|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""AFQMC""" |
|
|
|
|
|
import os |
|
import json |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Download from https://www.cluebenchmarks.com/introduce.html |
|
""" |
|
|
|
_LICENSE = "apache-license-2.0" |
|
_HOMEPAGE = "https://github.com/IDEA-CCNL/Fengshenbang-LM" |
|
|
|
|
|
class AFQMCConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AFQMCConfig""" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
""" |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
|
|
class AFQMCConfig(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIG_CLASS = AFQMCConfig |
|
BUILDER_CONFIGS = [ |
|
AFQMCConfig(description=_DESCRIPTION) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"label": datasets.ClassLabel(num_classes=2, names=['not similar', 'similar']), |
|
}), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
files = { |
|
"test": os.path.join("afqmc_public", f"test.json"), |
|
"validation": os.path.join("afqmc_public", f"dev.json"), |
|
"train": os.path.join("afqmc_public", f"train.json"), |
|
} |
|
data_dir = dl_manager.download_and_extract(files) |
|
|
|
output = [] |
|
test = datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"] |
|
} |
|
) |
|
output.append(test) |
|
|
|
|
|
valid = datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"] |
|
} |
|
) |
|
output.append(valid) |
|
|
|
train = datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"] |
|
} |
|
) |
|
output.append(train) |
|
|
|
return output |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
lines = f.readlines() |
|
for id_, line in enumerate(lines): |
|
data = json.loads(line) |
|
s = { |
|
'sentence1': data['sentence1'], |
|
'sentence2': data['sentence2'], |
|
'label': 'not similar', |
|
} |
|
if 'label' in data: |
|
s['label'] = 'not similar' if data['label'] == '0' else 'similar' |
|
yield id_, s |
|
|