Update README.md
Browse files
README.md
CHANGED
@@ -9,26 +9,27 @@ license: cc-by-nc-sa-4.0
|
|
9 |
|
10 |
|
11 |
## Dataset Overview
|
12 |
-
This dataset features the
|
13 |
Genomes) paper. The tasks cover single output regression, multi output regression, binary classification, and multi-label classification which
|
14 |
aim to provide a comprehensive plant genomics benchmark. Additionally, we provide results from in silico saturation mutagenesis analysis of sequences
|
15 |
from the cassava genome, assessing the impact of >10 million mutations on gene expression levels and enhancer elements. See the ISM section
|
16 |
below for details regarding the data from this analysis.
|
17 |
|
18 |
|
19 |
-
|
|
20 |
| -------- | ------- | -------- | ------- |
|
21 |
| Polyadenylation | 6 | Binary Classification | 400 |
|
22 |
| Splice Site | 2 | Binary Classification | 398 |
|
23 |
| LncRNA | 6 | Binary Classification | 101-6000 |
|
24 |
| Promoter Strength | 2 | Single Variable Regression | 170 |
|
|
|
25 |
| Chromatin Accessibility | 7 | Multi-label Classification | 1000 |
|
26 |
| Gene Expression | 6 | Multi-Variable Regression | 6000 |
|
27 |
| Enhancer Region | 1 | Binary Classification | 1000 |
|
28 |
|
29 |
|
30 |
## Dataset Sizes
|
31 |
-
|
|
32 |
| -------- | ------- | -------- | ------- |
|
33 |
|poly_a.arabidopsis_thaliana|170835|---|30384|
|
34 |
|poly_a.oryza_sativa_indica_group|98139|---|16776|
|
@@ -46,6 +47,8 @@ below for details regarding the data from this analysis.
|
|
46 |
|lncrna.s_bicolor|8654|---|734|
|
47 |
|promoter_strength.leaf|58179|6825|7154|
|
48 |
|promoter_strength.protoplast|61051|7162|7595|
|
|
|
|
|
49 |
|gene_exp.glycine_max|47136|4803|4803|
|
50 |
|gene_exp.oryza_sativa|31244|3702|3702|
|
51 |
|gene_exp.solanum_lycopersicum|27321|3827|3827|
|
@@ -63,6 +66,16 @@ below for details regarding the data from this analysis.
|
|
63 |
*** It is important to note that fine-tuning for lncrna was carried out using all datasets in a single training. The reason for this is that the datasets are small and combining
|
64 |
them helped to improve learning.
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
## In Silico Saturation Mutagensis
|
67 |
### File structure for: ISM_Tables/Mesculenta_305_v6_PROseq_ISM_LOG2FC.txt.gz
|
68 |
Intergenic enhancer regions based on Lozano et al. 2021 (https://pubmed.ncbi.nlm.nih.gov/34499719/) <br>
|
|
|
9 |
|
10 |
|
11 |
## Dataset Overview
|
12 |
+
This dataset features the 8 evaluation tasks presented in the AgroNT (A Foundational Large Language Model for Edible Plant
|
13 |
Genomes) paper. The tasks cover single output regression, multi output regression, binary classification, and multi-label classification which
|
14 |
aim to provide a comprehensive plant genomics benchmark. Additionally, we provide results from in silico saturation mutagenesis analysis of sequences
|
15 |
from the cassava genome, assessing the impact of >10 million mutations on gene expression levels and enhancer elements. See the ISM section
|
16 |
below for details regarding the data from this analysis.
|
17 |
|
18 |
|
19 |
+
| Name | # of Datasets(Species) | Task Type | Sequence Length (base pair) |
|
20 |
| -------- | ------- | -------- | ------- |
|
21 |
| Polyadenylation | 6 | Binary Classification | 400 |
|
22 |
| Splice Site | 2 | Binary Classification | 398 |
|
23 |
| LncRNA | 6 | Binary Classification | 101-6000 |
|
24 |
| Promoter Strength | 2 | Single Variable Regression | 170 |
|
25 |
+
| Terminator Strength | 2 | Single Variable Regression | 170 |
|
26 |
| Chromatin Accessibility | 7 | Multi-label Classification | 1000 |
|
27 |
| Gene Expression | 6 | Multi-Variable Regression | 6000 |
|
28 |
| Enhancer Region | 1 | Binary Classification | 1000 |
|
29 |
|
30 |
|
31 |
## Dataset Sizes
|
32 |
+
| Task Name | # Train Samples | # Validation Samples | # Test Samples |
|
33 |
| -------- | ------- | -------- | ------- |
|
34 |
|poly_a.arabidopsis_thaliana|170835|---|30384|
|
35 |
|poly_a.oryza_sativa_indica_group|98139|---|16776|
|
|
|
47 |
|lncrna.s_bicolor|8654|---|734|
|
48 |
|promoter_strength.leaf|58179|6825|7154|
|
49 |
|promoter_strength.protoplast|61051|7162|7595|
|
50 |
+
|terminator_strength.leaf|43294|5309|4806|
|
51 |
+
|terminator_strength.protoplast|43289|5309|4811|
|
52 |
|gene_exp.glycine_max|47136|4803|4803|
|
53 |
|gene_exp.oryza_sativa|31244|3702|3702|
|
54 |
|gene_exp.solanum_lycopersicum|27321|3827|3827|
|
|
|
66 |
*** It is important to note that fine-tuning for lncrna was carried out using all datasets in a single training. The reason for this is that the datasets are small and combining
|
67 |
them helped to improve learning.
|
68 |
|
69 |
+
## Example Usage
|
70 |
+
```python
|
71 |
+
from datasets import load_dataset
|
72 |
+
|
73 |
+
task_name='terminator_strength.protoplast' # one of the task names from the above table
|
74 |
+
|
75 |
+
dataset = load_dataset("InstaDeepAI/plant-genomic-benchmark",task_name=task_name)
|
76 |
+
|
77 |
+
```
|
78 |
+
|
79 |
## In Silico Saturation Mutagensis
|
80 |
### File structure for: ISM_Tables/Mesculenta_305_v6_PROseq_ISM_LOG2FC.txt.gz
|
81 |
Intergenic enhancer regions based on Lozano et al. 2021 (https://pubmed.ncbi.nlm.nih.gov/34499719/) <br>
|