Datasets:

DOI:
License:

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Overview

This dataset features the 8 evaluation tasks presented in the AgroNT (A Foundational Large Language Model for Edible Plant Genomes) paper. The tasks cover single output regression, multi output regression, binary classification, and multi-label classification which aim to provide a comprehensive plant genomics benchmark. Additionally, we provide results from in silico saturation mutagenesis analysis of sequences from the cassava genome, assessing the impact of >10 million mutations on gene expression levels and enhancer elements. See the ISM section below for details regarding the data from this analysis.

Name # of Datasets(Species) Task Type Sequence Length (base pair)
Polyadenylation 6 Binary Classification 400
Splice Site 2 Binary Classification 398
LncRNA 6 Binary Classification 101-6000
Promoter Strength 2 Single Variable Regression 170
Terminator Strength 2 Single Variable Regression 170
Chromatin Accessibility 7 Multi-label Classification 1000
Gene Expression 6 Multi-Variable Regression 6000
Enhancer Region 1 Binary Classification 1000

Dataset Sizes

Task Name # Train Samples # Validation Samples # Test Samples
poly_a.arabidopsis_thaliana 170835 --- 30384
poly_a.oryza_sativa_indica_group 98139 --- 16776
poly_a.trifolium_pratense 111138 --- 13746
poly_a.medicago_truncatula 47277 --- 8850
poly_a.chlamydomonas_reinhardtii 90378 --- 10542
poly_a.oryza_sativa_japonica_group 120621 --- 20232
splicing.arabidopsis_thaliana_donor 2588034 --- 377873
splicing.arabidopsis_thaliana_acceptor 1704844 --- 250084
lncrna.m_esculenta 4934 --- 360
lncrna.z_mays 8423 --- 1629
lncrna.g_max 11430 --- 490
lncrna.s_lycopersicum 7274 --- 1072
lncrna.t_aestivum 11252 --- 1810
lncrna.s_bicolor 8654 --- 734
promoter_strength.leaf 58179 6825 7154
promoter_strength.protoplast 61051 7162 7595
terminator_strength.leaf 43294 5309 4806
terminator_strength.protoplast 43289 5309 4811
gene_exp.glycine_max 47136 4803 4803
gene_exp.oryza_sativa 31244 3702 3702
gene_exp.solanum_lycopersicum 27321 3827 3827
gene_exp.zea_mays 34493 4483 4483
gene_exp.arabidopsis_thaliana 25731 3401 3402
chromatin_access.oryza_sativa_MH63_RS2 5120000 14848 14848
chromatin_access.setaria_italica 5120000 19968 19968
chromatin_access.oryza_sativa_ZS97_RS2 5120000 14848 14848
chromatin_access.arabidopis_thaliana 5120000 9984 9984
chromatin_access.brachypodium_distachyon 5120000 14848 14848
chromatin_access.sorghum_bicolor 5120000 29952 29952
chromatin_access.zea_mays 6400000 79872 79872
pro_seq.m_esculenta 16852 1229 812

*** It is important to note that fine-tuning for lncrna was carried out using all datasets in a single training. The reason for this is that the datasets are small and combining them helped to improve learning.

Example Usage

from datasets import load_dataset

task_name='terminator_strength.protoplast' # one of the task names from the above table

dataset = load_dataset("InstaDeepAI/plant-genomic-benchmark",task_name=task_name)

In Silico Saturation Mutagensis

File structure for: ISM_Tables/Mesculenta_305_v6_PROseq_ISM_LOG2FC.txt.gz

Intergenic enhancer regions based on Lozano et al. 2021 (https://pubmed.ncbi.nlm.nih.gov/34499719/)
Genome version: Manihot esculenta reference genome v6.1 from Phytozome
CHR: Chromosome
POS: Physical position (bp)
REF: Reference allele
ALT: Alternative allele
LOG2FC: Log fold change in Intergenic enhancer probability (log2(p_mutated_sequence / p_original_sequence))

File structure for: ISM_Tables/Mesculenta_v6_GeneExpression_ISM_LOG2FC.txt.gz

Gene expression prediction based on: Wilson et al. 2016 (https://pubmed.ncbi.nlm.nih.gov/28116755/)
Genome version: Manihot esculenta reference genome v6 from Ensembl 56
CHR: Chromosome
POS: Physical position (bp)
REF: Reference allele
ALT: Alternative allele
GENE: Gene ID
STRAND: Gene strand
TISSUE: Tissue type (Acronyms detailed in Figure 1 of Wilson et al.)
LOG2FC: Gene expression log fold change (log2(gene_exp_mutated_sequence / gene_exp_original_sequence))

Data source for Figures 2-8

File structure for: Figures/Figure[FIGURE_NUMBER]_panel[PANEL_LETTER].txt

Text files containing the data used to plot Figures 2 to 8 from Mendoza-Revilla & Trop et al., 2024. The text files are named using the following format: Figure[FIGURE_NUMBER]_panel[PANEL_LETTER].txt [FIGURE_NUMBER]: This is the number of the figure in the publication. For example, if the data corresponds to Figure 3, this part of the file name will be "Figure3". [PANEL_LETTER]: This is the letter corresponding to a specific panel within the figure. Figures often contain multiple panels labeled with letters (e.g., a, b, c). For example, if the data corresponds to panel b of Figure 3, this part of the file name will be "panelb".

Downloads last month
1,212

Models trained or fine-tuned on InstaDeepAI/plant-genomic-benchmark

Collection including InstaDeepAI/plant-genomic-benchmark