvision |
|
from torchvision import transforms |
|
import datetime |
|
|
|
#====================================================================== |
|
# import accelerate |
|
from accelerate import Accelerator |
|
from accelerate.utils import set_seed |
|
#====================================================================== |
|
|
|
|
|
def create_dataloaders(batch_size=64): |
|
transform = transforms.Compose([transforms.ToTensor()]) |
|
|
|
ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform) |
|
ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform) |
|
|
|
dl_train = torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True, |
|
num_workers=2,drop_last=True) |
|
dl_val = torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False, |
|
num_workers=2,drop_last=True) |
|
return dl_train,dl_val |
|
|
|
|
|
def create_net(): |
|
net = nn.Sequential() |
|
net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3)) |
|
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) |
|
net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5)) |
|
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)) |
|
net.add_module("dropout",nn.Dropout2d(p = 0.1)) |
|
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))) |
|
net.add_module("flatten",nn.Flatten()) |
|
net.add_module("linear1",nn.Linear(256,128)) |
|
net.add_module("relu",nn.ReLU()) |
|
net.add_module("linear2",nn.Linear(128,10)) |
|
return net |
|
|
|
|
|
|
|
def training_loop(epochs = 5, |
|
lr = 1e-3, |
|
batch_size= 1024, |
|
ckpt_path = "checkpoint.pt", |
|
mixed_precision="no", #'fp16' or 'bf16' |
|
): |
|
|
|
train_dataloader, eval_dataloader = create_dataloaders(batch_size) |
|
model = create_net() |
|
|
|
|
|
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr) |
|
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr, |
|
epochs=epochs, steps_per_epoch=len(train_dataloader)) |
|
|
|
#====================================================================== |
|
# initialize accelerator and auto move data/model to accelerator.device |
|
set_seed(42) |
|
accelerator = Accelerator(mixed_precision=mixed_precision) |
|
accelerator.print(f'device {str(accelerator.device)} is used!') |
|
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare( |
|
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader) |
|
#====================================================================== |
|
|
|
|
|
for epoch in range(epochs): |
|
model.train() |
|
for step, batch in enumerate(train_dataloader): |
|
features,labels = batch |
|
preds = model(features) |
|
loss = nn.CrossEntropyLoss()(preds,labels) |
|
|
|
#====================================================================== |
|
#attention here! |
|
accelerator.backward(loss) #loss.backward() |
|
#====================================================================== |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
model.eval() |
|
accurate = 0 |
|
num_elems = 0 |
|
|
|
for _, batch in enumerate(eval_dataloader): |
|
features,labels = batch |
|
with torch.no_grad(): |
|
preds = model(features) |
|
predictions = preds.argmax(dim=-1) |
|
|
|
#====================================================================== |
|
#gather data from multi-gpus (used when in ddp mode) |
|
predictions = accelerator.gather_for_metrics(predictions) |
|
labels = accelerator.gather_for_metrics(labels) |
|
#====================================================================== |
|
|
|
accurate_preds = (predictions==labels) |
|
num_elems += accurate_preds.shape[0] |
|
accurate += accurate_preds.long().sum() |
|
|
|
eval_metric = accurate.item() / num_elems |
|
|
|
#====================================================================== |
|
#print logs and save ckpt |
|
accelerator.wait_for_everyone() |
|
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%") |
|
net_dict = accelerator.get_state_dict(model) |
|
accelerator.save(net_dict,ckpt_path+"_"+str(epoch)) |
|
#====================================================================== |
|
|
|
training_loop(epochs = 5,lr = 1e-4,batch_size= 1024,ckpt_path = "checkpoint.pt", |
|
mixed_precision="no") #mixed_precision='fp16' or 'bf16' |
|
|
|
``` |
|
|
|
### 3. 执行代码 |
|
|
|
|
|
**方式 1: 在 Notebook 中启动** |
|
|
|
```python |
|
from accelerate import notebook_launcher |
|
#args = (5,1e-4,1024,'checkpoint.pt','no') |
|
args = dict(epochs = 5, |
|
lr = 1e-4, |
|
batch_size= 1024, |
|
ckpt_path = "checkpoint.pt", |
|
mixed_precision="no").values() |
|
notebook_launcher(training_loop, args, num_processes=2) |
|
|
|
|
|
``` |
|
|
|
``` |
|
Launching training on 2 GPUs. |
|
device cuda:0 is used! |
|
epoch【0】@2023-01-15 12:10:48 --> eval_metric= 89.18% |
|
epoch【1】@2023-01-15 12:10:58 --> eval_metric= 97.20% |
|
epoch【2】@2023-01-15 12:11:08 --> eval_metric= 98.03% |
|
epoch【3】@2023-01-15 12:11:19 --> eval_metric= 98.16% |
|
epoch【4】@2023-01-15 12:11:30 --> eval_metric= 98.32% |
|
``` |
|
|
|
|
|
**方式 2: Accelerate 方式执行脚本** |
|
|
|
```python |
|
!accelerate launch ./cv_example.py |
|
``` |
|
|
|
``` |
|
device cuda:0 is used! |
|
epoch【0】@2023-02-03 11:38:02 --> eval_metric= 91.79% |
|
epoch【1】@2023-02-03 11:38:13 --> eval_metric= 97.22% |
|
epoch【2】@2023-02-03 11:38:22 --> eval_metric= 98.18% |
|
epoch【3】@2023-02-03 11:38:32 --> eval_metric= 98.33% |
|
epoch【4】@2023-02-03 11:38:43 --> eval_metric= 98.38% |
|
``` |
|
|
|
|
|
**方式 3: PyTorch 方式执行脚本** |
|
|
|
```python |
|
# or traditional PyTorch style |
|
!python -m torch.distributed.launch --nproc_per_node 2 --use_env ./cv_example.py |
|
``` |
|
|
|
``` |
|
device cuda:0 is used! |
|
epoch【0】@2023-01-15 12:18:26 --> eval_metric= 94.79% |
|
epoch【1】@2023-01-15 12:18:37 --> eval_metric= 96.44% |
|
epoch【2】@2023-01-15 12:18:48 --> eval_metric= 98.34% |
|
epoch【3】@2023-01-15 12:18:59 --> eval_metric= 98.41% |
|
epoch【4】@2023-01-15 12:19:10 --> eval_metric= 98.51% |
|
``` |
|
|
|
|
|
|
|
## 三、使用 TPU 加速你的 PyTorch 模型 |
|
|
|
|
|
Kaggle 中右边 Settings 中的 ACCELERATOR 选择 TPU v3-8。 |
|
|
|
|
|
### 1. 安装 `torch_xla` |
|
|
|
```python |
|
#安装torch_xla支持 |
|
!pip uninstall -y torch torch_xla |
|
!pip install torch==1.8.2+cpu -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html |
|
!pip install cloud-tpu-client==0.10 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.8-cp37-cp37m-linux_x86_64.whl |
|
``` |
|
|
|
```python |
|
#从git安装最新的accelerate仓库 |
|
!pip install git+https://github.com/huggingface/accelerate |
|
``` |
|
|
|
```python |
|
#检查是否成功安装 torch_xla |
|
import torch_xla |
|
``` |
|
|
|
### 2. 训练代码 |
|
|
|
|
|
和之前代码完全一样。 |
|
|
|
```python |
|
import os,PIL |
|
import numpy as np |
|
from torch.utils.data import DataLoader, Dataset |
|
import torch |
|
from torch import nn |
|
|
|
import torchvision |
|
from torchvision import transforms |
|
import datetime |
|
|
|
#====================================================================== |
|
# import accelerate |
|
from accelerate import Accelerator |
|
from accelerate.utils import set_seed |
|
#====================================================================== |
|
|
|
|
|
def create_dataloaders(batch_size=64): |
|
transform = transforms.Compose([transforms.ToTensor()]) |
|
|
|
ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform) |
|
ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform) |
|
|
|
dl_train = torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True, |
|
num_workers=2,drop_last=True) |
|
dl_val = torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False, |
|
num_workers=2,drop_last=True) |
|
return dl_train,dl_val |
|
|
|
|
|
def create_net(): |
|
net = nn.Sequential() |
|
net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3)) |
|
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) |
|
net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5)) |
|
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)) |
|
net.add_module("dropout",nn.Dropout2d(p = 0.1)) |
|
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))) |
|
net.add_module("flatten",nn.Flatten()) |
|
net.add_module("linear1",nn.Linear(256,128)) |
|
net.add_module("relu",nn.ReLU()) |
|
net.add_module("linear2",nn.Linear(128,10)) |
|
return net |
|
|
|
|
|
|
|
def training_loop(epochs = 5, |
|
lr = 1e-3, |
|
batch_size= 1024, |
|
ckpt_path = "checkpoint.pt", |
|
mixed_precision="no", #fp16' or 'bf16' |
|
): |
|
|
|
train_dataloader, eval_dataloader = create_dataloaders(batch_size) |
|
model = create_net() |
|
|
|
|
|
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr) |
|
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr, |
|
epochs=epochs, steps_per_epoch=len(train_dataloader)) |
|
|
|
#====================================================================== |
|
# initialize accelerator and auto move data/model to accelerator.device |
|
set_seed(42) |
|
accelerator = Accelerator(mixed_precision=mixed_precision) |
|
accelerator.print(f'device {str(accelerator.device)} is used!') |
|
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare( |
|
model, optimizer,lr_scheduler, train_dataloader, eval_dataloader) |
|
#====================================================================== |
|
|
|
|
|
for epoch in range(epochs): |
|
model.train() |
|
for step, batch in enumerate(train_dataloader): |
|
features,labels = batch |
|
preds = model(features) |
|
loss = nn.CrossEntropyLoss()(preds,labels) |
|
|
|
#====================================================================== |
|
#attention here! |
|
accelerator.backward(loss) #loss.backward() |
|
#====================================================================== |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
model.eval() |
|
accurate = 0 |
|
num_elems = 0 |
|
|
|
for _, batch in enumerate(eval_dataloader): |
|
features,labels = batch |
|
with torch.no_grad(): |
|
preds = model(features) |
|
predictions = preds.argmax(dim=-1) |
|
|
|
#====================================================================== |
|
#gather data from multi-gpus (used when in ddp mode) |
|
predictions = accelerator.gather_for_metrics(predictions) |
|
labels = accelerator.gather_for_metrics(labels) |
|
#====================================================================== |
|
|
|
accurate_preds = (predictions==labels) |
|
num_elems += accurate_preds.shape[0] |
|
accurate += accurate_preds.long().sum() |
|
|
|
eval_metric = accurate.item() / num_elems |
|
|
|
#====================================================================== |
|
#print logs and save ckpt |
|
accelerator.wait_for_everyone() |
|
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%") |
|
net_dict = accelerator.get_state_dict(model) |
|
accelerator.save(net_dict,ckpt_path+"_"+str(epoch)) |
|
#====================================================================== |
|
|
|
#training_loop(epochs = 5,lr = 1e-3,batch_size= 1024,ckpt_path = "checkpoint.pt", |
|
# mixed_precision="no") #mixed_precision='fp16' or 'bf16' |
|
|
|
``` |
|
|
|
### 3. 启动训练 |
|
|
|
```python |
|
from accelerate import notebook_launcher |
|
#args = (5,1e-4,1024,'checkpoint.pt','no') |
|
args = dict(epochs = 5, |
|
lr = 1e-4, |
|
batch_size= 1024, |
|
ckpt_path = "checkpoint.pt", |
|
mixed_precision="no").values() |
|
notebook_launcher(training_loop, args, num_processes=8) |
|
|
|
``` |
|
|
|
作者介绍:吃货本货。算法工程师,擅长数据挖掘和计算机视觉算法。eat pytorch/tensorflow/pyspark 系列 GitHub 开源教程的作者。 |
|
|